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Geometric thermodynamic uncertainty relation in a periodically driven thermoelectric heat engine
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The thermodynamic uncertainty relation, quantifying a trade-off among average current, the associated
fluctuation (precision), and entropy production (cost), has been formulated at nonequilibrium steady state in
various stochastic systems. Herein, we study the thermodynamic uncertainty relation in generic thermoelectric
heat engines under periodic control protocols, by uncovering the underlying Berry-phase-like contribution. We
show that our thermodynamic uncertainty relation breaks the seminal steady-state results, originating from the
nonvanishing geometric effect. Furthermore, by deriving the consequent trade-off relation binding efficiency,
power, and constancy, we prove that the periodically driven thermoelectric heat engines can generally outperform
the steady-state analogies. The general bounds are illustrated by an analytically solvable two-terminal single
quantum dot heat engine under the periodic modulation. Our work provides a geometric framework in bounding
and optimizing a wide range of periodically driven thermoelectric thermal machines.
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I. INTRODUCTION

Periodically driven quantum machines reach limited-cycle
states after a long-time evolution since the coupling to the
environment prevents infinite heating up [1–5]. These limited-
cycle states form the basis of various functional thermal
machines, which exhibit non-negligible fluctuations [6–8].
Investigating their trade-off relations provides insight into the
optimal design principles for such periodically driven sys-
tems.

Recently, a thermodynamic uncertainty relation (TUR)
has been formulated based on classical Markovian steady
states, which demonstrates the trade-off relation between rel-
ative current fluctuation and dissipation [9–23]. Specifically,
the average accumulated current 〈Q〉, its variance 〈〈Q2〉〉 ≡
〈(Q − 〈Q〉)2〉, and the net entropy production 〈�〉 are univer-
sally bounded as

〈〈Q2〉〉
〈Q〉2

〈�〉 � 2. (1)

It is known that the TUR was initially proposed in the
long-time limit [9,24] and later generalized to the finite-time
dynamics [25]. Consequently, the analysis methods and cor-
responding physical implications are further refined [26–28].
Although TUR has been widely applied in a tremendous
amount of systems, it is not always valid. TUR violation
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corresponds to the situation that the left-hand side of Eq. (1)
is smaller than 2. Quantum coherence [29], temporal driving
[30–32], or magnetic field breaking time-reversal symmetry
[26,33] may violate the original TUR.

For periodically driven systems, inferring the entropy pro-
duction or at least an upper bound is generally more complex
[31,32,34–41]. An early counterexample showed that a naive
extension of the TUR from steady-state systems to periodi-
cally driven counterparts is inaccessible, since driving itself
provides a spontaneous timescale enhancing current preci-
sion without significantly increasing the entropy production
[42]. Subsequent attempts to find the analogy for periodically
driven systems yield Proesman and van den Broeck’s bound,
which is valid for the time-symmetric driving [30]. Also, a
series of general TURs incorporating the driving speed’s ef-
fect are proposed both in discrete and continuous state spaces
[31,32,43].

From the geometric view, the temporal modulation in
phase space has an intrinsic effect on periodically driven
transports and time-dependent energy conversion processes.
Specifically, the geometric concepts are used in transient ther-
modynamics [44–48], in which the thermodynamic length
[49] bounds the engine power and efficiency. The Berry-
phase-like effect provides a nontrivial geometric contribution
[50–62] to pump electric and heat currents against the thermo-
dynamic bias. However, the intrinsic effects of the geometric
phase on TUR and the performance of thermal machines are
largely overlooked in previous studies. To address the geomet-
ric effect in time-dependent systems, in this work we study
the TUR, heat-to-work conversion, and trade-off relation
among energy efficiency, electric work, and work fluctua-
tions in the periodically driven thermoelectric heat engines. In
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particular, we find that the nonvanishing geometric phase can
simultaneously enhance the constancy of the engine and not
significantly generate entropy production.

We highlight the difference between our work and previous
studies here. First, our results are not restricted to time-
symmetric driving protocols. In contrast, Ref. [30] breaks
down in general asymmetric protocols. Second, we unveil
the role of geometry in driven systems, which stays unclear
in previously derived TUR relations [31,32,43]. Hence, the
geometric phase may provide a versatile principle for im-
plementing device design and optimization. Moreover, our
framework could be readily generalized to more complex
thermal machines possibly undertaking multitasks [63].

The paper is organized as follows. In Sec. II, we reorga-
nize TUR by considering the intrinsic geometric origin and
analyze the bounds on electric work and energy efficiency
in periodically driven thermoelectric heat engines. We study
the representative example and verify the validity of TUR via
using a two-terminal single quantum dot system in Sec. III.
We conclude in Sec. IV. Throughout this paper, we set the
Boltzmann constant to the unit.

II. THE UNIVERSAL BOUNDS IN PERIODICALLY
DRIVEN THERMOELECTRIC HEAT ENGINE

A. The general expression of the nonequilibrium current

Full counting statistics (FCS) [2] is considered as one
powerful utility to characterize the nonequilibrium current
and current fluctuations in a variety of fields, ranging from
nonequilibrium transport, nonequilibrium statistics to quan-
tum thermodynamics. FCS was initially proposed by Levitov
et al. [64,65] to study the electron current statistics. Here, by
including the counting field parameter λ, e.g., to count the
particle and energy currents, the characteristic function after
the long-time evolution T is expressed as [61,66]

Zτ =
+∞∑

q=−∞
PT (q)eiqλ = 1†T̂

[
e
∫ T

0 H(λ,t )dt
]
p(0), (2)

where PT (q) is the probability distribution of the transferred
quantity q during time T . Here 1† = [1, 1], T̂ denotes the
time-ordering operator, and p(0) = [p0(0), p1(0)]T are the
initial occupation probabilities.

Then we present the expressions of the particle and heat
currents for a general periodically driven system under the
adiabatic modulation. According to the FCS and the adiabatic
perturbation theory, the cumulant generating function is com-
posed of two parts at the long-time (T ) limit [53,66]:

Zτ ≈ eG = e(Gdyn+Ggeo ),

Gdyn =
∫ T

0
dtχ (λ, t ),

Ggeo = −
∫ T

0
dt〈ϕ(λ)|∂t |ψ (λ)〉. (3)

Here χ denotes the eigenvalues of the evolution matrix H
with the biggest real part. |ψ (λ, t )〉 and 〈ϕ(λ, t )| are the
corresponding normalized right and left eigenvector, respec-
tively. Obviously, with a given parameter path it is generally
found Gdyn ∝ 1/	, whereas Ggeo is independent of 	. Ggeo

is solely dependent on the geometric property of parameter
spaces, rather than the specific parametrization (driving path)
of protocols. Hence, it has a geometric nature.

The first component Gdyn presents the temporal current av-
erage and contributes to the static particle and heat transport,
while the second one, i.e., the geometric part Ggeo, presents an
additional contribution caused by the adiabatic cyclic evolu-
tion, and while requiring periodic modulation by two or more
parameters. For the general case of periodically driven pairs
[u1(t ), u2(t )], we have

Ggeo = −
∫∫

u1u2

du1du2Fu1u2 (λ), (4)

Fu1u2 = 〈
∂u1ϕ

∣∣∂u2ψ
〉 − 〈

∂u2ϕ
∣∣∂u1ψ

〉
, (5)

where Fu1u2 is analogous with the gauge-invariant Berry cur-
vature [67,68]. Finally we obtain the general expression of the
nonequilibrium current accumulated during one period as

〈J〉 = ∂ (Gdyn + Ggeo)

∂ (iλ)

∣∣∣
λ=0

, (6)

and the fluctuation of the corresponding accumulated current
is

〈〈J2〉〉 = ∂2(Gdyn + Ggeo)

∂ (iλ)2

∣∣∣
λ=0

. (7)

B. The bound on fluctuations and entropy production

For periodically driven systems with a period T ≡ 2π/	

[31], Koyuk and Seifert derived a family of inequalities that
relate entropy production with experimentally accessible data,
including the mean, its dependence on driving frequency, and
the variance of a large class of observables:

〈〈J2(	)〉〉
〈J (	)〉2

〈�(	)〉 � 2

[
1 − 	

d〈Ī (	)〉
d	

1

〈Ī (	)〉
]2

. (8)

Here, Ī = J/T ≡ 1
T

∫ T
0 dtI (t ) is the temporal average of the

time-dependent current I (t ) along an arbitrary stochastic tra-
jectory, J denotes the accumulated current of the periodically
driven system, and 〈O〉 is the ensemble average of a stochastic
variable O. The left-hand side of Eq. (8) involves the same
expression of variables as the ordinary TUR does, where
the dependence on 	 is exhibited, while the right-hand side
additionally contains the derivative of the current with respect
to the driving frequency, i.e., the response of the current to a
slight change of the driving period. The above inequality is
constructed in the large-T limit.

The current contribution is composed of two parts: the
dynamical current and the geometric one, i.e., 〈Ī〉 = 〈Ī〉 |dyn +
〈Ī〉 |geo. The dynamical part is an average over the instan-
taneous steady state, whereas the geometric part originates
directly from the change of such quasi-steady-state. In par-
ticular in the adiabatic regime, 〈Ī〉 |dyn is independent of 	,
and the geometric current 〈Ī〉 |geo is proportional to the driven
frequency 	 [45,69]. The reason for this scaling will be ex-
plained in later sections. Consequently, the right-hand side
of Eq. (8) can be simplified as 2/[1 + 〈Ī〉|geo/〈Ī〉|dyn]2. Thus,
using the definition of accumulated current J = T Ī , we arrive
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at the bound of TUR under periodic modulation:

〈〈J2〉〉
〈J〉2

〈�〉 � 2

[
1

1 + 〈J〉|geo/〈J〉|dyn

]2

. (9)

This is our first main result. For the case with finite ther-
modynamic bias, in the adiabatic limit 	 → 0 we general
have the limit 〈J〉 |geo/ 〈J〉 |dyn → 0. The dynamical part of the
current dominates the thermodynamic bound in Eq. (9). Ac-
cordingly, the thermodynamic bound reproduces the ordinary
TUR [9]. However, one consequence of this relation is that it
provides a generic condition for the (almost) dissipationless
precision, while near the thermal equilibrium, the current be-
comes nearly proportional to the frequency of driving, where
〈J〉 |geo 	 〈J〉 |dyn. The right-hand side vanishes. Therefore,
temporally driven systems without the finite thermodynamic
bias lie in the possible implementations, where this optimal
limit may hold. It needs to be noted that this phenomenon is
nonexistent at steady state.

C. The bound on electric work and energy efficiency in
periodically driven thermoelectric heat engine

We consider a system isothermally coupled to several
reservoirs with which it can exchange particles and energy.
The total entropy production 〈�〉 under the stochastic ther-
modynamics [4] is specified by

T 〈�〉 = −〈Wout〉 + 〈Wd〉 + 〈WI〉. (10)

On the right-hand side, the first term denotes the output work
〈Wout〉 (useful work), the second term 〈Wd〉 represents dissipa-
tion (dissipated work), and the last term is the input energy
〈WI〉 (done by the temporal driving) accumulated over one
period. T is the temperature of the reservoirs. We restrict
here to cyclic states, where the average entropy production of
the middle system is zero in a full cyclic period. The positive
energy current is defined from the reservoirs into the system.

In this subsection, we consider the heat engine regime
(〈Wout〉 > 0). We describe the traditional TUR bound as

εp = 〈�〉
〈〈
W 2

out

〉〉
〈Wout〉2

(11)

and the geometric TUR bound as

εbound = 2

[
1

1 + 〈Wout〉 |geo/ 〈Wout〉 |dyn

]2

. (12)

Then, based on the inequality in Eq. (9), we directly obtain
the relation

εp � εbound. (13)

(i) When the input driving energy is positive, i.e., 〈WI〉 > 0,
the free energy efficiency of the heat engine becomes [24]

〈η〉≡ 〈Wout〉
〈Wd〉 + 〈WI〉 = 〈Wout〉

T 〈�〉 + 〈Wout〉 . (14)

According to the above definition of efficiency 〈η〉, the rela-
tion Eq. (13) implies

1

〈η〉 � 1 + 2T
〈Wout〉

〈〈W 2
out〉〉

×
[

1

1 + 〈Wout (	)〉|geo/〈Wout (	)〉|dyn

]2

≡ 1

ηbound
,

(15)

when 〈WI〉 > 0.
(ii) When the driving energy is negative, i.e., 〈WI〉 < 0, the

free energy efficiency of the heat engine is [70,71]

〈η〉 = 〈Wout〉
〈Wd〉 = 〈Wout〉

T 〈�〉 + 〈Wout〉 − 〈WI〉 . (16)

Combined with the relation Eq. (13), the efficiency 〈η〉 is
bounded by

1

〈η〉 � 1 + 2T
〈Wout〉

〈〈W 2
out〉〉

×
[

1

1 + 〈Wout (	)〉|geo/〈Wout (	)〉|dyn

]2

− 〈WI〉
〈Wout〉|dyn + 〈Wout〉|geo

≡ 1

ηbound
. (17)

Equations (15) and (17) are our second main results. In
general, the output work of a steady-state heat engine vanishes
as its free energy efficiency approaches the unit [72–74]. A
finite power at this limit in principle is possible only if the
current fluctuations diverge [13] or if the output power is pro-
portional to the driving frequency of the engine [31]. Although
these general results have been preliminarily demonstrated in
previous studies [31,32], our work provides a general realiz-
able optimization principle. Specifically, by maximizing the
geometric contribution 〈Wout〉 |geo using geometric methods
and minimizing the dynamical contribution 〈Wout〉 |dyn, we
may push these bounds [Eqs. (15) and (17)] to a more efficient
regime.

III. VERIFYING THE VALIDITY OF THE
THERMODYNAMIC UNCERTAINTY RELATION IN

PERIODICALLY DRIVEN THERMOELECTRIC
HEAT ENGINE

A. Single-level quantum dot system

We illustrate the formal results within the two-terminal
system. In our construction (see Fig. 1), a single quantum dot
(QD) system exchanges energy with two electronic reservoirs,
L and R, which can be set out of equilibrium with a finite volt-
age bias 
μ or/and temperature difference 
T . Our model is
described by the Hamiltonian

Ĥ = ĤS + ĤB + ĤI , (18)

where ĤS = E0c†
d cd denotes the single-level QD,

ĤB = ∑
v=L,R

∑
k εkvc†

kv
ckv represents the left and

right electronic reservoirs (source and drain), and
ĤI = ∑

v=L,R

∑
k tkv (c†

kv
cd + H.c.) is the system-reservoir

interaction. The working substance consists of a single
electronic level with the creation (annihilation) operator
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Source

, 
Drain

, 

FIG. 1. Schematic of the single-level QD system. An electron
from the source (with the chemical potential μL and the temperature
TL) flows across the QD with the energy E0 and hops into the drain
(with the chemical potential μR and the temperature TR). The energy
level E0 in the QD and the coupling strengths ti (i = l, r) between the
dot and the reservoir can generally be considered as time-dependent
driving parameters.

c†
d (cd ) and time-dependent energy E0(t ). The dot is coupled

to two fermionic reservoirs (leads) v = L, R, which may
have different temperatures. c†

kv
(ckv ) creates (annihilates)

an electron with energy εkv in the v lead that couples to
the central level, with tkv being the tunneling rate. The v

lead is characterized as the Fermi-Dirac distribution function
fv (ω) = {exp[(ω − μv )/kBTv] + 1}−1, with the temperature
Tv and the chemical potential μv . The reservoirs exert
dissipative effects on the dynamics, described by the spectral
function �v (ε) = 2π

∑
k t2

kvδ(ε − εk ).
Using the Redfield approximation for weak system-

bath coupling [75–78], the dynamics of the QD can be
modeled as

ṗλ
0(t ) = −ku pλ

0(t ) + kλ
d pλ

1(t ), (19a)

ṗλ
1(t ) = kλ

u pλ
0(t ) − kd pλ

1(t ). (19b)

Here λ is the counting parameter induced by quantum transi-
tions, which can be used to calculate the fluctuation properties
of an arbitrary current, e.g., heat and particle. These equa-
tions can be reexpressed in a matrix form as

d|pλ(t )〉
dt

= H(λ)|pλ(t )〉, (20)

where |pλ(t )〉 = (pλ
0(t ), pλ

1(t )). pn (n = 0, 1) denotes the
probability of QD to occupy the state |n〉, satisfying p0(t ) +
p1(t ) = 1 [79]. The excitation and relaxation rates with the
counting field read

kλ
u = kL

0→1 + kR
0→1eiλp+iE0λE , (21a)

kλ
d = kL

1→0 + kR
1→0e−iλp−iE0λE , (21b)

where kv
0→1 = �v fv (E0), kv

1→0 = �v[1 − fv (E0)] [80–83],
and λE and λp are the counting fields for energy and particles,
respectively. Without loss of generality, here we count the flow
between the system and the right reservoir. Here we define
the positive current flowing from external reservoirs into the
middle system.

Finally, the steady-state particle and energy currents flow-
ing from the right reservoir into the system are expressed as
[84,85]

〈
IR

p

〉
s
= �L�R[ fR(E0) − fL(E0)]

�L + �R
, (22a)

〈
IR
E

〉
s = E0�L�R[ fR(E0) − fL(E0)]

�L + �R
, (22b)

while 〈IQ〉 is the net heat current carried by the electrons,
〈IR

Q〉 = 〈IR
E 〉 − μR 〈IR

p 〉. These steady-state results are of the
typical Landauer type in thermal transports [76]. The flows
from the left and right reservoirs are not independent. Parti-
cle conservation implies that 〈IL

p 〉
s
+ 〈IR

p 〉
s
= 0, while energy

conservation requires 〈IL
E 〉s + 〈IR

E 〉s = 0 [6,86].

B. Geometric Berry-phase-induced particle and energy currents

The single-QD system connected to two reservoirs is sub-
jected to cyclic parameter modulations. This could be realized
by imposing a modulation on either of the following param-
eters: �v (t ), μv (t ), Tv (t ) (v = L, R), and E0(t ) [87,88]. Here,
we count the particle and energy currents from the right (R)
reservoir into the single-QD system. Based on the general
expression of the current in Eq. (6), the accumulated particle
current flowing by including the parameters λp and λE are
obtained as

〈NR〉 = ∂ (Gdyn + Ggeo)

∂ (iλp)

∣∣∣
λp=0

(23)

and

〈ER〉 = ∂ (Gdyn + Ggeo)

∂ (iλE )

∣∣∣
λE =0

, (24)

respectively. And the electronic heat extracted from the right
reservoir is defined as QR(t ) = ER(t ) − μRNR(t ). Similarly,
the particle current NL and energy current EL flowing from
the left (L) reservoir into the central system can also be
obtained by introducing the excitation and relaxation rates
with the counting fields as kλ

u = kL
0→1eiλp+iE0λE + kR

0→1, kλ
d =

kL
1→0e−iλp−iE0λE + kR

1→0. The fluctuation of the current is
〈〈(NR)2〉〉 = ∂2G/∂ (iλp)2|λ=0, where 〈〈N2

R〉〉 = 〈N2
R〉 − 〈NR〉2

is the second cumulant. Other higher-order cumulants can be
calculated accordingly. Considering the scaling of Ggeo and
Gdyn with respect to 	, we have 〈J〉 |geo ∝ 1 and 〈J〉 |dyn ∝
1/	. Consequently, 〈Ī〉 |geo ∝ 	 and 〈Ī〉 |dyn ∝ 1. Here, Q
is an arbitrary accumulated current and Ī ≡ Q/T is the
time-averaged current. It should be noted that these scaling
properties validate the derivation of Eq. (9).

We restrict our discussed protocols around the period
T = 10−11 s, which corresponds to h̄	 ≈ 0.4 meV. Com-
paring to h̄	, the dissipation strengths �L = 10 meV and
�̄R = 20 meV are much greater than h̄	. This allows our ap-
plying the adiabatic (small driving frequency) approximation
in Eq. (3) to be valid. In this regime, Ggeo, given in Eq. (4)
and Eq. (5), only depends on the geometric properties in the
parameter space, which is an intrinsic geometric quantity.

We now turn to the first law of thermodynamics for a
time-dependent quantum thermal machine [85]. Specifically,
the particle conversation is characterized as NL + NR = 
n
and the energy conversation is quantified by [61,71,89–91]
EL + ER + WI = 
U , where 
n and 
U are the stochastic
number and energy changes of the reduced quantum system,
e.g., the QD, throughout the transition processes. The input
power induced by the temporal driving provides a nontrivial
term WI . Since terms on the left-hand sides of conservation
laws are growing with time and the right-hand sides are natu-
rally bounded by the size of the reduced quantum system, we
arrive at the approximate conservation laws at the long-time
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(c) (d)

(a) (b)

FIG. 2. The contour map in the parameter space of the
dot energy level E0 and the left reservoir’s spectral func-
tion �L: (a) Berry curvature for the average particle current
−∂FE0�L (λ)/∂ (iλp)|λ=0 and (b) Berry curvature for the average en-
ergy current −∂FE0�L (λ)/∂ (iλE )|λ=0. (c) The particle current 〈NR〉
and (d) the energy current 〈ER〉 as a function of 
μ. The other pa-
rameters are given by μ = 0 (mean value), h̄�R = 10 meV, kBTL =
10 meV, and kBTR = 1.2kBTL . The energy modulations are exem-
plified as E0 = [15 + 15 sin(	t )] meV, h̄�L = [20 + 10 sin(	t +
π/2)] meV, 	 = 2π/T , and T = 10−11 s.

(large period number) limit [92,93]

〈NL〉 + 〈NR〉 = 0,

〈EL〉 + 〈ER〉 + 〈WI〉 = 0. (25)

Here, 〈Nv〉 is the average accumulated input particle number
into reservoir v, 〈Ev〉 is the input energy flowing from reser-
voir v, and 〈WI〉 is the extra work done by driving. These
stochastic quantities are accumulated during a long-time in-
terval.

We further proceed by presenting simulation results at fi-
nite temperature and voltage bias, focusing on the large-bias
limit rather than the linear-response behavior. For conve-
nience, we define the chemical potential difference 
μ =
μL − μR and the mean chemical potential μ ≡ (μL + μR)/2.
Then, we fix the mean chemical potential μ at zero and study
the effect of 
μ. To operate the device as a thermoelec-
tric engine, we assume TL < TR and 
μ > 0. The produced
electronic work after a period of driving cycle of the thermo-
electric heat engine is given by [70,94]

〈Wout〉 = −(μR − μL )〈NR〉. (26)

In Fig. 2, we demonstrate the geometric thermoelectric
pump effect. We illustrate that by modulating parameters, i.e.,
the system-reservoir coupling strength �L and the QD energy
level E0, the nontrivial Berry curvatures in Figs. 2(a) and
2(b) yield both nonvanishing geometric particle and energy

(a) (b)

(c) (d)

FIG. 3. (a) The distance of the traditional TUR bound εp (11)
from the geometric TUR bound εbound (12), (b) the traditional
TUR bound εp, (c) the geometric TUR bound εbound, and (d) the
average entropy production 〈�〉p as functions of 
μ for differ-
ent phase φ. The parameters are μ = 0, h̄�R = 10 meV, kBTL =
10 meV and kBTR = 12 meV, E0 = [15 + 15 sin(	t + φ)] meV,
h̄�L = [20 + 10 sin(	t )] meV, 	 = 2π/T , and T = 10−11 s.

currents, as shown in Figs. 2(c) and 2(d). We note that our
setup is within the reach of current experiment platforms
[95–97]. Hence, the geometric currents currently could be
experimentally detected [62].

As one main result, we show that the Berry-phase effect
acts as a reconfigurable pump, providing additional particle
and heat currents across the QD system with no static bias or
even against the direction of biases. This exhibits the power of
our framework. By tailoring the driving path in the parameter
space, we can both design the functionality of thermoelec-
tric engines and modulate the ratio of the geometric and the
dynamic components of currents, and therefore optimize the
engine’s performance bounds proposed in Sec. II. We elabo-
rate this point in the following sections.

C. Verifying the validity of the TUR relation

In Figs. 3 and 4, we verify the bounds on fluctuations
and entropy production in periodically driven systems. We
concentrate on the effect of geometric properties, which can
be characterized by the relative phases φ. Different φ rep-
resents different driving protocols. Specifically, parameters
are driven as [u1(	t ), u2(	t + φ)], with u1(	t ) and u2(	t )
being in phase. φ = π/2 is the situation where the geometric
contribution is optimized. In contrast, if the phase φ = 0, the
geometric contribution vanishes and there is only the dynami-
cal counterpart. This is obvious since the encircled area in the
parameter space disappears, when φ = 0.

In this work, we focus our discussions on the working
regime of periodically driven thermoelectric heat engine, i.e.,

115428-5



LU, WANG, PENG, WANG, JIANG, AND REN PHYSICAL REVIEW B 105, 115428 (2022)

(a) (b)

2

FIG. 4. (a) The distance of realized ε from the geometric TUR
bound εbound and (b) the original TUR bound εp, as functions of
driving frequency 	 for different modulation phases. Inset: The
geometric TUR bound εbound as a function of driving frequency 	.
The parameters are 
μ = 1 meV, μ = 0, h̄�R = 10 meV, kBTL =
10 meV and kBTR = 15 meV, E0 = [15 + 15 sin(	t + φ)] meV,
h̄�L = [20 + 10 sin(	t )] meV, and 	 = 2π/T .

〈Wout〉 > 0. Here, Wout is the useful output work of the stochas-
tic thermoelectric work. From Figs. 3(a) and 4(a), we find
that regardless of phase φ, voltage bias 
μ, and the driving
frequency 	, the proposed geometric TUR bound εbound (12)
is perfectly below the traditional TUR bound εp (11). The
bounds on fluctuations and entropy production are always
satisfied. Moreover, as shown in Fig. 3(b), if the geometric
current vanishes, the TUR bound is reduced to the steady-state
limit (1), which is exhibited in Fig. 3(c) with φ = 0 and the
inset of Fig. 4(b) with 	 → 0. This is consistent with steady-
state transport for classical Markov processes [9,24].

As the modulation phase φ becomes finite, e.g., φ = π/8
and φ = π/2, the geometric component dominates the heat
transport and fluctuations. As a consequence, the original
TUR bound breaks down (εp < 2), e.g., at the small volt-
age bias in Fig. 3(b). In sharp contrast, our geometric TUR
bound is still robust (εbound�0), as shown in Fig. 3(c). In
particular, εbound becomes vanishing as the voltage bias is
around 3 meV, nearly regardless of the modulation phase
φ. Generally, the geometric-phase-induced particle current
〈NR〉|geo is positive and finite, as exemplified in Fig. 2(c).
However, the dynamical component 〈NR〉|dyn is reduced with
an increase of 
μ. Based on Eq. (22a), the corresponding
vanishing position, termed the dynamic current cutoff volt-
age, can be obtained as 〈NR〉|dyn ≈ 0. This directly results
in εbound ≈ 0, for 〈Wout〉|geo/〈Wout〉|dyn → ∞. Moreover, if
we further increase 
μ beyond the dynamic current cut-
off voltage, it is found that 〈NR〉|dyn is negatively enhanced.
Hence, the total current cutoff voltage can be obtained when
〈NR〉|dyn + 〈NR〉|geo = 0, which can be observed in Fig. 3(c)
with divergent εbound and Fig. 5(a) with zero output electric
work.

Then we consider harvesting the energy from the (hot)
reservoir for regulating the QD system to generate electricity.
The entropy production of the whole system is described
as 〈�〉p = −∑

v=L,R〈Qv〉/Tv [98]. Including the energy and
particle conversations [Eq. (25)], the entropy production is
given by

TL〈�〉p = −〈Wout〉 + (1 − TL/TR)〈QR〉 + 〈WI〉, (27)

(a) (b)

(c) (d)

FIG. 5. (a) The output electric work 〈Wout〉, (b) the energy ef-
ficiency 〈η〉p, (c) 〈η〉bound, and (d) 〈η〉bound − 〈η〉p as functions of

μ for different φ. The parameters are given by μ = 0, h̄�R =
10 meV, kBTL = 10 meV, kBTR = 1.2kBTL , E0 = [15 + 15 sin(	t +
φ)] meV, h̄�L = [20 + 10 sin(	t )] meV, 	 = 2π/T , and T =
10−11 s.

which specifies the general expression of the entropy produc-
tion (10) in nonequilibrium quantum systems.

The thermal machine can be operated as a heat engine
when the electric power 〈Wout〉 > 0. If the input energy is
negative, i.e., 〈WI〉 < 0, the free energy efficiency of the heat
engine is specified as [94,99–101]

〈η〉p = 〈Wout〉
(1 − TL/TR)〈QR〉 , (28)

which is consistent with the energy efficiency of steady-state
thermoelectric transport [102,103], while if the input energy
becomes positive, i.e., WI > 0, the free energy efficiency of
the heat engine is obtained as [70]

〈η〉p = 〈Wout〉
(1 − TL/TR)〈QR〉 + 〈WI〉 . (29)

According to the thermodynamic second law, the thermo-
electric engine efficiency should have an upper bound, i.e.,
〈η〉p � 1 [85]. However, we note that the inclusion of the
geometric effect can refine this bound.

We now demonstrate the geometric bound on efficiency
in Eqs. (15) and (17). As shown in Figs. 5(a) and 6(a), we
respectively illustrate the effect of the voltage bias 
μ and
driving frequency 	 on the electric work 〈Wout〉 per driving
period. Similarly, we also show 〈η〉p in Figs. 5(b) and 6(b).
Obviously, the geometric phase yields significant improve-
ment of the maximum efficiency and output work. From the
efficiency behavior of Fig. 5(b), it is found that the efficiency
ηp exhibits the nonmonotonic behavior by tuning 
μ, which
is analogous with 〈Wout〉, due to their intimate relationship as
shown in Eqs. (28) and (29). Moreover, in Figs. 5(c)–5(d)
and Figs. 6(c)–6(d) we plot efficiency bound ηbound and the
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(a) (b)

(c) (d)

FIG. 6. (a) The output electric work 〈Wout〉, (b) the energy ef-
ficiency 〈η〉p, (c) 〈η〉bound, and (d) 〈η〉bound − 〈η〉p as functions of
driving frequency 	 for different modulation phases. The param-
eters are given by 
μ = 1 meV, μ = 0, h̄�R = 10 meV, kBTL =
10 meV and kBTR = 12 meV, E0 = [15 + 15 sin(	t + φ)] meV,
h̄�L = [20 + 10 sin(	t )] meV, and 	 = 2π/T .

difference ηbound − 〈η〉p as functions of voltage bias 
μ and
driving frequency 	 for a thermoelectric engine, respec-
tively. In the parameter regime of the heat engine, the energy
efficiency 〈η〉p never breaks through the boundary ηbound.
And these simulations confirm the validity of the geomet-
ric bounds. Interestingly, as shown in Figs. 5(d) and 6(d),
the efficiency comes even closer to its bound, i.e., ηbound −
〈η〉p approaching zero, if we optimize the geometric effect
via increasing either the driving frequency or modulation
phase.

Finally, we discuss the thermodynamic bounds of εp

and the efficiency 〈η〉p in driven systems, compared to
the steady-state ones. εp (11) is always greater than the
lower bound εbound ≡ 2/[1 + 〈Wout〉|geo/〈Wout〉|dyn]2. Hence,
once the geometric-phase-induced output work emerges, i.e.,
〈Wout〉|geo 
= 0, the lower limit of εp is generally unequal to the
static counterpart 2, which is also exhibited in Fig. 3(c). In-
terestingly, as the geometric component exceeds the dynamic
one, the lower bound may even approach 0, e.g., φ = π/8.
Such picture can be alternatively explained that though the
output work is strongly enhanced by the geometric effect
[Fig. 6(a)], the entropy production is not significantly in-
creased [Fig. 3(d)]. Similarly, 〈η〉bound − 〈η〉p � 0 is always
satisfied, with the upper bound 〈η〉bound given in Eq. (15) and
Eq. (17) for 〈WI〉 > 0 and 〈WI〉 < 0, respectively, which is also
illustrated in Figs. 5(d) and 6(d). Furthermore, in the positive
input energy generation regime, as the geometric-phase-
induced work dominates the output work, i.e., 〈Wout〉|geo 	
〈Wout〉|dyn, the entropy production 〈�〉 is comparatively negli-

gible to 〈Wout〉|geo/(kBTL ), which results in the upper bound
approaching the unity, while for the case of negative input
energy, the efficiency bound can also reach the unity by further
considering 〈WI〉 � 〈Wout〉|geo. Hence, this shows the signifi-
cance of the geometric phase in bounding the efficiency of
heat engines by observing the fluctuation of output work.
Moreover, such results are in agreement with comparable
counterparts in the stochastic clock [42]. Therefore, we con-
clude that the geometric part of the contribution is incredible
to dramatically modify the TUR.

IV. CONCLUSIONS AND PERSPECTIVES

In summary, for periodically driven systems, we have
proposed a class of inequalities, termed the geometric TUR
bounds, which relate the entropy production with the mean of
current and its variance by bringing to light the Berry-phase-
like effect. This leads to general trade-off relations among
the output work, effective efficiency, entropy production, and
external control protocols. The corresponding bounds indicate
that the geometric phase plays a key role in constraining
the relative fluctuation of currents. Moreover, such bounds
provide insight into the understanding of the precision of
thermoelectric heat engine. We note that our theory is able
to be applied to systems arbitrarily far from equilibrium, and
does not assume any specific symmetry of the system. To
demonstrate the practical applicability of our results, we work
out the example of a two-terminal single-level QD system,
which lies within the family of thermoelectric heat engines.
Our work paves the way for TUR from the geometric origin
and optimizing more complex periodically driven thermoelec-
tric heat engines.

Finally, it should be pointed out that our study is based
on the Markovian approximation. The generalization of the
geometric TUR in periodically driven systems to setups with
non-Markovianity and quantum coherence is intriguing in fu-
ture study.
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