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Algorithm for subcycle terahertz scanning tunneling spectroscopy
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Terahertz scanning tunneling microscopy (THz-STM) enables ultrafast measurements of surfaces, single
molecules, and nanostructures with simultaneous subpicosecond temporal resolution and atomic spatial reso-
lution. In pump-probe THz-STM experiments employing femtosecond optical pump pulses, lightwave-driven
tunneling by a time-delayed THz probe pulse accesses the evolving differential conductance of the tunnel
junction following photoexcitation. However, a general theoretical approach to extract the time- and voltage-
dependent differential conductance from THz-STM measurements is lacking. Here, we introduce an algorithm
for pump-probe THz scanning tunneling spectroscopy (THz-STS) analysis. Our approach allows us to reliably
reconstruct the tunnel junction’s differential conductance in steady-state or time-dependent scenarios from
simulated THz-STS data. The algorithm achieves subcycle time resolution, which we demonstrate by retrieving
dynamics faster than the bandwidth of the input THz voltage transient. Subcycle THz-STS will make lightwave-
driven microscopy yet more powerful as a tool for characterizing ångström-scale ultrafast dynamics in novel
materials.

DOI: 10.1103/PhysRevB.105.115427

I. INTRODUCTION

In terahertz scanning tunneling microscopy (THz-STM),
a free-space THz pulse is coupled to the tip of a scanning
tunneling microscope [1–20]. The near field of the THz pulse
at the tip apex applies an ultrafast transient bias voltage to
the current-voltage (I-V ) characteristic of the tunnel junction,
inducing an ultrafast current pulse. Nonlinearities in the I-V
characteristic lead to a rectified component in the current pulse
that can be measured by time-integrating electronics.

Ultrafast THz-STM experiments have employed a number
of different pump-probe configurations to explore the dy-
namics of surfaces [6,7,9,14,16], single molecules [5,11,13],
and nanostructures [4,14] with high spatiotemporal resolution.
One of the primary pump-probe schemes involves photoexcit-
ing the tip-sample junction globally through the absorption
of a femtosecond optical pump pulse, thereby stimulating a
change to the tunneling conductance that decays back to the
unexcited state over femtosecond to picosecond timescales.
This evolution is imprinted on the rectified current generated
by the time-delayed THz probe pulse. However, the interpre-
tation of THz-STM measurements can be difficult, presenting
a significant challenge to the prospect of pump-probe THz
scanning tunneling spectroscopy (THz-STS).

The investigative power of steady-state STM is greatly en-
hanced by STS, which extracts rich spectroscopic information
on the atomic scale [21,22]. STS measurements of the differ-
ential conductance (dI/dV ) are approximately proportional to
the local density of states (LDOS) of the sample [23–27]. In
STS, a dI/dV spectrum is acquired by sweeping the static DC
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bias and simultaneously applying a small-amplitude voltage
modulation. The resulting current modulation is read out via
lock-in detection to reveal the slope of the I-V characteristic
as a function of voltage.

In contrast, in THz-STM, the voltage modulation is nine
orders of magnitude faster and only a single oscillation cycle
long. To compensate, the peak voltage of each THz transient
is typically tuned to the volt scale. Since the THz voltage tran-
sient is created by a free-space electromagnetic pulse, it is also
bipolar and is assumed to have a vanishing temporal integral.
It accesses sample LDOS both above and below the Fermi
level, such that the resulting current transient may also be
bipolar. Regardless, the current-pulse bandwidth far exceeds
that of the STM electronics, so its oscillatory details cannot
be captured directly by the experimental modes demonstrated
so far. Instead, THz-STM measurements detect the average
rectified charge per THz pulse, QTHz, as a shift in the DC
current, ITHz = f QTHz = e f Ne, where f is the pulse repetition
rate, e is the electric charge and Ne is the average number of
rectified elementary charges per THz pulse.

In optical-pump/THz-STM-probe experiments, photoexci-
tation acts on material parameters such as the LDOS or the
distribution of electrons within the LDOS, changing the junc-
tion’s differential conductance, and hence the QTHz produced
by a time-delayed THz probe pulse. Notably, the photoexcited
state decays back to the ground state along the same time
axis as the oscillations of the THz voltage. Therefore, the
THz voltage transient not only sweeps between positive and
negative bias up to a selected peak voltage, but also samples
an evolving I-V characteristic, making the rectified charge a
convolution over both voltage and time that must be disentan-
gled. The prospect of pump-probe THz-STS experiments that
reveal complex material properties with simultaneous atomic
spatial resolution and subcycle temporal resolution thus relies
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on the development of an analytical framework capable of
extracting the time-dependent differential conductance from
THz-driven tunneling measurements.

Here, we present a THz-STS algorithm for recovering
the differential conductance in steady-state or pump-probe
experiments with sub-THz-cycle (i.e., subcycle) temporal res-
olution. Our algorithm requires as input only the THz voltage
waveform and QTHz as a function of peak THz voltage and
pump-probe delay, i.e., no a priori knowledge of the sam-
ple LDOS is needed. The paper is structured as follows. In
Sec. II, we present the model for THz-induced tunneling and
rectification that is used to simulate THz-STS data based on
a chosen I-V characteristic and THz voltage waveform. In
Sec. III, we show that modeling the steady-state I-V charac-
teristic as a power series allows us to determine the differential
conductance from a polynomial fit to the rectified charge. The
efficacy of this algorithm is demonstrated for some examples,
each of which corresponds to a model physical system. In
Sec. IV, we extend the algorithm to pump-probe THz-STS:
We describe the time-dependent I-V characteristic as a power
series in which each coefficient is time dependent, allowing
us to deconvolve the decay of the differential conductance
from the THz voltage waveform using the cross-correlation
theorem. We further define the time resolution of pump-probe
THz-STS and explore the possibility of extracting sample
dynamics that are faster than the bandwidth of the THz
probe pulse. Finally, in Sec. V, we discuss the limitations
of the algorithm, the physics that may be investigated, and
potential experiments.

II. ULTRAFAST CHARGE RECTIFICATION

In THz-STM, the ultrafast voltage transient is supplied by
a free-space electromagnetic pulse that is focused onto the
STM tip apex. The peak electric field of the incoupled pulse
can be varied without affecting the shape of the electric field
waveform, e.g., using a pair of wire-grid polarizers. This elec-
tric field waveform, which can be detected by electro-optic
sampling, is related to the THz voltage waveform applied to
the tunnel junction by the transfer function of the tip-sample
system. The transfer function depends on the incoupling ge-
ometry, the macroscopic, mesoscopic, and microscopic shape
of the tip, the dielectric function of the tip material, and
the spectral content of the pulse [7–10,13,16]. To address
the uncertainty introduced by calculating (or simulating) the
transfer function, in situ experimental approaches have been
developed to measure the THz near-field at the tip apex
[9,10,13,28]. In the following, we assume that the relevant
THz voltage waveform can be measured directly by such an
experiment. We therefore leave aside further discussion of the
transfer function and base our simulation of ultrafast charge
rectification (and subsequent inversion algorithm; see Sec. III
onward) on a model THz voltage waveform given by

VTHz(t ) = VpkV0(t ), (1)

where V0(t ) is a normalized function describing the temporal
structure of the waveform and Vpk is a scaling factor that
corresponds to the peak voltage of VTHz(t ). An implicit as-
sumption of this parametrization is that Vpk can be tuned
without affecting V0(t ), such that the transfer function does

not depend on the input THz field strength. It is also exper-
imentally straightforward to invert the sign of the incoupled
THz field, for example, by adding or subtracting a reflection
from the THz beampath or inverting the bias in the case of a
photoswitch source, so Vpk can be made positive or negative
in our simulation.

It is also experimentally feasible to tune the incident elec-
tric field waveform, and hence V0(t ). Carrier-envelope-phase
(φCEP) control has been demonstrated for THz-induced tun-
neling [6–8], while arbitrary THz waveform shaping has been
established [29] and may be combined with THz-STM in
the future. However, the THz-STS algorithm outlined in the
present paper is based on a constant (and arbitrary) V0(t )
waveform shape. We believe this approach is the most exper-
imentally accessible. Future THz-STS algorithms may utilize
waveform control for further refinement.

It is important to note that, unlike for STM-coupled pulses
at near-infrared frequencies [30], the field of a THz-coupled
pulse can be treated (to a good approximation) as a purely
quasistatic bias voltage applied across the STM junction. To
illustrate why this is the case, we consider the Keldysh pa-
rameter [31,32], γ = ω

√
2me�/(eE ), where ω is the angular

oscillation frequency of the electric field across the junction,
me is the mass of the electron, � is the ionization energy or
barrier height, e is the elementary charge, and E is electric
field strength. The Keldysh parameter distinguishes between
the multiphoton regime of optical nonlinearity (γ > 1) and
the nonperturbative, strong-field regime (γ < 1), where field-
driven tunneling dominates. For typical STM parameters and
THz frequencies, γ ∼ 10−3, i.e., γ << 1.

Extending this concept, we can calculate the minimum
voltage, Vmin, that can be applied at a given frequency across
a junction with tip-sample distance, d , while remaining in
the strong-field regime [2], Vmin(ω, d ) = ωd

√
2me�/e. In

other words, the concept of lightwave-driven tunneling ap-
plies only for V > Vmin(ω, d ), and tunneling at lower voltages
should be described by either a multiphoton process or a
more complex treatment (near the crossover region). For a
frequency of 1 THz and a typical STM tip height of 1 nm,
Vmin is on the order of a few mV, so experimentally rele-
vant THz voltages behave as quasiinstantaneous, adiabatic
voltage transients. Conversely, Vmin increases linearly with
frequency, such that it exceeds �/e for visible frequencies,
meaning the lightwave-driven description is appropriate only
in the case of field emission. Interestingly, this suggests that
THz-driven tunneling uniquely spans mV to V voltage scales
as a strong-field process while simultaneously maintaining
subpicosecond temporal resolution.

In the THz-STM simulations presented here, the THz volt-
age transient defined in Eq. (1) acts on the tunnel junction
I-V characteristic as shown in Fig. 1(a). Notably, the differ-
ential conductance sampled by VTHz(t ) may differ from the
differential conductance measured by conventional STS even
in the absence of photoexcitation [7]. One common difference
is that the peak instantaneous current generated in THz-STM
experiments tends to exceed typical STM currents by orders
of magnitude, e.g., reaching the μA or even mA scale [4,6–
8,12]. Figure 1(b) shows the current transient generated by
the situation depicted in Fig. 1(a), where the THz voltage
transient is applied to a junction defined by the Simmons
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FIG. 1. Terahertz-induced charge rectification across an STM tunnel junction. (a) Simmons model current-voltage (I-V ) characteristic
(black curve) for a typical THz-STM tip height. In THz-STM, a transient voltage pulse VTHz(t ) (represented schematically by red curve)
acts on the I-V characteristic. Here, VTHz(t ) is defined as a normalized oscillatory component multiplied by Vpk. The maximum and minimum
voltage sampled by the voltage pulse are indicated by solid red and blue circles, respectively. (b) Ultrafast current pulse (black curve) generated
by mapping the transient bias voltage onto the I-V characteristic in (a). Red and blue points indicate the extrema, as in (a). The green curve
shows the running integral of the current transient, defined in the text as qTHz. The green point denotes the net rectified charge per pulse, defined
in the text as QTHz, which is detected in a THz-STM experiment. (c) The simplest spectroscopic measurement for THz-induced tunneling is to
sweep Vpk and measure QTHz

model [33,34]. In calculating the Simmons model I-V char-
acteristic, the STM tip height has been reduced compared to
conventional STM tip heights, leading to a larger peak current.
Such parameters are used in practical THz-STM experiments
to account for the relatively low duty cycle (e.g., 10−6) of the
train of THz-induced current pulses.

The THz-induced current pulse in Fig. 1(b) is bipolar
because the bipolar THz voltage transient accesses sample
LDOS features above and below the Fermi level (i.e., at
positive and negative voltages, respectively). However, the
femtosecond- to picosecond-scale oscillations of the THz-
induced current are far too fast to be detected directly by
the STM electronics (the bandwidth of a typical STM pream-
plifier is ≈1 kHz). Instead, the electronics measure the net
rectified charge across the junction,

QTHz =
∫ ∞

−∞
I (VTHz(t )) dt . (2)

Figure 1(b) shows the buildup of the rectified charge during
the current pulse, i.e.,

qTHz(t ′) =
∫ t ′

−∞
I (VTHz(t )) dt , (3)

where QTHz corresponds to the value after the current oscilla-
tions are complete (indicated by a green point). Sweeping the
THz electric field strength [Fig. 1(c)] traces out the average
number of net rectified electrons per THz pulse as a function
of Vpk. Below, we present an algorithm that utilizes this simple
measurement and knowledge of V0(t ) to reconstruct the differ-
ential conductance sampled by the THz voltage transient.

III. STEADY-STATE INVERSION ALGORITHM

A. Theory

Inspired by junction-mixing STM [35,36], we model the
tunnel current as a polynomial,

I (V ) =
N∑

n=1

AnV
n, (4)

where the An terms are constant coefficients. A key difference
compared to junction-mixing STM is that lightwave-driven
tunneling explores relatively wide voltage ranges at both posi-
tive and negative polarity rather than just the local nonlinearity
of the I-V characteristic. Hence, the high-order terms of the
polynomial series are more important and can even dominate,
depending on the voltage and the shape of the I-V curve.

We next consider the rectified charge generated by the THz
voltage pulse defined in Eq. (1) acting on the junction (with no
DC bias voltage):

QTHz(Vpk) =
N∑

n=1

AnV
n

pk

∫ ∞

−∞
[V0(t )]n dt . (5)

Knowing the shape of VTHz(t ) is essential, as it allows us to
calculate a set of coefficients,

Bn =
∫ ∞

−∞
[V0(t )]n dt, (6)

that encapsulate the continuous and bipolar nature of the
voltage pulse. Notably, the temporal integral of the free-space
electromagnetic pulse that generates VTHz(t ) is zero, so B1 =
0. Thus, the contribution to QTHz from the Ohmic part of the
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FIG. 2. Reconstructing a Simmons model differential conductance. (a) Simulated THz voltage waveform, V0(t ) and (b) corresponding
spectral amplitude (black curve) and phase (red curve). The amplitude is zero at 0 THz, i.e., the temporal integral of V0(t ) is zero. (c) Simulated
rectified charge (green curve) for a Simmons model with �s = �t = 5 eV and polynomial fit of order N = 22 (dotted red curve). (d) Simmons
model differential conductance (black curve) and reconstructed differential conductance (dotted red curve) obtained from the steady-state
inversion algorithm.

conductance is A1B1 = 0 and

QTHz(Vpk) =
N∑

n=2

CnV
n

pk, (7)

where Cn = AnBn.
QTHz(Vpk) can be measured directly in a THz-STS exper-

iment. A simulated example is shown in Fig. 1(c). Inverting
the polarity of Vpk and repeating this sweep allows the full
function to be mapped out. Within the algorithm introduced
here, QTHz(Vpk) is simply fit with a polynomial to extract the
coefficients Cn, which can subsequently be combined with
the Bn coefficients determined by numerical integration of the
measured voltage transient to yield the I-V characteristic:

I (Vpk) = A1Vpk +
N∑

n=2

Cn

Bn
V n

pk. (8)

A limitation of steady-state THz-STS is that the Ohmic part
of the conductance does not produce a rectified charge, and
therefore the A1 term is inaccessible. However, calculating the
differential conductance,

dI

dVpk
(Vpk) = A1 +

N∑
n=2

n
Cn

Bn
V n−1

pk , (9)

reduces the missing Ohmic contribution to a constant offset.
For simplicity, we set A1 = 0 in the following.

B. Demonstration

Here, we demonstrate the steady-state algorithm’s effec-
tiveness by recovering the differential conductances of model
systems from simulated THz-STS data. The simple THz volt-
age waveform shown in Fig. 2(a) is used for the THz-STS
simulations. The spectral amplitude and phase of the pulse are
shown in Fig. 2(b).

The algorithm is, in principle, independent of the precise
shape of the waveform, but we note that a perfectly sym-
metric waveform (i.e., sinelike, with φCEP = ±π/2) leads to
ambiguity, since changing the polarity does not impact QTHz,
i.e., QTHz(Vpk) = QTHz(−Vpk). This can be seen by isolat-
ing the even and odd order terms in Eq. (7). In general,
QTHz(Vpk) + QTHz(−Vpk) can be fit by a polynomial with only
the terms of even n, while QTHz(Vpk) − QTHz(−Vpk) can be
fit by a polynomial with only the terms of odd n. However,
for a perfectly symmetric pulse, QTHz(Vpk) − QTHz(−Vpk) = 0
for any I-V curve, so the odd order terms of the polynomial
are inaccessible. In other words, inverting the waveform does
not change the weighting between I-V features at positive
and negative V , so the I-V asymmetry and curvature cannot
be disentangled. Optimistically, any asymmetry in VTHz(t )
introduces sensitivity to the odd order terms in Eq. (7), but,
realistically, the asymmetry should significantly exceed the
noise level. The waveform shape, V0(t ), in Fig. 1(a) can there-
fore be considered ideal in that it is optimally asymmetric
(φCEP = 0).

The first example considered is a Simmons model with
material and tip work functions of �s = 5 eV and �t =
5 eV, respectively. The rectification process for this scenario
is sketched in Fig. 1. To apply the steady-state inversion
algorithm, the Vpk sweep is performed for both Vpk < 0 and
Vpk > 0, then the complete QTHz(Vpk) (solid green curve) is
fit by a polynomial (with C1 = 0; dotted red curve) to obtain
the Cn>1 coefficients, as shown in Fig. 2(c). Meanwhile, the
Bn coefficients are calculated by numerical integration of the
THz voltage waveform raised to the nth power, as defined in
Eq. (6). Finally, the differential conductance extracted through
the algorithm can be computed directly based on the Cn and
Bn coefficients via Eq. (9). As noted above, we set A1 = 0 be-
cause this term cannot be determined from the algorithm when
B1 = 0. Figure 2(d) shows a comparison between the differ-
ential conductance of the Simmons model used in the sim-
ulation (solid black curve) and the differential conductance
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reconstructed from the algorithm (dotted red curve). We note
that the voltage axis of Fig. 2(d) is labeled Vpk for consis-
tency with the algorithm, whereas the original is plotted as
dI (Vpk)/dVpk for comparison, but is, strictly speaking, a func-
tion of V . The agreement is near perfect aside from a vertical
offset corresponding to A1.

In general, the algorithm performs exceptionally well for
any I-V characteristic that can be well described by a low-
order polynomial. Furthermore, for polynomials with A1 =
0, the offset disappears and the reconstructed differential
conductance matches the original. However, experimental dif-
ferential conductances are often nonmonatonic, e.g., due to
resonances in the sample LDOS, and can require higher poly-
nomial orders to reasonably reproduce them. Therefore, we
next test the algorithm for highly nonlinear I-V characteristics
corresponding to model physical systems.

We first model a semiconducting sample with band onsets
at −1.5 V and +1.5 V bias. Figure 3(a) shows the I-V char-
acteristic (top, solid black curve) and differential conductance
(bottom, solid black curve). The latter is modeled as the sum
of two error functions, one for each band. Simulating charge
rectification by the THz waveform in Fig. 2(a) yields the dot-
ted red curve in Fig. 3(a), top, which qualitatively resembles
the I-V curve. Applying the steady-state inversion algorithm,
i.e., determining Bn and Cn and then calculating dI (Vpk)/dVpk

using Eq. (9), yields a reconstructed differential conductance
[Fig. 3(a), bottom, dotted red curve] that matches the original.

Figure 3(b) shows another example, this time correspond-
ing to peaks in the sample LDOS such as those observed for
single molecules adsorbed on salt islands [5,11,13,37]. We
model the differential conductance with Gaussians peaked at
±2 V [Fig. 3(b), bottom, solid black curve], and hence the
I-V characteristic is the sum of two error functions [Fig. 3(b),
top, solid black curve]. The rectified charge [Fig. 3(b), top,
dotted red curve] diverges more strongly from the shape of the
I-V curve in this case, but the algorithm once more accurately
reconstructs the differential conductance [Fig. 3(b), bottom,
compare dotted red and solid black curves].

C. Simulated experiment

To test our algorithm’s robustness and stability, we
introduce noise and simulate an experimental THz-STS mea-
surement. We model noise based on pulse-to-pulse energy
fluctuations in a near-infrared laser system, which generates
THz pulses through optical rectification. Since the emitted
THz field is proportional to near-infrared pulse energy, these
fluctuations produce a pulse-to-pulse variation in the strength
of the THz voltage applied across the junction. We model this
by VTHz(t ) = (1 ± ε)VpkV0(t ), where ε is a random number
chosen from within a range defined by the near-infrared pulse
fluctuations. For our simulations, εmax = 0.05. The absolute
voltage uncertainty grows with Vpk, e.g., for |Vpk| = 3 V
the uncertainty range is 0.3 V. Notably, the entire THz volt-
age waveform scales with the near-infrared pulse energy, as
it is expected to retain its temporal shape in an experiment
provided the nonlinear generation crystal does not change.

An example of the simulated experiment is shown in
Fig. 4(a), where ten noisy QTHz(Vpk) curves are overlaid,
forming the grey region, which expands with increasing |Vpk|.
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FIG. 3. Reconstructing highly nonlinear differential conduc-
tances. (a) Top: I-V characteristic for a simple model of a
semiconducting sample with band onsets at −1.5 V and +1.5 V
(black curve) and corresponding rectified charge (dotted red curve)
produced by the THz voltage waveform in Fig. 2(a). Bottom: Differ-
ential conductance for the semiconductor model (black curve) and
reconstructed differential conductance (dotted red curve). (b) Top:
I-V characteristic for a simple model of a molecule adsorbed on a salt
film on a metal substrate with orbital transport resonances centered at
±2 V (solid black curve) and corresponding rectified charge (dotted
red curve) produced by the THz voltage waveform in Fig. 2(a).
Bottom: Differential conductance for the molecular system (solid
black curve) and reconstructed differential conductance (dotted red
curve). Fitting of QTHz(Vpk) in each system was performed with a
polynomial of order N = 38.

This effect is mitigated by standard measurement techniques,
where the rectified charge of many pulses is averaged by a
lock-in amplifier. The average of the ten QTHz(Vpk) curves is
shown as the red curve in Fig. 4(a). Its roughness is compara-
ble to similar data sets from the literature [7]. Unfortunately,
the noise in even the average curve leads to spurious weighting
of high order polynomial terms in the fitting step of the algo-
rithm. This, in turn, can result in unphysical oscillations in the
extracted differential conductance. Therefore, it is necessary
to develop a procedure to obtain a reliable result.

While it is possible to employ an arbitrarily large number
of polynomial orders, limiting the number of terms to avoid
overfitting noisy data can suppress oscillations in the extracted
dI/dV curve. Nevertheless, we find that polynomials with
order greater than five tend to develop undesirable dI/dV
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FIG. 4. Reconstructing an arbitrary differential conductance in
the presence of noise. (a) In a simulated THz-STS experiment, charge
rectification is calculated for a voltage waveform with a randomly
fluctuating field strength (εmax = 0.05; 10 calculations per Vpk). The
grey region shows the simulated experimental data and the red curve
is the average. (b) QTHz(Vpk) (top black curve) and dQTHz(Vpk)/dVpk

(bottom black curve) after a Savitzky-Golay filter of order 1 has
been applied with a window of 0.27 V (∼5% of the Vpk axis width).
Dotted red curves: Simultaneous fit. Inset: Standard deviation of the
fit to QTHz(Vpk). Dashed blue line: Polynomial order used for the fits
in (b) and extraction in (c). (c) Comparison between the simulated
differential conductance (black curve) and the algorithm result (red
curve) for polynomial of order N = 25. Grey vertical bars: ∼5% of
the axis width, where the filters break down.

oscillations at the edges of the voltage range when the algo-
rithm is applied as described in the previous section to noisy
QTHz(Vpk) data. However, we have discovered that simulta-
neously fitting both QTHz(Vpk) and dQTHz(Vpk)/dVpk when
finding Cn better constrains the behavior at the boundaries.
To obtain a well-behaved numerical derivative, a smooth-
ing function is applied to QTHz(Vpk) prior to calculating
dQTHz(Vpk)/dVpk. A second smoothing function is applied to

dQTHz(Vpk)/dVpk to reduce the noise that is introduced when
calculating the derivative. The smoothed data [Fig. 4(b), black
curves] are produced by applying a Savitzky-Golay filter in
each step [38] that convolutes a linear polynomial with a mov-
ing window that is ∼5% of the total Vpk range (i.e., ∼0.3 V).

To determine an appropriate number of polynomial fit
terms, we calculate the standard deviation, σerror, between
the fit result and QTHz(Vpk) as a function of fit order. The
polynomial fits in Fig. 4(b) (dotted red curves) use a poly-
nomial in the lowest plateau region of σerror [marked by a
dashed blue line in the inset of Fig. 4(b)]. Although limiting
the number of polynomial orders used in the fit reduces the
voltage resolution in the extracted differential conductance, it
also increases the stability and reliability of the result.

In Fig. 4(c), we compare the simulated differential conduc-
tance (black curve) to the extracted differential conductance
(red curve) following this procedure. We have used a more
structured model dI/dV here than those shown in the previous
section to better approximate a real experiment. It is important
to note the smoothing filters overshoot at the boundaries of
QTHz(Vpk) and dQTHz(Vpk)/dVpk, so the extracted dI/dV in
this region (grey shaded area) may still contain oscillations, as
is the case here. The tradeoff between polynomial order and
resolution is apparent in the features near ±1V, both of which
are broadened. Nevertheless, the adapted algorithm outlined
in this section successfully reproduces the salient features of
the differential conductance in the presence of noise while
mostly constraining artifacts to the ∼5% of the voltage range
nearest the boundaries.

Including more derivatives in the simultaneous fit can
further suppress oscillations, but further smoothing is also re-
quired for each additional derivative order. Employing a more
sophisticated technique to handle the derivatives of noisy data
(e.g., regularization) may improve this approach. We have
also explored other procedures (e.g., matrix multiplication,
frequency filtering, etc.), but their compatibility with the time-
dependent algorithm of the next section has not yet been
shown, so it is difficult to comment on their effectiveness at
this time.

IV. TIME-DEPENDENT INVERSION ALGORITHM

A. Theory

The previous section outlined an algorithm to reconstruct
static differential conductances from THz-STS measure-
ments. However, a THz voltage pulse can also probe the
ultrafast evolution of the junction following photoexcitation
by a femtosecond optical or near-infrared pump pulse, as
illustrated in Fig. 5(a).

In such an experiment, absorption of the pump pulse
modifies the junction, changing the I-V characteristic on the
timescale of its intensity envelope. The I-V curve subse-
quently decays back to the ground state on a timescale defined
by the material system. The time-delayed THz probe pulse
samples this evolution by adiabatically sweeping through volt-
age configurations. In this section, we assume THz-driven
tunneling does not affect the time dependence of the I-V
characteristic. Meanwhile, our treatment of the THz probe as
quasistatic is justified by the Keldysh parameter (γ << 1).
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FIG. 5. Visualizing pump-probe THz-STS of a transient I-V
characteristic. (a) Schematic depicting an optical-pump/THz-STM-
probe measurement. The pump pulse is absorbed by the sample at
t = 0, triggering a modification of the I-V characteristic within the
pump intensity envelope (Ipump). The evolution of the junction is read
out via the rectified current [QTHz(τ )] generated by a time-delayed
THz voltage probe (VTHz). (b) In an example pump-probe THz-STS
experiment, a Simmons model I-V curve is initialized at t = 0 by
optical excitation and subsequently decays with a decay time of 1
ps. A THz voltage pulse (black curve) arrives at the tunnel junction
after a delay time τ , where τ is defined as the time from excitation to
the peak of VTHz(t ) and is positive (negative) when the optical pulse
arrives first (second). Red and blue shading denotes positive and neg-
ative currents, respectively. The THz voltage pulse is mapped onto
the time-dependent I-V curve (red and blue curve), indicating the
THz-induced trajectory through three-dimensional I − V − t space.
Notably, the THz-induced current is larger for oscillations occurring
soon after photoexcitation.

Figure 5(b) depicts the projection of VTHz(t ) onto a time-
dependent I-V curve defined by a Simmons model that
appears at t = 0 and decays exponentially for t > 0 with a
1/e time of 1 ps. We define the delay time τ as the time from
photoexcitation (at t = 0) to the arrival of the THz voltage
peak. The dynamics are encoded in the resulting THz-induced
current transient, which depends on t and τ , while detection
via the rectified charge (after integration over t) further ob-
scures the sample dynamics. We note that the rectified charge
retains its dependence on τ , since the pump-probe experiment
can be repeated for different τ to generate QTHz(τ ). In the
following, we introduce an algorithm to reconstruct the time-
dependent differential conductance of a tunnel junction from
QTHz(Vpk, τ ) in a pump-probe experiment.

We begin by generalizing the static I-V polynomial from
Sec. III to a dynamic polynomial with arbitrary temporal

structure. This is done through time-dependent series coeffi-
cients, i.e.,

I (V, t ) =
N∑

n=1

An(t )V n. (10)

Substituting I (V, t ) into the expression for rectified charge
[analogous to Eq. (5) in the previous section] yields

QTHz(Vpk, τ ) =
N∑

n=1

V n
pk

∫ ∞

−∞
An(t + τ )[V0(t )]n dt . (11)

Unlike in the static case, the coefficients of the polynomial
cannot be moved outside the temporal integral. Nevertheless,
the rectified charge QTHz(Vpk, τ ) can still be written as a poly-
nomial:

QTHz(Vpk, τ ) =
N∑

n=1

Cn(τ )V n
pk. (12)

We highlight that the series in Eqs. (11) and (12) begins at n =
1, whereas the static QTHz(Vpk) polynomial in Sec. III began
at n = 2 [Eq. (7)] because a nonzero rectified charge can be
generated by an Ohmic component that changes with time.

The experimental protocol for pump-probe THz-STS is to
record a QTHz(Vpk, τ ) map. For each sweep of Vpk (i.e., for
each τ ), QTHz(Vpk) is fit by a polynomial, similar to the proce-
dure in the steady-state algorithm. Repeating this process as a
function of τ allows Cn(τ ) to be determined experimentally,
where

Cn(τ ) =
∫ ∞

−∞
An(t + τ )[V0(t )]n dt . (13)

Here, we note that Cn(τ ) is a cross correlation of An(t ) and
[V0(t )]n, and therefore these functions can be isolated using
the cross-correlation theorem (which is similar to the convo-
lution theorem). Specifically,

F{Cn(τ )}(ν) = F{An(t )}(ν) × F{[V0(t )]n}(ν) . (14)

Utilizing a numerical fast Fourier transform algorithm allows
F{Cn}(ν) and F{V n

0 }(ν) to be extracted from the experimental
Cn(τ ) and V0(t ), respectively. Thus, An(t ) can be obtained by

An(t ) = F−1
ν

{F{Cn}(ν)

F{V n
0 }(ν)

}
, (15)

where each n term is calculated separately. A consequence of
Eq. (15) is that the accessible An(t ) bandwidth depends on
the bandwidth of [V0(t )]n, which in turn is a function of n.
This impacts the time resolution of THz-STS, especially in
the subcycle regime, as discussed in the following sections.

Within the bandwidth limits, Eq. (15) directly yields the
coefficients of the time-dependent polynomial in Eq. (10),
including the Ohmic term. The time-dependent differential
conductance can be obtained from

dI

dVpk
(Vpk, t ) =

N∑
n=1

nAn(t )V n−1
pk . (16)

In contrast to the steady-state algorithm, Eq. (16) includes
even the n = 1 term, which is independent of voltage, be-
cause its time dependence brings it into view for THz-STS.

115427-7



S. E. AMMERMAN et al. PHYSICAL REVIEW B 105, 115427 (2022)

In the following section, we will demonstrate the algorithm’s
efficacy by extracting the time-dependent differential conduc-
tance from simulated pump-probe THz-STS experiments.

B. Demonstration

We demonstrate the time-dependent algorithm’s effective-
ness by recovering a dynamic differential conductance, which
we conceive as a model for a photoexcited semiconductor. We
describe the differential conductance of the unexcited sample
with two error functions, representing conduction and valence
bands, with onsets at +2 V and −1 V, respectively. We then
introduce ultrafast optical excitation at t = 0: A pump pulse
with photon energy of 3 eV redistributes electrons from the
valence band to the conduction band. The subsequent decay
dynamics are imprinted on the time-dependent I-V charac-
teristic, but the precise behavior is nontrivial and depends on
the sample. For the simple case considered here, we speculate
that the dominant change may arise from field emission of
electrons from the conduction band. We therefore incorporate
a transient, one-sided Simmons model with a sample work
function of �s = 3 eV that appears instantaneously at t = 0 ps
and decays with a 1/e time of 1 ps. The value of �s is chosen
to model field emission from states well above the Fermi level,
i.e., �s is smaller than a typical material work function, while
the decay time represents a generic reduction in electrons
available for field emission over time, for example, through a
combination of electron-hole recombination, carrier trapping,
and depletion layer formation at the surface [39].

Although the I (V, t ) considered here is an example created
to demonstrate the time-dependent algorithm’s effectiveness,
it may be informative to add a few general comments: (i)
Optical excitation will likely produce photocurrent even for
zero bias voltage, which corresponds to a finite n = 0 term
in I (V, t ). However, this photocurrent is neglected here be-
cause THz-STS measurements recorded via lock-in detection,
where the THz pulse train is modulated, are insensitive to
currents that do not depend on VTHz(t ). (ii) Tunneling into the
conduction band and out of the valence band will presumably
also be modulated to some extent by photoexcitation, but
we assume that the corresponding impact on the differential
conductance will be minor because the fraction of electrons
that are photoexcited is likely to be small. Yet, this assumption
may break down if the sample contains only a few electrons.
(iii) Our time-dependent Simmons model incorporates photo-
assisted field emission only from the sample and neglects
a similar process from a photoexcited tip. Meanwhile, field
emission at the sample and tip work functions is considered
to be present, but it is assumed to be negligible here and is
therefore left out of the model.

Figure 6(a) shows QTHz(Vpk, τ ) generated in a simulated
pump-probe THz-STS experiment based on the I (V, t ) de-
scribed above and the waveform in Fig. 2(a). Interestingly,
whereas the shape of QTHz(Vpk) for the static semiconductor
model in Fig. 3(a) resembled that of I (V ), their time-
dependent shapes in the pump-probe simulation can strongly
differ. At Vpk = 4 V [Fig. 6(b)], QTHz(τ ) features two promi-
nent negative peaks spaced by 1 ps and an approximately
exponential decay for τ > 2 ps (red circles), despite there
being no time dependence in I (V, t ) at V = 4 V at all (black
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FIG. 6. Simulated pump-probe THz-STS data. The simulation
is performed using the THz voltage waveform in Fig. 2(a) and the
time-dependent differential conductance model described in the text,
where the definition of the delay time τ is shown in Fig. 5(b).
(a) Rectified charge map produced by the simulation. The algorithm
was applied to a τ window from −5 ps to 15 ps; a cropped region is
presented to highlight detail on the subpicosecond timescale. Dashed
lines are guides indicating the cross-sectional cuts shown in (b) and
(c). (b) Cut through the rectified charge map at Vpk = 4 V (red circles)
and simulated I (V, t ) at V = 4 V for comparison (black circles).
(c) Cut through the rectified charge map at Vpk = −4 V (red circles)
and simulated I (V, t ) at V = −4 V for comparison (black circles).

circles). Conversely, at Vpk = −4 V [Fig. 6(c)], the QTHz(τ )
transient (red circles) is similar to I (t ) (black circles), i.e.,
the decay of the rectified charge is a reasonable proxy for
the inherent dynamics of the junction. Together, Figs. 6(b)
and 6(c) illustrate that although THz-STS can in some cir-
cumstances directly capture the dynamics of the junction,
convolution of the THz voltage waveform with those dynam-
ics can also produce misleading features in the experimental
data. Furthermore, the parameter space in which each effect
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FIG. 7. Reconstructing a transient I-V curve and differential conductance with the time-dependent inversion algorithm. (a) Original I-V
characteristic used to simulate the THz-STS data shown in Fig. 6(a). (b) Reconstructed I-V characteristic obtained using the time-dependent
inversion algorithm. (c) Differential conductance for the model tunnel junction in (a). (d) Reconstructed differential conductance determined
alongside (b) using the inversion algorithm. Fitting of QTHz(Vpk) in the algorithm was performed with a polynomial of order N = 21. All plots
are cropped along the time axis from the original bounds of −5 ps to 15 ps.

dominates is not obvious a priori, meaning there is significant
uncertainty whether QTHz(Vpk, τ ) shows the intrinsic behavior
of the junction for a particular choice of Vpk. An algorithm that
reveals I (V, t ) using the entire QTHz(Vpk, τ ) map is therefore
essential for pump-probe THz-STS.

Here, we apply the pump-probe THz-STS inversion algo-
rithm introduced in the previous section to the QTHz(Vpk, τ )
map in Fig. 6(a). The original I (V, t ) used to generate the map
is shown in Fig. 7(a). The procedure is as described in the pre-
vious section. Briefly, QTHz(Vpk) is fit by a polynomial at each
time step, as defined in Eq. (12). The nth-order coefficients
form a time-dependent function, Cn(τ ). The Fourier transform
of Cn(τ ) is divided by the Fourier transform of [V0(t )]n, and
the inverse Fourier transform of the result yields the An(t )
coefficients of the polynomial. In practice, we also employ an
amplitude cutoff for F{V n

0 }(ν) to avoid divergences, which
we set to 5 × 10−4. For any F{V n

0 }(ν) below the cutoff,
F{An}(ν) is set to 0. The resulting reconstructed I (V, t ) ob-
tained through the algorithm is shown in Fig. 7(b). It agrees
remarkably well with the original. The simulated and recon-
structed differential conductances are shown in Figs. 7(c) and
7(d), respectively, where the agreement is once more exem-
plary.

We have further tested the time-dependent algorithm for
decay times of 10 ps and 100 ps and found the accuracy of the
reconstruction to be similar or better. Alternatively, the steady-
state algorithm may be applied to transient I-V characteristics

with decay times greater than 10 ps to similar effect (provided
the region near τ = 0 ps is excluded) since the differential
conductance changes slowly during the oscillations of the
THz voltage pulse. For yet longer decay times, e.g. greater
than 100 ps, the steady-state algorithm is recommended, as
the sample dynamics are dominated by frequency components
below the THz pulse bandwidth. These frequencies are ex-
cluded from the inversion calculation through the F{V n

0 }(ν)
amplitude cutoff.

C. Subcycle time resolution

The time-dependent inversion algorithm is capable of ex-
tracting dynamics faster than a single oscillation cycle of the
THz voltage probe. This subcycle time resolution is evident in
Fig. 7, where the algorithm reproduces the stepwise onset of
the transient at t = 0, in addition to the exponential decay for
t > 0. The onset of the simulated transient occurs in a single
200 fs timestep, i.e., at a rate exceeding the 2 THz bandwidth
of the voltage probe [Fig. 2(b)].

We explore the time resolution of the algorithm further
using a simple symmetric Simmons model (�s = �t = 5 eV)
that appears at t = 0 and decays exponentially for t > 0, as
illustrated in Fig. 5(b). For t < 0, I = 0 for all V . We consider
the case of a 1 ps decay time and an onset that occurs in one
80 fs time step. Figure 8(a) shows slices through dI (V, t )/dt
at constant voltages of −5 V, −3 V, and −1 V along with
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FIG. 8. Resolving subcycle dynamics with the time-dependent
inversion algorithm. The simulated I-V characteristic is defined by a
Simmons model that appears at t = 0 and subsequently decays away
exponentially for t > 0, as described in the text. For t < 0, I = 0
and dI/dV = 0. (a), (b) Simulated transient differential conductance
at V = −5 V, V = −3 V, and V = −1 V (black curves, offset for
clarity) for a decay time of (a) 1 ps and (b) 100 fs. The reconstructed
transient differential conductance is shown for the same voltages
(Vpk = −5 V: blue circles; Vpk = −3 V: green circles; Vpk = −1 V:
red circles). Fitting QTHz(Vpk) in the time-dependent algorithm was
performed with a polynomial of order N = 21 for both 1 ps and
100 fs calculations. In both panels, the plots are cropped from the
original time axis of −5 ps to 15 ps that was used in the time-
dependent algorithm. Panel (b) was calculated using 500 points along
the time axis compared to 250 points for panel (a) to facilitate
analysis at higher frequencies.

the corresponding cuts through the reconstruction result. The
algorithm reproduces the 1 ps exponential decay of the dif-
ferential conductance at all voltages. Conversely, the 80 fs
onset of the transient is only well reproduced for the highest
magnitude bias (−5 V), whereas the onset is broadened for
voltages closer to 0 (−3 V, −1 V). Interestingly, this means
that the step width is better resolved for larger step heights.

The algorithm’s time resolution at a given voltage is linked
to the nonlinearity of the I-V characteristic at that voltage.

Conceptually, this can be understood by considering the THz-
induced current pulse. For the case of the Simmons model,
the current rapidly increases (decreases) as the voltage reaches
the work function of the tip (sample). Therefore, for Vpk ap-
proaching a work function, the full width at half maximum of
the current produced by the main VTHz(t ) oscillation cycle nar-
rows. Meanwhile, within the time-dependent algorithm, the fit
to QTHz(Vpk, τ ) [see Eq. (12)] is dominated at low Vpk by low
polynomial orders and at high Vpk by high polynomial orders.
The result is faster time resolution for the higher order terms
in the inversion algorithm and, similarly, faster time resolution
for the parts of the reconstructed differential conductance at
higher |Vpk|. This explains why the reconstructed step widths
in Fig. 8(a) narrow with increasing |Vpk|. It further implies that
yet faster time resolution can be achieved for highly nonlinear
I-V curves.

We explore the limits of the algorithm’s subcycle time res-
olution by examining a transient Simmons model that appears
within one 40 fs time step (1/40 fs = 25 THz) and decays
with a time constant of 100 fs (1/100 fs = 10 THz). For
comparison, the spectral amplitude of the THz voltage pulse
is negligible above 2 THz [Fig. 2(b)]. Figure 8(b) shows cuts
through the differential conductance at −1 V, −3 V, and −5 V
alongside cuts through the reconstructed differential conduc-
tance at the same voltages. As expected, the time resolution
improves for increasing |Vpk|, with the result at −5 V close to
matching the onset and decay rate, though with lower overall
amplitude. However, the reconstructed curve for −5 V also,
surprisingly, includes oscillations at both negative and positive
times that are not present in the original curve.

The relative accuracy of the reconstructed differential-
conductance transients can be understood by considering how
subcycle time resolution arises in Eq. (15). The bandwidth
of [V0(t )]n increases for increasing n, as shown in Fig. 9(a).
The spectral amplitude above the cutoff [dashed black line
in Fig. 9(a)] defines the maximum frequency (νn) that can
be resolved at a given n. Within the time-dependent algo-
rithm, F{An}(ν) is set to zero for frequencies above νn, so
the reconstructed differential conductance contains the cor-
responding order only for frequencies below νn. This loss
of information is visualized in Figs. 9(b) and 9(c), which
show the spectral amplitudes of the cuts through the simulated
and reconstructed differential conductances from Figs. 8(a)
and 8(b), respectively. At the frequencies indicated by the
grey lines, the amplitude of F{[V0]n}(ν) crosses the cutoff
threshold [Fig. 9(a)] and that order is dropped from the recon-
structed differential conductance [discontinuities in Figs. 9(b)
and 9(c)]. Only odd orders have a significant impact in this
example because the I-V curve is antisymmetric and therefore
composed of only odd-order terms.

The loss of information is most impactful for the recon-
structed curves at low Vpk [e.g., −1 V in Figs. 9(a) and 9(b)],
since the An<5 coefficients dominate. Conversely, at −5 V, the
I-V characteristic is more nonlinear, and hence is composed
primarily of higher order terms, so dropping A1, for example,
does not lead to much deviation from the simulated amplitude.
Meanwhile, the 1 ps decay curve is better reproduced in the
time domain than the 100 fs decay curve [compare Fig. 8(a)
to 8(b)]. This is because the amplitude of the simulated differ-
ential conductance is weighted more strongly at frequencies
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FIG. 9. Defining the time resolution of THz-STS. (a) Fast
Fourier transform amplitude of [V0(t )]n, indicating the bandwidth of
the corresponding order in the time-dependent inversion algorithm.
Dashed black line: Cutoff amplitude of 5 × 10−4 applied in Eq. (15).
(b), (c) Fast Fourier transform amplitude of the simulated transient
differential conductance in Fig. 8(a): 1 ps decay (b) and Fig. 8(b):
100 fs decay (c). In each panel, top black curve: −5 V, middle
black curve: −3 V, bottom black curve: −1 V. The legend in panel
(c) applies to both (b) and (c), where the blue, green, and red curves
in each plot are the amplitude of the fast Fourier transform of the
reconstructed differential conductance for the corresponding Vpk (see
legend) and decay time. Grey vertical lines: Frequency at which the
amplitude of the Fourier transform of V0(t ), [V0(t )]3, and [V0(t )]5

crosses the amplitude cutoff, leading to a loss of information in the
reconstructed differential conductance (ν1, ν3, and ν5, respectively).

within the bandwidth of V0(t ) for the 1 ps decay [Fig. 9(b)]
than for the 100 fs decay [Fig. 9(c)]. In other words, when
the spectral weight of the simulation is concentrated in a

frequency region where all [V0(t )]n have sufficient spectral
amplitude, the algorithm achieves near perfect reconstruction.
As the speed of the dynamics is increased, the spectral weight
redistributes from low to high frequency [compare Fig. 9(b) to
9(c)], leading to inaccuracies in the reconstruction, especially
at low Vpk. Still, even for dynamics far above the bandwidth of
the THz voltage pulse, the algorithm recovers the majority of
the spectral content for voltages at which the I-V characteris-
tic is highly nonlinear.

V. DISCUSSION

Subcycle THz-STS is a potentially powerful tool for ul-
trafast nanoscience. In anticipation of the wide range of
experimental studies that may be enabled, we provide some
comments below on the scope of the steady-state and time-
dependent inversion algorithms.

The algorithms as they are currently formulated are not
compatible with a static bias voltage, VDC. Specifically, the
simplifications in Eqs. (5) and (11) cannot be made because
cross terms arise when Vtotal = VDC + VTHz(t ) is raised to a
power of n. We believe this issue can be solved by redefining
the polynomial that the THz voltage pulse acts on. In short,
when a static bias is present without VTHz(t ), it produces a
current:

IDC =
N∑

n=1

AnV
n

DC. (17)

Due to lockin detection, THz-STS measures only
THz-induced current, which we label I ′. A new I ′-V ′
characteristic can be defined in which the origin is shifted
from V = 0, I = 0 to V = VDC, I = IDC. The THz voltage
pulse acts on this new I ′-V ′ curve, such that

I ′ =
M∑

m=1

A′
m(V ′)m, (18)

and V ′ = VTHz(t ). Critically, the A′
m coefficients are different

from the An coefficients of the original I-V curve defined
in Eq. (4). We caution that I ′(V ′) should be considered
a new intrinsic characteristic of the junction sampled by
the THz voltage pulse, with VDC as an external control
parameter, rather than a translation of the original I-V
characteristic, since the differential conductance may be
frequency dependent and moving the origin will mix the
inaccessible linear term of the polynomial with other orders.

Another adaptation to the algorithm could be to use a
different basis set for the I-V curve (i.e., not a polynomial).
Other basis sets could prove well-matched to certain shapes
and be employed accordingly.

The time-dependent algorithm may be further improved by
optimizing how the loss of information at the cutoff amplitude
is managed. We have demonstrated one option, which is to set
F{An}(ν) to zero when the amplitude of F{[V0]n}(ν) is below
threshold. Another approach, which reduces discontinuities,
is to set F{An}(ν) equal to its value just above threshold for
all frequencies where F{[V0]n}(ν) is below threshold. Regard-
less, any choice will involve assumptions because information
is inaccessible outside of the order-dependent bandwidth.
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An important future prospect is to develop an inversion
algorithm for THz-pump/THz-STM-probe experiments. The
steady-state and time-dependent algorithms introduced here
both assume that the THz voltage pulse does not change
the differential conductance. However, it has been shown
experimentally that a THz voltage transient can excite sam-
ple dynamics, for example, molecular motion triggered by
THz-induced tunneling [5,11,13] or by the local force of the
THz field transient [11,13]. Another scenario is Coulomb
blockade dynamics, where the THz-induced tunneling of one
electron alters the potential energy landscape encountered
by subsequent electrons. This change could occur within the
oscillations of the THz voltage and depend on the waveform
shape and field strength. It should be possible to identify such
behavior from THz-pulse autocorrelation measurements, but
an analysis algorithm beyond what is shown in this paper will
be needed to disentangle it.

For the algorithms presented here, it is also important to
consider the material properties that are probed. Following
Ref. [23], in conventional STS the LDOS of the sample can
be approximated as

ρsample(V ) = h̄

4π2ρtipT (V )

[
dI

dV
+ ed

√
2me

2h̄
√

�̄
I (V )

]
, (19)

where ρsample is the sample LDOS, ρtip is the tip DOS, T (V )
is transmission probability, d is the tunnel barrier width, me is
the electron mass, and �̄ = (�t + �s)/2. We note that this ex-
pression is often further approximated as ρsample ∝ dI/dV in
the literature. The steady-state THz-STS inversion algorithm
provides I (V ) through Eq. (8) and dI/dV through Eq. (9),
with the notable exception of the Ohmic contribution to I (V )
and dI/dV . Yet, Eq. (19) may not hold for THz-STS. As
has been shown for silicon [7], the physical response of a
tip-sample junction can significantly differ for a THz voltage
probe compared to a DC one, emphasizing the need for a THz-
STS inversion algorithm. A reformulation of Eq. (19) may
therefore be necessary for some steady-state THz-STS ex-
periments. It will certainly be required to model pump-probe
THz-STS. Optical excitation can transiently modify ρsample,
ρtip, and T (V ) within Eq. (19), create a nonequilibrium filling
of ρsample and ρtip, or stimulate more complex dynamics.

In addition to ρsample, conventional STM can also re-
solve surface band structure through quasiparticle interference
(QPI) imaging [40,41]. Differential conductance images are
recorded near a defect or step edge, showing oscillatory
(interference) features. The interference can be associated
with electron scattering vectors between different points of
the surface band structure in the Fourier transform of the
dI/dV image [41]. Repeating this procedure as a function of
bias reveals cross sections of the surface band structure at
different energies. The THz-STS inversion algorithm intro-
duced here should make QPI imaging possible for THz-STM
as well. A spatial map of QTHz(Vpk) could be used to re-
construct the differential conductance at each tip location,
and hence extract differential conductance images for each
Vpk. Yet more excitingly, applying a similar procedure to
QTHz(Vpk, τ ) should yield ultrafast QPI images of dynamics,
though the experimental stability of THz-STM may need to
be improved before this is feasible. Conversely, the stability

required for both of the algorithms presented in this paper has
been demonstrated very recently in Ref. [42]. There, minutes-
long constant-height THz-STM imaging shows that present
machines are capable of acquiring datasets large enough for
time-dependent THz-STS. It will, however, be a challenge to
acquire a data set of the same magnitude at each pixel of a QPI
image.

Although experimental THz-STS tests are beyond the
scope of this paper, we have also successfully tested the
steady-state algorithm using an experimental THz volt-
age waveform recorded by photoemission sampling (PES)
[9,10,28]. However, this test assumes that the waveform mea-
sured by PES accurately describes the voltage applied across
the tunnel junction. This is a key experimental question, since
the accuracy of the inversion algorithm hinges on knowing the
correct waveform shape. The answer may prove to be sample
dependent, as local THz resonances could lead to voltage
waveform shapes that depend on the tip position. The THz
field enhancement is another important parameter, and has
been reported to change with the microscopic tip apex [13,16].
In situ voltage waveform characterization may therefore be
necessary in some cases. This has been demonstrated for a
single-molecule switch [13], and adaptations of this approach
could be adopted for other sample systems.

Another possibility is to use multimessenger detection to
corroborate and complement THz-STS measurements. For
example, THz-induced luminescence has been measured in
conjunction with THz-STM of metal surfaces [15]. THz-STM
could also be combined with near-field microscopy, though
the spatial resolution of THz near-field microscopy has so far
been limited to the 10−100 nm scale [1]. To overcome this
limitation, we propose an experimental concept inspired by
our algorithm that can be summarized in three points: (i) The
bandwidth of the current pulse induced by a THz voltage
transient is far larger than the input bandwidth. (ii) A transient
current emits a field Eemit ∝ dI/dt . (iii) The THz field scat-
tered from the junction at frequencies well above the input
bandwidth carries atomic-scale information if no other fre-
quency broadening effects are present. Detecting these fields
may be challenging, but they should directly relate to the
time-dependent current across the junction and could enable
atomically resolved near-field microscopy.

Finally, inversion algorithms of the type presented here
may be of interest for other research fields. We stress that the
algorithms only apply when the light-matter interaction is in
the strong-field regime. Yet, we anticipate that they are adapt-
able to lightwave-driven STM at higher frequencies [10,43]
for experimental parameters when this is the case. The algo-
rithms should be similarly applicable to other experimental
geometries in which strong-field coherent control of current
is read out through rectified charge [44–50]. In the interest
of clear communication between research fields, we note that
for light coupled to a sharp tip near a surface, the geometric
asymmetry is sometimes considered in terms of an asymmet-
ric field enhancement that results in an asymmetric near-field
waveform and nonzero temporal integral. Conversely, we as-
sume here that the geometric asymmetry can be embedded in
the I-V characteristic, e.g., through a reduced work function
of the tip, as is commonly done in STM literature. Similarly,
we treat the voltage waveform as an input rather than as a
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net field (i.e., it is independent of the resulting current) so
rectified charge does not affect the temporal integral of the
voltage waveform either.

VI. CONCLUSIONS

In conclusion, we have introduced an algorithm to invert
THz-STS data recorded in steady-state and pump-probe ex-
periments. From an experimental perspective, the key is to
record the rectified charge as a function of peak THz voltage
and, in the time-dependent case, optical-pump/THz-probe de-
lay. Polynomial fits to these data are used as the input to the
algorithm. The algorithm yields the differential conductance
sampled by the THz voltage pulse and achieves subcycle
time resolution. By alleviating the need for guess-and-check

modeling, the algorithm advances THz-STS as a diagnostic
tool for ultrafast nanoscience. Experimental tests are still
needed to confirm the effectiveness of the algorithm and will,
in turn, guide further algorithm refinement. In general, we
expect the algorithm introduced here will serve as a launching
point for subcycle THz-STS by both enabling more sophisti-
cated experimental analysis and motivating future theoretical
development.
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