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Thermopower in a boundary-driven bosonic ladder in the presence of a gauge field

Bo Xing ,1,* Xiansong Xu,1 Vinitha Balachandran ,1 and Dario Poletti1,2

1Science, Mathematics, and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
2Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore

(Received 6 September 2021; revised 16 March 2022; accepted 16 March 2022; published 25 March 2022)

We consider a bosonic two-legged ladder whose two-band energy spectrum can be tuned in the presence of a
uniform gauge field, to four distinct scenarios: degenerate or nondegenerate ground states with gapped or gapless
energy bands. We couple the ladder to two baths at different temperatures and chemical potentials and analyze
the efficiency and power generated in the linear as well as nonlinear response regime. Our results, obtained with
the Green’s function method, show that the maximum performance efficiency and generated power are strongly
dependent on the type of the underlying energy spectrum. We also show that the ideal scenario for efficient energy
conversion, as well as power generation, corresponds to the case in which the spectrum has a gap between the
bands, and the ground state is degenerate.
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I. INTRODUCTION

Efficient energy harvesting is an important challenge faced
by future technologies. Thermoelectric conversion of work
from heat offers a promising solution [1–3]. However, thermo-
dynamics places fundamental bounds on maximum efficiency
and the generated power [4–7]. In linear response, the pri-
mary measure of the efficiency of thermoelectric devices or
materials is the figure of merit ZT = GS2T/K , a function of
temperature T , thermal conductance K , particle conductance
G, and Seebeck coefficient S [8–11].

Studies on energy harvesting have been focusing mainly
on fermionic systems [8,12], where the particles considered
are typically electrons, although fermionic atoms in ultracold
gases have been considered too [13].

Studies on the thermopower performance of bosonic sys-
tems are still in their infancy compared to fermionic systems
[14–18]. Bosonic systems, due to their uniquely defined Bose-
Einstein distribution, can populate energy bands differently
and may lead to novel insights in improving the thermopower
performance. Recent advances in cold atom experiments have
greatly increased the ability to study transport for bosonic par-
ticles or excitations for example in ultracold gas experiments
or with Josephson junctions [19,20]. Experimental observa-
tion of transport phenomena of ultracold bosons has also been
realized in 1D and quasi-1D systems [21–24]. In this paper,
we aim to push forward the investigation of thermopower
performance of bosonic systems. In particular, we focus on
a system that, even without any interactions, undergoes a
quantum phase transition between a Meissner and a vortex
phase [25–27]. This allows us also to study the effect of
quantum phase transitions on the thermopower performance
of a bosonic system. For a review on transport in dissipatively
boundary-driven systems and, in particular, the role of phase
transitions, see [28].

*bo_xing@mymail.sutd.edu.sg

The system we consider is a bosonic ladder with a uniform
gauge field as shown in Fig. 1. A change in the gauge field
may result in the ground state going from unique to degen-
erate, thus leading to a quantum phase transition between
the Meissner and the vortex phases, respectively. It can also
cause the opening of a gap in the two-band energy spectrum.
Hence, there are four qualitatively different energy spectrum
structures in which the system can be tuned to. The influence
of the energy spectrum on the transport properties of similar
bosonic systems have been studied in [29–32].

Here we investigate how tuning the system parameters
to tailor the energy bands can be used to significantly al-
ter its thermopower conversion performance [33–39]. More
in detail, we investigate the interplay between the boundary
driving baths and the system parameters in tuning the heat-to-
work conversion. Using the nonequilibrium Green’s function
technique [40–49], we focus on both linear and nonlinear
response regimes. To quantitatively evaluate the performance
of the ladder, we use the figure of merit in the linear response
regime and the efficiency and power generated in the nonlin-
ear response regime. In particular, we explore the four distinct
regions in the system parameter space, each with a different
type of energy band structure, and highlight the regions with
the highest figure of merit, efficiency, or power generated.

The paper is organized as follows: In Sec. II we introduce
the system and nonequilibrium setup, briefly describes the
nonequilibrium Green’s function, and introduce the Onsager
coefficients used to study the system in the linear response
regime. We present the analysis on the figure of merit in the
linear response regime in Sec. III A and study the efficiency
and power generated away from the linear response regime in
Sec. III B. Lastly, we summarize our work in Sec. IV.

II. MODEL AND METHODS

A. Two-legged bosonic ladder

We study a two-legged noninteracting bosonic ladder
with a uniform gauge field. The Hamiltonian of the ladder
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FIG. 1. A schematic representation of our setup. The ladder con-
sists of two coupled legs, with the bosonic creation (annihilation)
operators described by â†

l,p (âl,p), where l = 1, 2, . . . , L refers to
the site along the leg and p = 1, 2 refers to the top or bottom leg.
J⊥ and J‖ are the tunneling amplitude along the rungs and legs of
the ladder, respectively. The magnetic field imposes a phase factor
φ when hopping along the legs. The coupling to the left and right
baths is represented by the blue and red double arrow. The baths
are coupled to the top corners of the ladder and are characterized
by temperatures TL or TR and chemical potentials μL or μR. For all
results, we work in units for which J‖ = kB = h̄ = 1.

is

ĤS = −
⎛
⎝J‖ ∑

l,p

ei(−1)p+1φ/2 â†
l,pâl+1,p

+ J⊥ ∑
l

â†
l,1âl,2 + H.c

)
+ V

∑
l,p

â†
l,pâl,p, (1)

where â†
l,p (âl,p) is the bosonic creation (annihilation) operator

at the lth rung and pth leg of the ladder, J‖ (J⊥) is the
tunneling amplitude along the legs (rungs), and V is the local
potential. Due to the presence of a gauge field, the bosons in
the ladder acquire a phase φ when tunneling along the legs of
the ladder. The sign of the phase depends on the direction of
the field circulation and is shown in Fig. 1. In this article, we
mainly consider a ladder with a length L = 64 (128 sites) [50]
and a local potential V/J‖ = 8.

The single-particle Hamiltonian in Eq. (1) with periodic
boundary condition can be diagonalized readily and it has a
two-band structure with energies E±

k with k being the quasi-
momentum [25]. Depending on the magnitude of J⊥/J‖ and
φ, the energy spectrum of the ladder can be classified in four
typical regions [29,32], as shown in Fig. 2. The red dotted line
in Fig. 2,

J⊥
c1 = 2J‖ cos (φ/2), (2)

gives the critical values of J⊥
c1 at which the opening of the

energy gap occurs. The red dashed lines in Fig. 2,

J⊥
c2 = 2J‖ tan (φ/2) sin (φ/2), (3)

give the critical values of J⊥
c2 at which the degeneracy of

the ground state occurs. For J⊥ > J⊥
c2 (regions I and II), the

ground state of the ladder is in the Meissner phase, where the
particle current only flows along the edges of the ladder. For
J⊥ < J⊥

c2 (regions III and IV), the ground state of the ladder
enters a vortex phase with finite inner rung currents. The
focus of our paper is to study how these quantum phases and
their underlying energy band structure affect the performance
of the system as an engine in both the linear and nonlinear
response regimes. In the following, we work in units for which
J‖ = kB = h̄ = 1.

FIG. 2. Energy band structures of a two-legged bosonic ladder
in the system parameter space, J⊥/J‖ and φ. The red dotted line,
from Eq. (2), and the dashed line, from Eq. (3), divide the parameter
space into four distinct regions I to IV. The Meissner (regions I and
II) to vortex (regions III and IV) quantum phase transition takes
place across the red dashed line. In each region, the band structure
is noticeably different. For each region, we show an inset with the
energy band structure, i.e., E±

k /J‖ versus the quasimomentum k,
where + and − correspond to the upper and lower band, respectively.
In each inset, the dashed lines correspond to the energy levels of
max(E−

k /J‖) and min(E+
k /J‖). In addition, two red arrows represent

the locations of the horizontal and vertical cuts in the system param-
eter space which are studied in Figs. 5–7.

B. Nonequilibrium setup

We couple the ladder to two bosonic baths at different tem-
peratures and chemical potentials at the top edges as shown in
Fig. 1. The baths are modeled as a collection of noninteracting
bosons with Hamiltonian

ĤL/R =
∑

k

Ek,L/Rb̂†
k,L/Rb̂k,L/R, (4)

where b̂†
k,L/R (b̂k,L/R) is the creation (annihilation) operator for

a bosonic excitation with energy Ek,L/R in the left (L) or right
(R) bath.

The baths are coupled to the system via the system-bath
coupling Hamiltonian

ĤI,L/R =
∑

k

ck,L/R(â†
L/Rb̂k,L/R + b̂†

k,L/RâL/R ), (5)

where ck,L/R denotes the coupling strength and â†
L/R, âL/R are

the bosonic operators at the top edges of the ladder in contact
with the baths. Note that this choice of system-bath coupling
conserves the total number of bosons for the overall system-
plus-baths setup.

The baths are assumed to be at thermal equilibrium char-
acterized by the Bose-Einstein distribution

f (E , T, μ) = 1

e(E−μ)/T − 1
, (6)

at temperature T = TL/R and chemical potential μ = μL/R.
We fix the bath chemical potential μL/R such that the ground
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state occupation of the bath is

n̄0(TL/R, μL/R ) = 1

e(E0−μL/R )/TL/R − 1

= 1

eẼL/R/TL/R − 1
, (7)

where ẼL/R is the ground state energy E0 offset by the chem-
ical potential μL/R, i.e., ẼL/R = E0 − μL/R. In the following,
we set the ground state occupation by fixing Ẽ . In this way, we
can better evaluate the role of energy band structure because
the occupation of the excited states becomes dependent on
the energy difference between the excited states and ground
state at any given temperature. In particular, we are interested
in the scenario where the temperature bias competes with the
chemical potential bias in driving a current. This is achieved
by choosing TR > TL and μL > μR (i.e. ẼL < ẼR).

C. Green’s function formalism

We use the nonequilibrium Green’s function formalism
[40–49] to study this nonequilibrium system-bath setup. The
retarded and advanced Green’s functions Gr,a(E ) are

Gr,a(E ) = 1

E − ĤS − �r,a
L (E ) − �r,a

R (E )
, (8)

where �r,a
L/R(E ) are the self-energy terms that model the ef-

fects of the baths on the isolated system. �r,a
L/R(E ) is expressed

in terms of the free Green’s function of the baths gr,a
L/R(E ) =

(E ± iε − ĤL/R )−1 and the coupling Hamiltonian ĤI,L/R,

�r,a
L/R(E ) = ĤI,L/Rgr,a

L/R(E )Ĥ†
I,L/R. (9)

The bath spectral density, or the level-width function,

�L/R(E ) = i
(
�r

L/R − �a
L/R

)
= 2π

∑
k

|ck,L/R|2δ(E − Ek,L/R ), (10)

characterizes the coupling between the system and baths. We
consider baths with Ohmic spectral density �L/R(E ) = γ E ,
where γ is the effective system-bath coupling strength for
each bath [51].

It follows that the particle current JP and heat current
JQ,L/R are given by the Landauer-like formula [52,53]

JP = 1

2π

∫ ∞

−∞
dE T (E )	(E , TL,R, μL,R ), (11)

JQ,L = 1

2π

∫ ∞

−∞
dE (E − μL)T (E )	(E , TL,R, μL,R ),

(12)

JQ,R = − 1

2π

∫ ∞

−∞
dE (E − μR)T (E )	(E , TL,R, μL,R ),

(13)

where T (E ) = Tr[Gr (E )�L(E )Ga(E )�R(E )] is the transmis-
sion function [40] and 	(E , TL,R, μL,R ) = f (E , TL, μL) −
f (E , TR, μR). It is important to note that Eqs. (11)–(13) are
valid for two-terminal devices even when a magnetic field is
present [54].

While the particle currents entering and leaving the ladder
are always the same in this nonequilibrium setup, the heat
currents are only the same when the baths have the same
chemical potential. When the chemical potential is different,
we can immediately observe from Eqs. (12) and (13) that
JQ,L �= JQ,R. For a multibath setup, the total power generated
is the sum of all heat currents and it is given by

P =
∑

i=L,R

JQ,i. (14)

When P > 0, the system converts heat into work and act as
an engine with an energy conversion efficiency quantified by

ηeng = P
JQ,R

(15)

as shown, for instance, in [3]. This expression is only valid
when the currents JQ,R and JQ,L are respectively positive
and negative which implies a heat flow from right to left, the
scenario we study in this work.

D. Thermopower in linear and nonlinear response

In the linear response regime, the currents are expanded to
the linear order in biases �μ = (μR − μL) and �T = (TR −
TL) as [3] (

JP

JQ

)
=

(
LPP LPQ

LQP LQQ

)(
�μ

�T/T

)
, (16)

where T = (TL + TR)/2 is the average temperature. The el-
ements of the 2 × 2 matrix in Eq. (16) are the Onsager
coefficients and can be fully determined in terms of the trans-
mission coefficient T (E ) as

Li, j = 1

2π

∫ ∞

−∞

dE

h̄

(
1 E − μ

E − μ (E − μ)2

)

× T (E )[− f ′(E , T, μ)], (17)

where f ′(E , T, μ) is the derivative of the Bose-Einstein dis-
tribution, μ = (μR + μL)/2 is the average chemical potential,
and i, j = P, Q.

The particle conductance, Seebeck coefficient, and thermal
conductance are obtained from Eq. (16) as

G = lim
�μ→0

JP

�μ

∣∣∣
�T =0

= LPP , (18)

S = − lim
�T →0

�μ

�T

∣∣∣
JP=0

= 1

T

LPQ

LPP
, (19)

K = lim
�T →0

JQ

�T

∣∣∣
JP=0

= 1

T

[
LQQ − L2

PQ

LPP

]
. (20)

The thermopower performance of a material at a tempera-
ture T is determined by the dimensionless figure of merit

ZT = GS2

K
T . (21)

When the value of ZT is higher, the energy conversion effi-
ciency is higher. The maximum efficiency of a device can be
quantified in terms of the single parameter ZT as

ηmax = ηC

√
1 + ZT − 1√
1 + ZT + 1

, (22)
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where ηC = 1 − TC/TH is the Carnot efficiency, and TC/H is
the temperature of the cold and hot baths. From Eq. (22), it is
clear that ZT → ∞ leads to the Carnot efficiency. Maximum
power generated is another important quantity to characterize
the thermopower performance and it is given by

Pmax = 1
4 S2G(�T )2. (23)

When the differences in temperature and chemical poten-
tial of the two baths are finite, the particle and heat currents
are highly nonlinear and expansion up to the linear order is not
sufficient. Hence, the analysis in the above Sec. II D does not
apply. However, it is possible to evaluate the power generated
and the corresponding efficiency using Eqs. (14) and (15)
numerically.

III. RESULTS

In the following, we discuss the performance as the ther-
mopower converter of the two-legged ladder in the linear
(Sec. III A) and nonlinear response regimes (Sec. III B).
Within the linear response, we analyze the engine efficiency
of the four regions and explain the results in terms of the
interdependencies of conductances and Seebeck coefficient.
In addition, we draw connections between the thermopower
performance and the unique energy structure in each region.
We also investigate the role of system-bath coupling strength
and chemical potential to improve efficiency. Finally, we in-
crease the biases and explore the nonlinear response of the
two-legged ladder.

A. Linear response regime

We start by studying the maximum efficiency (in terms of
the Carnot efficiency), ηmax/ηC, and maximum power, Pmax,
using the linear response theory for the four regions shown
in Fig. 2. For each region, we choose arbitrary combinations
of system parameters J ⊥ and φ (one from each region) to
represent the general behavior of the region. We note that
choosing another set of J ⊥ and φ within the same region
results in small quantitative changes in the observables we
study. However, the qualitative behavior of these regions does
not show any significant dependence on the choice of the
parameters.

In Fig. 3, we investigate the effect of average temperature,
T , on ηmax/ηC and Pmax for two different average chem-
ical potentials, μ = E0 − Ẽ where Ẽ = (ẼL + ẼR)/2. Two
interesting observations stand out immediately when com-
paring Figs. 3(a) and 3(b). First, the behavior of regions
I and IV, where the energy bands are gapped, is notice-
ably different from that of regions II and III at intermediate
temperatures 0.5 < T < 1.0. More specifically, instead of
decreasing rapidly to an asymptotic value, the maximum effi-
ciency ηmax/ηC plateaus in this intermediate T region, before
decreasing further. Second, comparing Fig. 3(a) and 3(b), we
note that when chemical potential, μ, is large [low Ẽ , panel
(a)], the efficiency is smaller in all regimes. For large chemical
potential, region IV is always the most efficient regime within
the temperature T range we have explored. At low chemical
potential [high Ẽ , panel (b)], the most efficient region changes
from region IV to region II as temperature increases.

FIG. 3. (a), (b) Maximum efficiency (in terms of the Carnot
efficiency), ηmax/ηC, against average temperature T for chemical
potential μ = E0 − Ẽ , where Ẽ = 0.1 and 0.5, respectively. (c),
(d) Maximum power, Pmax, against average temperature T for Ẽ =
0.1 and 0.5, respectively. A higher Ẽ is equivalent to a lower μ.
To calculate Pmax, we fix �T = 0.1T . For each panel, the four
lines represent different regions as described in the legend. The J⊥

and φ chosen for the red lines is J⊥ = 4.0, φ = 0.1π (region I).
For the blue lines, J⊥ = 1.0, φ = 0.3π (region II). For the green
lines, J⊥ = 1.0, φ = 0.5π (region III). For the black lines, J⊥ = 3.0,
φ = 0.8π (region IV). For all panels, γ = 0.1.

In Figs. 3(c) and 3(d), we study the maximum power gen-
erated at different T when �T = 0.1T . It is clear from the
figure that power generated is negligible at low temperatures
and increases monotonically as temperature rises. Analyzing
the panels we see that some regions generate more power than
the rest depending on the temperature. While region IV seems
to deliver the most power at very low T , it is quickly overtaken
by regions II and III as T increases. At high T , regions II and
III, where the energy bands overlap, produce a substantially
higher Pmax than regions I and IV. Comparing Figs. 3(c) and
3(d), we find that the decrease in μ (increase in Ẽ ) boosts the
power generated and does not change the behavior of Pmax

versus T .
To better understand the results of Fig. 3, in particular the

difference in efficiency of each region, we evaluate the band
structure of each region under different bath temperatures. In
Fig. 4, we plot the band structure of each region. In each panel,
the colored shading (blue and red) represents the occupation
of the energy states. The blue shading (first row) represents
T = 0.1 and the red shading (second row) represents T = 1.0.
The energy states in the system are filled very differently
depending on the underlying band structure. At a low tem-
perature (first row), both particle and thermal transport are
dominated by the low energy states. This is true for all regions.
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FIG. 4. Band structure of the system in the four different regions.
The band structure of each region is characterized by the presence
or absence of a band gap and/or degenerate ground states. In each
panel, the colored shading (blue and red) represents the occupation
of the system at a given energy E . The blue (first row) represents
a scenario where T = 0.1 and the red (second row) represents T =
1.0. At higher temperatures, the occupation of the states with higher
energy becomes non-negligible.

Therefore, the principal factor differentiating the regions is
the density of energy states in the vicinity of the ground state.
Since regions III and IV have degenerate ground states, their
lower bands are narrower and they have more energy states
in the close vicinity of the ground state. At this temperature,
the presence of a band gap does not influence the transport
properties of the system, because the higher energy states are
not occupied.

When the temperature is raised (second row), the particle
transport is still dominated by the low energy states due to
the nature of the Bose-Einstein distribution, Eq. (6). However,
thermal transport is influenced by the non-negligible presence
of the higher energy states. These higher energy states do
not contribute to particle transport significantly, but play an
important role in thermal transport due to the high energy
they carry. Therefore, we can expect the bandwidth of the
lower band and the band gap to influence thermal transport
at higher temperature. When the bands are not gapped and
temperature is high, energy states from the upper band, or
higher energy states from the lower band, can be substantially
occupied and contribute to thermal transport. However, as the
band gap opens, or when the bandwidth of the lower band be-
comes narrower, the higher energy states become inaccessible,
resulting in a reduction in thermal transport.

To exemplify the analysis above, we demonstrate the
particle conductance, G, thermal conductance, K , Seebeck
coefficient, S, and figure of merit, ZT , as a function of φ. In
Fig. 5, we perform a horizontal cut across the system param-
eter space at J⊥ = 2.5 to evaluate the effects that come with
the emergence of degenerate ground states. This horizontal
cut features a change from region I to IV as φ increases and
can be visualized in Fig. 2. The dashed vertical line marks the
location where the transition takes place. Region I is on the
left of the line and region IV is on the right.

We find that the emergence of degenerate ground states
greatly changes the transport properties at both low and high
temperatures. At T = 0.1 (left column), G and K peak right

FIG. 5. Particle conductance, G, thermal conductance, K , See-
beck coefficient, S, and figure of merit ZT against φ, when J⊥ = 2.5.
This is a horizontal cut in the system parameter space and features
a change from region I to IV as φ increases. A red horizontal arrow
representing the location of this cut is shown in Fig. 2. On the left
column, T = 0.1, and on the right column, T = 1.0. The vertical
dashed line signals the emergence of degenerate ground states (vor-
tex phase). For all panels, γ = 0.1 and μ = E0 − Ẽ , where Ẽ = 0.1.
The fluctuations in the plots are finite-size effects. As the system size
increases, the amplitude and frequency of the fluctuation decrease.
The black solid line is obtained from L = 128.

after the emergence of degenerate ground states while S
reaches a minimum. We relate this to the emergence of de-
generate ground states which greatly increases the number
of low energy particles participating in the transport. As φ

continues to increase beyond the transition, the degenerate
ground states become farther apart in the momentum space
and number of energy states close to the ground stat starts
to decrease after reaching a peak. At T = 1.0 (right column),
the behavior of G is similar to T = 0.1. This is not surprising
as G is dominated by the lower energy states, which make
up the majority of the particles regardless of the temperature.
However, the behaviors of K and S are very different. K and
S are heavily influenced by the higher energy states, which
have non-negligible occupations only at higher temperature.
The narrowing of the lower band after the transition results
in a reduction in the availability of higher energy states. As a
result, we find that K decreases even more rapidly after the
transition at higher temperature. This leads to a significant
increase in ZT after the transition. It is worth pointing out that
the fast fluctuations in the figures are finite-size effects. In fact
the amplitude and frequency of the oscillation decrease when
increasing the system size. This is shown in Fig. 5 in which
we plotted the data for L = 64 with the red line with circles
and for L = 128 with the black continuous line.

In Fig. 6, we perform a vertical cut across the system
parameter space at φ = 0.3π to evaluate the effects that come
with the opening of a band gap. We focus on the part of the
cut which features a change from region II to I as J⊥ increases.
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FIG. 6. Particle conductance, G, thermal conductance, K , See-
beck coefficient, S, and figure of merit ZT against J⊥/J ||, when
φ = 0.3π . This is a vertical cut in the system parameter space and
features a change from region II to I as J⊥ increases. A red vertical
arrow representing the location of this cut is shown in Fig. 2. On the
left column, T = 0.1, and on the right column, T = 2.0. The vertical
dotted line signals the opening of a band gap between the upper
and lower bands. For all panels, γ = 0.1 and μ = E0 − Ẽ , where
Ẽ = 0.1.

The location of this vertical cut can be visualized in Fig. 2. The
dotted vertical line marks the location where the gap between
the two bands opens. Region II is on the left of the line and
region I is on the right.

In Fig. 6, we find that the opening of the band gap only af-
fects the thermal transport properties at high temperatures. At
T = 0.1 (left column), the opening of the band gap does not
impact the transport properties of the system. As mentioned
previously, particle and thermal transport are dominated by
lower energy states at low temperatures. The opening of the
band gap is irrelevant because the occupation of the high en-
ergy states is negligible. When the temperature is substantially
higher at T = 2.0 (right column), we see that G behaves sim-
ilarly to T = 0.1. However, the non-negligible occupation of
higher energy states at T = 2.0 gives rise to a totally different
behavior for K . In particular, K peaks right before the opening
of the band gap and falls rapidly after.

In the following, we focus on how the system-bath cou-
pling, γ , and the choice of chemical potential, μ = E0 − Ẽ ,
affect ZT in different regions. We study the setup with three
different sets of bath and system-bath parameters in Fig. 7. For
all panels, we plot the horizontal cut of the system parameter
space at J⊥ = 2.5, which features a transition from region I to
region IV (Meissner to vortex transition), while the band gap
is always open. We stress that, despite the changes in the bath
and system-bath coupling, the energy band structure continues
to play an important role in determining transport perfor-
mance. Specifically, we see that ZT increases significantly
after the emergence of a degenerate ground states, regardless
of the change in bath and system-bath parameters. In (a),

FIG. 7. Figure of merit, ZT , against φ for different bath and
system-bath setups. Similar to Fig. 5, the horizontal cut is at J⊥ = 2.5
and features a transition from region I to IV. The vertical dashed line
signals the formation of degenerate ground states (Meissner to vortex
phase). In the first panel, T = 1.0, γ = 0.1, and μ = E0 − Ẽ , where
Ẽ = 0.1. The subsequent panels feature a change in either γ or Ẽ ,
where the change is highlighted in bold.

we study the ZT of the setup at T = 1.0, Ẽ = 0.1, γ = 0.1
and find a monotonic increase in ZT after the emergence of
ground state degeneracy. When Ẽ increases from 0.1 to 0.5
in (b), we observe that ZT increases significantly for all φ

values. The increase is especially remarkable as the system
undergoes a transition from region I to IV.

The effect of γ on ZT comes entirely from the transmission
function, T (E ), which has a prominent role in Eqs. (11)–(13).
In Fig. 8, we examine T (E ) at J⊥ = 2.5 and φ = 0.8π (region
IV) for (a) γ = 0.1, (b) γ = 0.1, and (c) γ = 1.0 [55]. In (b)
and (c), we show only the transmission function of the lower
energy band. The increase in γ results in noticeable changes in
the shape of the transmission function. In particular, the peaks
becomes narrower and the minima of the transmission are
lower. However, as demonstrated in Fig. 7(c), the qualitative
behavior of ZT remains unchanged.

B. Nonlinear response regime

Linear response theory gives indications on the perfor-
mance of each region at some average temperature and
chemical potential when the temperature and chemical po-
tential biases are small. When these biases are large, the
evaluation of thermopower performance using linear response
theory becomes invalid. For such scenarios, we evaluate the
efficiency and power generated directly using Eqs. (14) and
(15).

In Fig. 9, we plot the efficiency (in terms of the Carnot
efficiency), ηeng/ηC, and power generated, P , of the ladder as
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FIG. 8. The transmission function, T (E ), against energy E . The system parameter is J⊥ = 2.5, φ = 0.8π (region IV). In (a), we plot the
transmission function for system-bath coupling γ = 0.1. In (b), we plot the same transmission function for γ = 0.1, but zoom into the energy
range of the lower band. In (c), we plot the transmission function of the lower band for γ = 1.0. A different combination of J⊥ and φ in the
same region does not present qualitatively different findings. In all panels, a T (E ) = 1 dotted line is shown to demonstrate that the transmission
function max out at 1.

FIG. 9. Efficiency (in terms of the Carnot efficiency) ηeng/ηC

[(a), (b)] and power generated P [(c), (d)] against temperature bias
�T . In (a) and (c), T = 0.1, and in (b) and (d), T = 1.0. For each
panel, the four lines represent different regions as described in the
legend. The J⊥ and φ chosen for the lines are identical to the de-
scription in Fig. 3. For all panels, γ = 0.1 and μL/R = E0 − ẼL/R,
where ẼL = 0.1 and ẼR = 0.2.

a function of �T = (TR − TL). For Figs. 9(a) and 9(c), we
fix the average temperature T = (TL + TR)/2 = 0.1, and for
Figs. 9(b) and 9(d), T = 1.0. For all panels, μL = E0 − ẼL

and μR = E0 − ẼR, where ẼL = 0.1 and ẼR = 0.2. We find
that the efficiency is maximum at some intermediate �T for
all regions in Figs. 9(a) and 9(b). All regions have similar
ηeng/ηC at T = 0.1 (a), and region IV has a much higher
maximum efficiency than other regions at T = 1.0 (b). This
is qualitatively similar to our findings in the linear response
regime, where we find region IV to be the most efficient at
T = 1.0 due to the presence of both the band gap and degener-
ate ground states. As T increases from T = 0.1 (a) to 1.0 (b),
the maximum efficiency of the ladder is reduced in all regions.
This reduction of maximum efficiency in all regions when
T = 0.1 → 1.0 is predicted in the linear response regime as
well, where we observe that ZT is a function that decreases
with T .

In Figs. 9(c) and 9(d), we plot the power generated by the
four regions when T = 0.1 and 1.0 respectively. In general,
the power generated P increases with both the increase in
T and �T as showed in Figs. 9(c) and 9(d). In addition,
the region that generates the most power depends on the T
it operates at. The most efficient region does not necessarily
generate the most power. At T = 0.1, region IV generates
more power than all other regions. However, when T = 1.0,
region III overtakes as it is gapless and hence can populate
the higher energy states more efficiently, increasing the heat
current JQ.

In Fig. 10, we plot the efficiency (in terms of the Carnot
efficiency), ηeng/ηC, and power generated, P , of the ladder
against the strength of chemical potential bias, |�μ| = |μR −
μL|. For Figs. 10(a) and 10(c), we fix the average chemical
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FIG. 10. Efficiency (relative to Carnot’s efficiency) ηeng/ηC [(a),
(b)] and power generated P [(c), (d)] against the strength of chemical
potential bias, |�μ|. In (a) and (c), the average chemical potential
μ = E0 − Ẽ , where Ẽ = 0.1. In (b) and (d), Ẽ = 0.5. For each panel,
the four lines represent different regions as described in the legend.
The J⊥ and φ chosen for the lines are identical to the description in
Fig. 3. For all panels, TL = 0.1, TR = 0.5, and γ = 0.1.

potential μ = E0 − Ẽ , where Ẽ = 0.1. For Figs. 10(b) and
10(d), Ẽ = 0.5. For all panels, TL = 0.1 and TR = 0.5.

In Figs. 10(a) and 10(b), we find that ηeng/ηC initially
increases with |�μ|. In Fig. 10(b), as |�μ| increases further,
the chemical potential gradient becomes stronger than the
temperature gradient in driving the current and the system
stops functioning as an engine. As a result, efficiency falls
quickly to zero. The maximum efficiency of the ladder is
higher in all regions when Ẽ is increased from Ẽ = 0.1 (a)
to 0.5 (b). This is again similar to the findings in the linear
response regime, where we find that ZT (efficiency) increases
with Ẽ . In Figs. 10(c) and 10(d), we find that the power
generated by the ladder follows the same trend as the effi-
ciency. For both Ẽ = 0.1, 0.5, it is possible to improve the
efficiency of the ladder without compromising on the power
generated.

IV. CONCLUSIONS

We have analyzed the thermopower performance of a
boundary-driven, noninteracting bosonic ladder in the pres-
ence of a gauge field. Despite being a minimal model, we
have shown that its energy band structure can be tuned to
deliver a wide range of thermopower performance in linear
and nonlinear response regimes.

In the linear response regime, we have studied the
maximum efficiency and power of the ladder for various
temperatures and chemical potentials. We have evaluated the
importance of band engineering in influencing transport. We
found that both the opening of a band gap and the emergence
of degenerate ground state play important roles in determining
transport. We found that the emergence of degenerate ground
states, which corresponds to the ground state phase transition
from the Meissner to vortex phase, influences transport prop-
erties at both low and high temperatures. Away from the linear
response regime, we have studied the efficiency and power
generated in the ladder while keeping the average temperature
or chemical potential constant. In particular, we have shown
how to tune the bath biases to achieve maximum efficiency
or power for different regions in the system parameter space.
Depending on whether one wishes to maximize efficiency or
power, our analysis provides a general guideline on choosing
the appropriate system and bath parameters. For a wide range
of temperatures and chemical potentials, the band structure
that features gapped bands with degenerate ground states is
the most efficient in converting heat current to power, while at
the same time delivering sizable power.

The most convenient candidate to study the setup we pro-
posed is through ultracold bosons in optical lattices. In fact
in the past years there have been significant advances in the
realization of synthetic gauge fields [56,57]. Furthermore,
the realization of the two-legged ladder with gauge field has
already been be achieved in the experimental framework de-
scribed in [27]. More specifically, the system can be set up
by trapping 87Rb atoms in a three-dimensional optical lattice
potential created by standing waves of different wavelengths
in different directions. The tunneling in the rungs of the lad-
der is further differentiated by laser-assisted tunneling. The
bath bias and system-bath interface can be prepared following
the description in [24], where the chemical potential bias of
the baths can be tuned by creating unequal populations. The
temperature imbalance can then be introduced by depositing
energy into the baths, for instance via heating one of them.

One interesting aspect to explore further is the inclusion
of repulsive on-site interaction in the bosonic ladder with
gauge field. This repulsive interaction can be tuned experi-
mentally, for example with a Feshbach resonance [58–60], or
by varying the local trapping potential [61]. Such interacting
systems are known to exhibit a richer phase diagram, such as
vortex-superfluid, Meissner-superfluid, vortex-Mott insulator,
and Meissner-Mott insulator phases, depending on the density
of the bosons [62–65]. It would be thus interesting to explore
how the inclusion of on-site interactions can change the ther-
mopower of the ladder.
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