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Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system
in the presence of elliptically polarized radiation
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We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a
two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance
equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic
optical absorption induced via both the intra- and interband electronic transition channels in the perpendicular xx
and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density,
and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical
directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter
can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum.
The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable
optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which
are active in the infrared and terahertz bandwidths.
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I. INTRODUCTION

The isolation of a single layer of graphite, known as
graphene exhibits an unique Dirac-like linear and gapless
band structure in low-energy regime, has emerged as an im-
portant and promising field of research in condensed matter
physics and electronics since 2004 [1]. The rise of newly
developed two-dimensional (2D) electronic materials such as
silicene, monolayer (ML) transition metal dichalcogenides
(TMDs), ML hexagonal boron nitride (h-BN), ML black
phosphorus (BP), etc., are expected to lead to applications
in next generation of high-performance nano-electronic, op-
tical, and optoelectronic devices [2]. Recently, a distinct
class of 2D materials named 2D semi-Dirac (SD) electronic
systems have been realized in materials or device systems
such as TiO2/V2O3 superlattices [3,4], phosphorene under
pressure [5], doped [6] or electrically modulated systems
[7,8], α-(BEDT-TTF)2I3 salts under pressure [9,10], etc.
Notably, SD fermions have an anisotropic band structure dis-
persion, which displays a linear dispersion along one direction
and a quadratic dispersion along the perpendicular direction
[11,12]. This anisotropy in the electronic band structure re-
sults in unusual physical properties as compared to, e.g.,
graphene and TMD-based 2D electron gas systems. This has
drawn the attention of the scientific research community in
recent years.

*yiming.xiao@ynu.edu.cn
†wenxu_issp@aliyun.com

Several investigations of the electronic and optical prop-
erties of 2D SD systems have been carried out recently.
In particular, the electronic, optoelectronic, and transport
properties such as Floquet band structure [13,14], optical
conductivity [15–18], dielectric function and plasmons [11],
nonlinear response [19], and ballistic transport modulated by
magnetic and electrical barriers [20] have been studied. It
has been shown that the 2D SD system can transform from
normal insulator to the Chern insulating phase under light
irradiation with relatively high frequencies [21,22]. Moreover,
in the presence of a high magnetic field, the 2D SD system can
exhibit interesting features, such as an unusual magnetic field
dependence of the Landau levels [(N + 1/2)B]2/3 [23], the
Hofstadter’s butterfly [24,25], Landau-Zener oscillations [26],
etc. Theoretical results on the thermoelectric properties, e.g.,
the Seebeck coefficient, the Ettingshausen coefficient, and the
Righi-Leduc effect suggest that 2D SD systems can also be
utilized for device applications in quantum thermoelectrics
[12,21].

Experimentally, SD electrons in strained black phospho-
rus (BP) thin films have been realized [27]. The zero mode
of the Landau level expected at the Dirac point has been
successfully observed in magneto-resistance measurements of
α-(BEDT-TTF)2I3 under high hydrostatic pressure [28]. The-
oretical studies found a relatively large anisotropy between the
optical conductivities σ inter

xx (ω) and σ inter
yy (ω) in the 2D plane

of the system [15,16]. The polarization function has also been
evaluated. Within the random phase approximation (RPA), it
was found that there exists an undamped anisotropic collective
mode with square-root dispersion relation [11,29]. On the ba-
sis of the unique anisotropic band structure and of the optical
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properties reported, one can predict that the polarization of
the radiation light should affect the optical response of the
2D SD system. It was shown that the 2D SD system realized
from few-layer black phosphorus at critical surface doping
with potassium can exhibit linear and quadratic bands along
the armchair and zigzag directions, respectively [30,31]. Thus,
this is an easy way to probe the anisotropic optical properties
of the 2D SD system through a geometrical device setting.

From the viewpoint of physics, the optical conductivity is
a key physical quantity, which relates directly to measurable
optical coefficients such as transmittance and/or reflectivity
[32]. On the other hand, through optical transmission or re-
flection experiments we can measure the optical conductivity
in a 2D SD system under different experimental conditions
by varying the ellipticity ratio of the polarized radiation light,
temperature, carrier density, etc. In this theoretical study, we
consider a 2D SD system placed in an anisotropic geometry
along different directions. The optical conductivity or absorp-
tion under elliptically polarized light radiation with different
ellipticity ratios is examined. We find that the optical ab-
sorption differs when the sample position is rotated by 90o

degrees. The ellipticity ratio, temperature, carrier density, and
band-gap parameter can effectively tune the optical absorption
in the 2D SD system, especially in terahertz (THz, 1 THz
� 4.1 meV) and infrared regime. Thus, from a basic physics
and a device application points of view, the results from this
study show that the 2D SD system can be employed for the
investigating of novel optoelectronic physics with correspond-
ing applications in innovative 2D optical and optoelectronic
devices.

The present paper is organized as follows. In Sec. II, we
evaluate the optical conductivity of the 2D SD system placed
in different directions in the framework of the energy balance
equation derived from the semiclassical Boltzmann equa-
tion in the presence of an elliptically polarized radiation field.
The optical transition channels for different doping levels are
considered and the optical conductivities obtained under dif-
ferent experimental conditions are presented and discussed in
Sec. III. Our main conclusions from this study are summarized
in Sec. IV.

II. THEORETICAL FRAMEWORK

In this study, we consider a 2D SD system positioned in
the x-y plane (taken as the 2D plane). The effective two band
model Hamiltonian [11,12,15,30] for a carrier (an electron or
a hole) in reciprocal space can be written as

H (k) =
(

0 � + ak2
x − ih̄vFky

� + ak2
x + ih̄vFky 0

)
, (1)

where k = (kx, ky) is the carrier wave vector or momentum
operator, the quadratic dispersion is along the x direction, vF is
the Fermi velocity, a = h̄2/(2mx ) with mx being the effective
carrier mass along the x direction, 2� is the band gap between
the conduction and valence bands when � > 0 and 2D SD
would be a gapless system when � � 0 with � being the
band-gap parameter, k± = kx ± iky = ke±iθ , and θ is the angle
between k and the x axis.

The corresponding Schrödinger equation for 2D SD system
can be solved analytically. The eigenvalues and eigenfunc-

tions are given respectively by

ελ
k = λ

√[
ak2

x + �
]2 + h̄2v2

Fk2
y , (2)

where λ = +/− refers to conduction/valence band, and

ψλ
k (r) = 1√

2

(
λ

gk

)
eik·r, (3)

with

gk = ak2
x + � + ih̄vFky[(

ak2
x + �

)2 + h̄2v2
Fk2

y

]1/2 .

We now consider that an elliptically polarized CW radia-
tion field [33] is applied normal to the 2D plane of the 2D
SD system. Within the Coulomb gauge, the vector potential
of the light field is given by the Jones vector [34] with the left
(ν = −) and right (ν = +) handed elliptically polarization,
with an ellipticity ratio η, is

A0o

ν (t ) = C(x̂ + iνηŷ), (4)

where C = F0(1 + η2)−1/2 sin(ωt )/ω with F0 and ω being
respectively the electric field strength and the frequency of
the radiation field. For the case of relatively weak radiation,
the carrier-photon interaction Hamiltonian can be written as

H ′
ν (t ) = eC

(
0 q + νp

q − νp 0

)
. (5)

where p = vFη and q = h̄k cos θ/mx. Thus, taking H ′
ν as a

perturbation and applying Fermi’s golden rule, the first-order
contribution to the steady-state electronic transition rate in-
duced by direct carrier-photon interaction can be obtained as

W ∓,0o

λλ′ (k, k′) = πe2F 2
0

2h̄ω2(1 + η2)
δ
(
ελ′

k′ − ελ
k ∓ h̄ω

)
δk,k′

× [q2δλ,λ′ + p2δλ,−λ′ − λλ′r(q2 − p2)], (6)

where ∓ sign in the Delta function refers to the absorption (−)
or emission (+) of a photon with energy h̄ω, and

r = h̄2v2
Fk2 sin2 θ

[ak2 cos2 θ + �]2 + h̄2v2
Fk2 sin2 θ

.

After the rotation of the sample coordinates or of the light
polarization by 90o, the vector potential of the radiation field
now becomes

A90o

ν (t ) = C(ŷ + iνηx̂). (7)

The carrier-photon interaction Hamiltonian is then given by

H ′
ν (t ) = ieC

(
0 νηq − vF

νηq + vF 0

)
, (8)

and the corresponding electronic transition rate is obtained as

W ∓,90o

λλ′ (k, k′) = πe2F 2
0

2h̄ω2(1 + η2)
δ(ελ′

k′ − ελ
k ∓ h̄ω)δk,k′

× [
η2q2δλ,λ′ + v2

Fδλ,−λ′ − λλ′r
(
η2q2 − v2

F

)]
.

(9)

In this paper, we use the Boltzmann equation approach
to study the response of the carriers in a 2D SD system to
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the applied radiation field. For nondegenerate statistics, the
semiclassical Boltzmann equation takes the form [35]

∂ f λ
k

∂t
=gs

∑
λ′,k′

[
W −

λ′λ(k′, k) f λ′
k′

(
1 − f λ

k

)

− W −
λλ′ (k, k′) f λ

k

(
1 − f λ′

k′
)]

, (10)

where gs = 2 counts for the spin degeneracy, f λ
k � fλ(ελ

k ) =
{exp[(ελ

k − μλ)/(kBT )] + 1}−1 is the statistical energy dis-
tribution for the carriers such as the Fermi-Dirac function,
and μλ is the chemical potential (or Fermi energy ελ

F at zero
temperature) for electrons or holes in conduction or valence
bands. Taking the first moment, the energy-balance equa-
tion can be derived by multiplying gs

∑
k,λ Eλ(k) to both sides

of the Boltzmann equation [35]. From the energy-balance
equation, we obtain the energy transfer rate:

Pη = 4h̄ω
∑
λ′,λ

∑
k′,k

W −
λλ′ (k, k′) f λ

k

(
1 − f λ′

k′
)
, (11)

where Pη = ∂[gs
∑

k,λ Eλ(k) f λ
k ]/∂t . The optical conductivity

can be obtained by [35]: ση(ω) = 2Pη/F 2
0 , which have intra-

and interband electronic transition channels

ση(ω) =
∑
λ′,λ

σ
η

λλ′ (ω). (12)

We now consider an n-type 2D SD system irradiated by an
elliptically polarized CW radiation field. When photon energy
h̄ω is larger than the band gap between the conduction and
valence bands, the photo-excited carriers are induced in the
conduction and valence bands and a quasi-equilibrium state is
established in the system. In this case, the electron density is
ne = n0 + �n with n0 being the dark electron density and �n
the photo-induced electron density. Due to charge conserva-
tion, the hole density in the system is nh = �n. Furthermore,
the channels of the optical absorption can be induced by intra-
band electronic transitions within the conduction and valence
bands via the mechanism of free-carrier absorption and by
interband transitions from valence band to conduction band.
The interband electronic transition from conduction band to
valence band via optical absorption is physically impossi-
ble. Taking the real part of the vector potential induced by
polarized radiation field along the xx direction, the optical
conductivity via different transition channels can be obtained
as

σ
η,0o

++ (ω) = e2δ(h̄ω)

2πω(1 + η2)

∫ 2π

0
dθ

∫ ∞

0
dkk[q2 − r(q2 − p2)]

× f+(ε+
k )[1 − f+(ε+

k )], (13)

σ
η,0o

−− (ω) = e2δ(h̄ω)

2πω(1 + η2)

∫ 2π

0
dθ

∫ ∞

0
dkk[q2 − r(q2 − p2)]

× f−(ε−
k )[1 − f−(ε−

k )], (14)

and

σ
η,0o

−+ (ω) = e2

2πω(1 + η2)

∫ 2π

0
dθ

∫ ∞

0
dkk[p2 + r(q2 − p2)]

× f−(ε−
k )[1 − f+(ε+

k )]δ(ε+
k −ε−

k − h̄ω), (15)

respectively.

Here, the δ function will be replaced by a Lorentzian
distribution under the energy relaxation approximation for
intraband transitions: δ(ε) → (ετ /π )/(ε2 + ε2

τ ), where ετ =
h̄/τ is the width of the broadened energy state with τ being
the energy relaxation time.

Taking the real part of the vector potential induced by the
polarized radiation field along the yy direction, the optical
conductivity via the different transition channels are given
as

σ
η,90o

++ (ω) = e2δ(h̄ω)

2πω(1 + η2)

∫ 2π

0
dθ

∫ ∞

0
dkk f+(ε+

k )

× [1 − f+(ε+
k )]

[
η2q2 − r

(
η2q2 − v2

F

)]
, (16)

σ
η,90o

−− (ω) = e2δ(h̄ω)

2πω(1 + η2)

∫ 2π

0
dθ

∫ ∞

0
dkk f−(ε−

k )

× [1 − f−(ε−
k )]

[
η2q2 − r

(
η2q2 − v2

F

)]
, (17)

and

σ
η,90o

−+ (ω) = e2

2πω(1 + η2)

∫ 2π

0
dθ

∫ ∞

0

[
v2

F + r
(
η2q2 − v2

F

)]

× f−(ε−
k )[1 − f+(ε+

k )]δ(ε+
k − ε−

k − h̄ω)kdk.

(18)

From Eqs. (13)–(18), we can obtain the following relations
with

σ
η,0o

λλ′ (ω) = σλλ′
xx (ω) + η2σλλ′

yy (ω)

1 + η2
, (19)

and

σ
η,90o

λλ′ (ω) = η2σλλ′
xx (ω) + σλλ′

yy (ω)

1 + η2
, (20)

where σλλ′
xx (ω) and σλλ′

yy (ω) are the longitudinal optical con-
ductivities in xx and yy directions for different electronic
transition channels. The interband part of the longitudinal
optical conductivity σ−+

xx (ω) and σ−+
yy (ω) can be written re-

spectively as

σ−+
xx (ω) = e2

π h̄ω2

∫ π/2

0
dθM(θ ) f−

(
− h̄ω

2

)[
1 − f+

(
h̄ω

2

)]
,

(21)

where

M(θ ) =
{

I
(
k2
θ0

)
, cos θ = 0

I (k2
θ+) + I (k2

θ−), cos θ �= 0
(22)

with

I
(
k2
θς

) = 2a2v2
Fk4

θς sin2(2θ )�
(
k2
θς

)
∣∣2a cos2 θ

(
ak2

θς cos2 θ + �
) + h̄2v2

F sin2 θ
∣∣ .

The step functions is defined as

�(x) =
{

1, x > 0
0, x � 0, (23)

115423-3



H. Y. ZHANG et al. PHYSICAL REVIEW B 105, 115423 (2022)

and k2
θς should be real and positive, which writes

k2
θς =

{
(h̄2ω2 − 4�2)/(4h̄2v2

F), cos θ = 0, ς = 0
(ς

√
V − U )/(2a2 cos4 θ ), cos θ �= 0, ς = ±

(24)

where U = 2�a cos2 θ + h̄2v2
F sin2 θ and V = U 2 +

a2 cos4 θ (h̄2ω2 − 4�2). Moreover, The interband part of
the longitudinal optical conductivity in yy direction σ−+

yy (ω)
is given by

σ−+
yy (ω) = e2

π h̄ω2

∫ π/2

0
dθN (θ ) f−

(
− h̄ω

2

)[
1 − f+

(
h̄ω

2

)]
,

(25)

where

N (θ ) =
{

J
(
k2
θ0

)
, cos θ = 0

J (k2
θ+) + J (k2

θ−), cos θ �= 0
(26)

with

J
(
k2
θς

) = 2v2
F

(
ak2

θς cos2 θ + �
)2

�
(
k2
θς

)
∣∣2a cos2 θ

(
ak2

θς cos2 θ + �
) + h̄2v2

F sin2 θ
∣∣ .

III. RESULTS AND DISCUSSIONS

For our numerical calculations, we take the following
typical material parameters obtained from literatures: mx =
5.08me, where me is the rest electron mass, and the Fermi
velocity vF = 9.875 × 104 m/s [12,15,22]. However, the ma-
terial parameters would differ within different materials such
as mx = 13.6me, vF = 1.5 × 105 m/s in (TiO2)5/(VO2)3 and
mx = 3.1me, vF = 1.14 × 105 m/s in α-(BEDT-TTF)2I3 [26].
We use the electronic relaxation time τ = 1.0 ps for cal-
culations of the optical conductivity induced by intraband
electronic transitions. The chemical potentials (or Fermi en-
ergies) in the conduction and valence bands in a 2D SD
system can be determined respectively by using the condition
of carrier number conservation with the given electron and
hole densities nλ (λ = + for conduction band and λ = − for
valence band) through

nλ = gs

(2π )2

∫ 2π

0
dφ

∫ ∞

0
dkk

[
δλ,−1 + λ fλ

(
ελ

k

)]
, (27)

where fλ(ελ
k ) is the Fermi-Dirac function for electrons in

conduction band or holes in valence band.
It should be noted that the electronic relaxation time

τ depends on the carrier densities and temperature via
electron-electron and electron-phonon interactions. We take
a phenomenological parameter for showing the features of the
intraband optical conductivity. The relaxation time τ could be
obtained from experiments via, e.g., transport measurement
[36] or ultrafast optical spectroscopy [37]. By the way, in the
framework of Fermi’s golden rule, the optical conductivities
obtained in this study corresponds to the optical absorption
in a relative weak elliptically polarized radiation because a
strong nonlinear optical response in a 2D SD system would
be occurred in the strong terahertz radiation [19,38].

In Fig. 1, we plot the optical conductivity ση,0o
(ω) and

ση,90o
(ω) as a function of photon energy h̄ω at fixed ellipticity

FIG. 1. Longitudinal optical conductivities σxx (ω) and σyy(ω) as
a function of radiation photon energy h̄ω at the fixed band-gap
parameter � = −10 meV (a), � = 0 meV (b), and � = 10 meV (c),
with temperatures T = 4.2 K, ellipticity ratio η = 0, and carrier den-
sities ne = 1.5 × 1010 cm−2 and nh = 1.5 × 109 cm−2. The insets in
(a)–(c) show zoom in of σxx (ω) and σyy(ω). Here σ0 = e2/h̄.

ratio, carriers density, temperature, and band-gap parameter.
The total optical conductivity is due to both the inter- and the
intraband transition channels. For η = 0, we obtain that the
longitudinal optical conductivities along different directions
are σ 0,0◦

(ω) = σxx(ω) and σ 0,90◦
(ω) = σyy(ω). The optical

absorption is anisotropic for both interband transitions and
intraband transitions. From Eqs. (15) and (18), we learn that
the optical conductivities are independent upon the sign index
ν = ±1 for left- or right-handed elliptically polarized light,
which means that the transverse or Hall optical conductivity
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FIG. 2. The density-of-states (DoS) per unit area for a 2D SD
system with different band-gap parameters � = −10 meV (black
curve), � = 0 meV (red curve), and � = 10 meV (blue curve), re-
spectively. Here D0 = 1019/meV.

in a 2D SD system is zero. In Figs. 1(a)–1(c), the longitudinal
optical conductivity σyy(ω) is larger than σxx(ω) in the whole
spectrum regime. At high-radiation frequencies, the optical
absorption in the y direction is significant stronger than that in
the x direction, which is in line with the results obtained previ-
ously [15–17]. In the low-frequency regime, both σxx(ω) and
σyy(ω) decrease monotonously with increasing ω, a typical
feature of the Drude-like optical conductivity for free carriers
[39]. It should be noted that in Refs. [16,17], Carbotte et al.
had also calculated the longitudinal optical conductivity of 2D
semi-Dirac system in xx and yy directions with/without a gap
within a Kubo formalism. Carbotte et al. provided separate
analytic formulas of optical conductivity for intraband and
interband transitions for certain limitation cases and consid-
ered the transport properties such as dc conductivity, thermal
conductivity, and the Lorenz number. In Fig. 1(a), we note
that an absorption peak can be observed at a photon energy
h̄ω = 20 meV. In Fig. 1(b), the interband optical conductiv-
ities σxx(ω) and σyy(ω) at low-temperature behavior as

√
ω

and 1/
√

ω, respectively, as obtained in Ref. [16]. In Fig. 1(c),
we can see the cutoff in 20 meV is due to the prohibition
of interband transitions below the band gap. In general, the
results of longitudinal optical conductivities shown in Fig. 1
are in line with the results obtained in Refs. [15–17]. The van
Hove singularity of σyy(ω) in Fig. 1(a) can be understood from
the electronic density-of-states (DoS). In Fig. 2, we show the
DoS for a 2D SD system with different band-gap parameters.
The DoS per unit area is determined by the imaginary part of
the Green’s function via

D(E ) = gs

π

∑
λ=±,k

Im Gλ(E ) = gs

∑
λ=±,k

δ(E − ελ
k ), (28)

where Gλ(E ) = [E − ελ
k + iδ]−1 is the retarded Green’s func-

tions for a carrier in the λ = ± band and E is the electron
energy. We take a broadened width of ετ = 1.0 meV with re-
placing the delta function with energy relation approximation.
From Fig. 2, we see that the DoS for a 2D SD system differs

FIG. 3. Optical conductivities (a) ση,0o
(ω) and (b) ση,90o

(ω) as
a function of photon energy h̄ω at the fixed band-gap parameter
� = −10 meV, temperature T = 4.2 K, carrier densities ne = 1.5 ×
1010 cm−2, and nh = 1.5 × 109 cm−2 for different ellipticity ratio
η = 0.0 (black curve), 0.5 (red curve), 1.5 (blue curve), 3.5 (green
curve), and 5.0 (orange curve), respectively. The dashed curves in
(b) are the corresponding ratios of ση,0o

(ω)/σ η,90o
(ω) for the differ-

ent ellipticity ratios.

significantly from that for a semiconductor-based 2D electron
gas, which is a step-function, and from that for graphene,
which is linear. The DoS for the 2D SD system depends
strongly on the band-gap parameter �. For a band-gap param-
eter of � = −10 meV, we see that the energy spacing between
the two peaks in DoS is 20 meV, which corresponds to an
electronic transition energy of 20 meV and, thus, results in
a strong absorption peak in optical conductivity as shown in
Fig. 1(a). For the case of � � 0 the DoS for a 2D SD system
increases nonlinearly with E starting from the band edges.
As a result, the interesting features of the DoS for a 2D SD
system are the main reasons why the corresponding optoelec-
tronic properties are different from semiconductor-based 2D
electron gas systems and from graphene.

In Fig. 3, the optical conductivities ση,0o
(ω) in (a) and

ση,90o
(ω) in (b) are shown as a function of radiation photon

energy at a fixed band-gap parameter, temperature, carrier
densities for different values of the ellipticity ratios η. With
increasing ellipticity ratio, the values of the optical conduc-
tivity in longitudinal direction ση,0o

(ω) = ση
xx(ω) increases

in the whole spectral regime and the optical conductiv-
ity ση,90o

(ω) = ση
yy(ω) in the vertical direction decreases.

From Fig. 3(b), we can also see that the ratio of the
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FIG. 4. The hight of the absorption peak in Fig. 3 at a fixed pho-
ton energy 20 meV as a function of ellipticity ratio η with band-gap
parameter � = −10 meV, temperature T = 4.2 K, carrier densities
ne = 1.5 × 1010 cm−2, and nh = 1.5 × 109 cm−2.

optical conductivity between longitudinal and vertical di-
rections, ση,0o

(ω)/ση,90o
(ω), increases with increasing η. In

Fig. 4, we plot the peak hight of the optical conductivity in
Fig. 3 at a photon energy 20 meV as a function of ellipticity
ratio. We can see that the peak hight of ση,0o

(ω)/σ η,90o
(ω)

increases/decreases with increasing the ellipticity ratio. The
absorption peak hight in van Hove singularity can be ef-
fectively tuned by the ellipticity ratio. In the presence of
elliptically polarized light with different ellipticity ratios, the
2D SD system shows a strong anisotropy on the optical ab-
sorption. Hence, the ellipticity ratio of light radiation can
effectively tune the optical and optoelectronic properties of
the 2D SD system in the infrared and THz regime.

In Fig. 5, we show the effect of temperature on the opti-
cal conductivity spectrum of the 2D SD system at the fixed
band-gap parameter, ellipticity ratio, and carrier densities. In
the long-wavelength regime where the free-carrier absorption
contributes mainly to the intraband transitions, the optical
absorption increases with increasing temperature. In the inter-
mediate frequency regime, the absorption near the absorption
peak is stronger at low temperature. For photon energies h̄ω >

35 meV, the effect of temperature on the optical conductivity
or absorption is weak. However, the ratio of the optical con-
ductivities in different directions ση,0o

(ω)/ση,90o
(ω) becomes

larger at higher temperatures, which implies that anisotropic
optical absorption can already be observed at room tempera-
ture.

In Fig. 6, we plot the optical conductivities ση,0o
(ω) and

ση,90o
(ω) as a function of photon energy at the fixed band-

gap parameter, temperatures, ellipticity ratio, hole density
for different electron densities. With increasing the electron
density, the absorption edges in the optical conductivities or
absorption spectra show a blue shift and the absorption at
high frequency is not affected by the variation of the elec-
tron density. This phenomenon is a result of the well known
Pauli-blocking effect [40], which indicates that electronic
transitions can only occur from occupied states to empty states

FIG. 5. Optical conductivities (a) ση,0o
(ω) and (b) ση,90o

(ω) as
a function of photon energy h̄ω at the fixed band-gap parameter
� = −10 meV, ellipticity ratio η = 0.5, carrier densities ne = 1.5 ×
1010 cm−2, and nh = 1.5 × 109 cm−2 for different temperatures T =
4.2 K (black curve), 77 K (red curve), 150 K (blue curve), and 300 K
(green curve), respectively. The dashed curves in (b) are the corre-
sponding ratios of ση,0o

(ω)/σ η,90o
(ω) for different temperatures.

at low temperatures. With increasing electron density, the
Fermi energy in conduction band increases. This can increase
the energy separation between the occupied valence band
states and the empty conduction band states and, thus, result
in the blue shift in the optical absorption edge. Similar to
conventional electronic devices, the carrier density and chem-
ical potential in a 2D SD system can also be tuned, e.g., by
applying a gate voltage. As can be see, the absorption regime
becomes narrow with increasing electron density. Thus, a
wider absorption spectrum can be observed in lower-density
samples.

In Fig. 7, we show the optical conductivities ση,0o
(ω)

and ση,90o
(ω) as a function of photon energy at the fixed

temperature, ellipticity ratio, carrier densities for different
band-gap parameters. With changing the band-gap parame-
ter, the strength and the position of the optical absorption
in infrared and THz regime can be effectively tuned in the
presence of an elliptically polarized light field. From Eq. (2),
we know that the 2D SD system has a band gap when � > 0.
At the fixed carrier concentrations, the absorption edge in
Fig. 7 exhibits a blue shift for larger band-gap parameter. For
a negative band-gap parameter � < 0, the 2D SD system is
gapless and presents unique two nodal points in the energy
spectrum [11,15]. The absorption edge is also blue shifted
with decreasing �. It has been shown that there exists a widely
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FIG. 6. Optical conductivities (a) ση,0o
(ω) and (b) ση,90o

(ω) as
a function of photon energy h̄ω at the fixed band-gap parame-
ter � = −10 meV, ellipticity ratio η = 0.5, temperature T = 4.2 K,
hole density nh = 5.0 × 109 cm−2 with different electron densities
ne = 1.0 × 1010 cm−2 (black curve), 5.0 × 1010 cm−2 (red curve),
1.0 × 1011 cm−2 (blue curve), 5.0 × 1011 cm−2 (green curve), and
1.0 × 1012 cm−2 (orange curve), respectively. The dashed curves in
(b) are the corresponding ratios of ση,0o

(ω)/σ η,90o
(ω) for different

electron densities as indicated.

tunable band gap in few-layer black phosphorus doped with
potassium using an in situ surface doping technique [31] or by
the induction of strain [41]. Using such band-gap engineering
approaches [31,42], the anisotropic optical absorption can be
effectively tuned in the infrared and THz bandwidths.

In Fig. 8, we plot the optical conductivities ση,0o
and ση,90o

along different directions and their ratio as a function of the
ellipticity angle ϕ at the fixed radiation photon energy h̄ω =
25 meV, temperature, band-gap parameter, and carriers densi-
ties. The sinusoidal and the cosinusoidal like behaviors appear
for respectively ση,0o

and ση,90o
when varying the ellipticity

angle ϕ from 0 to 2π . The strongest optical absorption of
ση,0o

can be seen with the ellipticity angles at π/2 and 3π/2
and the strongest absorption along the perpendicular direction
can be observed with the ellipticity angles at 0 and 2π . There
exists a phase displacement of π/2 when the sample is rotated
with 90o at a certain ellipticity angle. The strongest effect
in the anisotropy in the optical conductivities ση

xx and ση
yy

can be achieved at the ellipticity angles ϕ = π/2 and 3π/2.
We expect that such an interesting feature in the ellipticity
dependence of the optical absorption in a 2D SD system can
be observed experimentally through conventional infrared or
THz transmission measurement with elliptical polarizers.

FIG. 7. Optical conductivities (a) ση,0o
(ω) and (b) ση,90o

(ω) as
a function of radiation photon energy h̄ω at the fixed ellipticity
ratio η = 0.5, temperature T = 4.2 K, carriers densities ne = 1.0 ×
1012 cm−2 and nh = 5.0 × 1011 cm−2 with different band-gap pa-
rameters � = −20 meV (black curve), −10 meV (red curve), 0 meV
(blue curve), 10 meV (green curve), and 20 meV (orange curve),
respectively.

In this study, we considered a 2D SD system with a de-
vice setting placed in directions perpendicular to each other.
Hereby, the anisotropic and tunable optical absorption can be
achieved by tuning the ellipticity ratio of the polarized radia-
tion light. As we know, a large difference in optical absorption
can also be transformed into electrical signals. As a result, 2D
SD systems can be used in infrared and THz optoelectronic
devices. Moreover, we find that the effect of temperature,
carrier density and band-gap parameter can also modify sig-
nificantly the optical and optoelectronic properties of the 2D
SD system. Due to the unique anisotropic and tunable optical
conductivity, the 2D SD system can be promising materials
for applications in optics and optoelectronics in infrared and
THz bandwidths.

IV. CONCLUSIONS

In this paper, we presented a detailed theoretical study
on the anisotropic and tunable optical conductivity of 2D
SD systems in the presence of elliptically polarized light
irradiation. By considering the electron-photon interaction
using Fermi’s gold rule, the optical conductivity was eval-
uated using the energy balance equation approach derived
from the semi-classical Boltzmann equation. The effects of
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FIG. 8. Optical conductivities ση,0o
(ω), ση,90o

(ω) and their ra-
tios as a function of ellipticity angle ϕ (η = tan ϕ) at fixed photon
energy h̄ω = 25 meV, temperature T = 4.2 K, band-gap parameter
� = −10 meV, carriers densities ne = 1.5 × 1010 cm −2, and nh =
1.0 × 109 cm−2. The dashed curve is the ratio of ση,0o

/σ η,90o
.

the ellipticity ratio of the polarized radiation field, tempera-
ture, carrier density, and band-gap parameter on the optical
conductivity was examined theoretically. The main conclu-
sions we have obtained from this study are summarized as
follows.

2D SD systems exhibit anisotropic optical conductivity
or optical absorption within the bandwidth from THz to in-
frared in different geometrical directions. This interesting
phenomenon is induced by the anisotropy of the electronic
band structure of the system. In the presence of elliptically
polarized radiation field, the optical absorption can be ef-
fectively tuned by the ellipticity ratio and the ratio of the
optical conductivities along the longitudinal and vertical di-
rections ση,0o

(ω)/σ η,90o
(ω), which increases with increasing

ellipticity ratio of the polarized radiation fields. Therefore,
by changing the ellipticity ratio, the optical signals can be
effectively detected through a device setting based on the
2D SD materials. The ratio of ση,0o

(ω)/σ η,90o
(ω) increases

with temperature, which indicates that this effect can be very
likely observed even at room temperature. With increasing the
carrier density, the optical absorption edge is blue shifted,
which is caused by the Pauli-blocking effects [40]. Using
band-gap engineering [31,42], the band structure of the 2D
SD system can be turned by changing the band-gap parameter
resulting in a tuning of the optical absorption in infrared and
THz bandwidths.

From our theoretical results, we have found that the optical
and optoelectronic properties of the 2D SD systems can be
effectively tuned by the ellipticity ratio, temperature, carrier
density, and band-gap parameter. The 2D semi-Dirac systems
can therefore be applied as tunable optical and optoelectronic
materials to be used for the realization of such devices as
optical modulators, switches, polarizers etc., which are active
in the infrared to THz bandwidths. Moreover, It has been
shown that 2D SD electronic systems can be obtained in
materials such as multilayer (TiO2)m/(VO2)n heterostructures
[3,4], α-(BEDT-TTF)2I3 [9,10], few-layer black phosphorus
[27,30], silicene oxide [43], etc. By controlling the ellip-
ticity of THz or infrared polarized radiation with elliptical
polarizers, the elliptically dependence optical conductivity in
this study can be measured through the techniques such as
Fourier transform infrared (FTIR) spectroscopy and THz TDS
measurement [44–47]. Since the 2D SD materials mentioned
above are usually predicted theoretically. It is worth men-
tioning that our theoretical results would also be helpful for
detecting the 2D SD electrons in these materials. We hope
that our theoretical predictions can be verified experimentally
in the near.
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