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Excitonic response of AA′ and AB stacked hBN bilayers
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In this paper, we discuss the optical response due to the excitonic effect of two types of hBN bilayers: AB
and AA′. Understanding the properties of these bilayers is of great utility to the study of twisted bilayers at
arbitrary angles since these two configurations correspond to the limit cases of 0◦ and 60◦ rotation. To obtain
the excitonic response, we present a method to solve a four-band Bethe-Salpeter equation by casting it into a
one-dimensional problem, thus greatly reducing the numerical burden of the calculation when compared with
strictly two-dimensional methods. We find results in good agreement with ab initio calculations already published
in the literature for the AA′ bilayer, and predict the excitonic conductivity of the AB bilayer, which remains
largely unstudied. The main difference in the conductivity of these two types of bilayers is the appearance of a
small, yet well-resolved resonance between two larger ones in the AB configuration. This resonance is due to a
mainly interlayer exciton, and is absent in the AA′ bilayer. Also, the conductivity of the AB bilayer is due to both
intralayer and interlayer excitons and is dominated by p-states, while intralayer s-states are the relevant ones for
the AA′ configuration, like in a monolayer. The effect of introducing a bias in the AA′ bilayer is also discussed.
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I. INTRODUCTION

In its monolayer form, hexagonal boron nitride (hBN) is an
insulator with a direct band gap located at the vertices of the
first Brillouin zone, with a magnitude close to 6 eV [1]. Con-
trary to transition metal dichalcogenides (TMDs) [2], the lack
of heavy metals leads to a rather small spin-orbit-coupling
effect. The simplicity of its band structure and the large band
gap make this an excellent material for the exploration of
fundamental physics. Due to its structural similarity with
graphene, hBN monolayers are often used as a substrate for
graphene [3–5] or to encapsulate other materials, protecting
them from the environment [6]. On their own, hBN mono-
layers are mostly studied because of their optical response
dominated by excitonic resonances. In the simplest possible
picture, an exciton is formed when an electron is promoted
to the conduction band, leaving a hole in the valence band.
These two particles, having opposite charges, interact via an
electrostatic potential [7], leading to the formation of a bound
state. This composite quasiparticle is then responsible for the
optical absorption inside the band gap of the material. This
optical response has been essential for the exploration of hBN
in deep-UV optoelectronics [1,8,9].

The description of the excitonic effect deviates signifi-
cantly from the single-particle response since, to capture the
physics of excitons, many-body effects have to be accounted
for; this is usually achieved by solving the Bethe-Salpeter
equation (BSE). This integral equation in momentum space is
composed of a kinetic term (obtained from the single-particle
response) and an interaction term, which, in general, couples
the electronic degrees of freedom of all the bands of the
system via an electrostatic potential. For the case of an hBN
monolayer (or monolayer TMDs for the same matter), one

can simplify the problem by considering just a single pair of
bands, which couple more efficiently than the remaining ones.
This version of the BSE can then be solved using many meth-
ods, with different degrees of numerical complexity, ranging
from fully numerical calculations [10–13] to semianalytical
[14,15] and variational [16–18] approaches.

A natural extension to the case of a single hBN monolayer
is to consider the case of bilayers [19]. The ground-state con-
figuration for this type of system is the AA′ bilayer [20,21],
where the two monolayers are perfectly aligned along the
stacking direction, but the boron and nitrogen atoms sit on
opposite sites in the two planes. Another relevant type of
bilayer, with a stability capable of competing with the AA′

configuration, is the AB bilayer, where two monolayers are
shifted relative to each other. Contrary to the monolayers, both
of these bilayers present a band gap with an indirect nature
[21], located between the K point in the valence band and the
midway point between the K and K′ points in the conduction
band.

Another important aspect regarding the AB and AA′ bi-
layers is that one configuration can be obtained from the
other by a rotation of 60◦ between the constituent monolayers,
making them the limiting cases of a 0◦ and 60◦ rotation in the
study of twisted bilayers. Although the first theoretical studies
on bilayers date back to the time when graphene was first
isolated [22,23], interest in the topic only grew since then,
remaining an active field of research at the time of writing
[24–26]. Hence, understanding the optical response of these
two configurations is of great utility to the study of arbitrary
twist angles.

Contrary to the case of hBN monolayers, solving the BSE
for the bilayers is a rather complex process. In fact, this is
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the reason why in the current literature this type of problem
is almost exclusively treated with sophisticated numerical ap-
proaches [27–31]. Although accurate, these procedures are
numerically complex and require huge computational power.
It is clear, then, that a simpler approach to describe these
systems is needed. This is precisely the motivation behind
the current paper, where we study two types of hBN bilay-
ers, while presenting a simpler method to study the excitonic
physics in this type of system, with little computational effort.
Even though the excitonic response of the AA′ bilayer has
already been studied in the literature, the AB bilayer remains
largely unexplored.

The text is organized as follows. In Sec. II, we consider
the case of the AB bilayer, with its study separated into three
stages: first, we study the electronic band structure with a
tight-binding model; then, we introduce the Bethe-Salpeter
equation and discuss how it can be solved in order to obtain
the exciton energies and wave functions; finally, we combine
the results of the two previous stages and evaluate the longi-
tudinal conductivity of the AB configuration due to excitonic
resonances. In Sec. III, a similar analysis is carried out for
the AA′ bilayer, where the effect of bias is also discussed.
The comparison between the studied configurations is given
in Sec. IV, where an overview of the work is also presented.
A set of three appendices closes the paper: the first gives
details of the density functional theory (DFT) calculations,
the second focuses on the discussion of the excitonic an-
gular quantum number, and the last one describes how to
numerically solve the one-dimensional (1D) version of the
Bethe-Salpeter equation.

II. AB BILAYER

As a starting point to the problem of the excitonic proper-
ties of hBN bilayers, we shall begin by discussing the case of
the AB (or Bernal) configuration. In this type of bilayer, one
finds that the two monolayers are shifted relative to each other
along the armchair direction, as depicted in Fig. 1.

The first part of our study will be dedicated to the band
structure of such a system, which we will describe using a
tight-binding Hamiltonian and a low-energy approximation.
Afterwards, the equation that governs the excitonic problem
will be introduced and a simple approach to solving it will
be presented. At last, the longitudinal conductivity due to
excitons will be evaluated and its main features analyzed.

A. Tight-binding model

To characterize the single-particle bands of the AB bilayer,
let us start by constructing a minimal tight-binding Hamil-
tonian directly in momentum space. In our minimal model,
we account only for nearest-neighbor hoppings, both in the
in-plane and out-of-plane directions; the effect of additional
hopping parameters is discussed later in the text. Follow-
ing the notation established in Fig. 1, we consider the basis
{|1, b〉, |2, b〉, |2, t〉, |1, t〉}, where 1 and 2 refer to the sub-
lattices (containing boron and nitrogen atoms, respectively),
and b/t denotes the bottom/top layer, and find the following

FIG. 1. Schematic representation of the lattice of AB and AA′

hBN bilayers. The nearest-neighbor in-plane and out-of-plane hop-
pings are γ0 and γ1, respectively. The nearest-neighbor distance
is a.

Hamiltonian in momentum space:

HAB
TB,p =

⎡
⎢⎣

E1,b γ0φ(p) γ1 0
γ0φ

∗(p) E2,b 0 0
γ1 0 E2,t γ0φ

∗(p)
0 0 γ0φ(p) E1,t

⎤
⎥⎦, (1)

where Ei,λ is the on-site energy of the atom i of the λ

layer, γ0 is the hopping parameter between nearest neighbors
in each monolayer, γ1 is the interlayer hopping connect-
ing atoms which are vertically aligned, and φ(p) = eiapy +
e−ia(px

√
3+py )/2 + eia(px

√
3−py )/2 is a factor which follows from

the geometrical configuration of the lattice, where a is the
nearest-neighbor distance. Noting that for the AB configura-
tion we have E1,b = E1,t and E2,b = E2,t , we define E1,b =
Eg/2 = −E2,b to fix the zero of energy. The |1, b/t〉 and
|2, b/t〉 sublattices contain boron and nitrogen atoms, respec-
tively. To obtain the values of the different parameters, we fit
the energy spectrum of this Hamiltonian to DFT calculations,
the details of which we give in Appendix A, where we also
show the tight-binding bands fitted to the ab initio results.
Doing so, we find Eg = 4.585 eV, γ0 = 2.502 eV, and γ1 =
0.892 eV. It is well known that the most common functionals
used in DFT underestimate the fundamental band gap, which
can be corrected using advanced functionals or GW calcula-
tions. This type of approach, however, is beyond the scope of
our work. When the excitonic problem is treated, we simply
consider the corrected band gap to be Eg = 6.9 eV, where the
band gap correction of [29] was considered (note that even
if the correction to the band gap differs from the one used
here, it should not impact the qualitative nature of the results,
and even their quantitative nature should not be drastically
changed). If the limit γ1 → 0 is considered, we recover a
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FIG. 2. Valence and conduction bands obtained from the tight-
binding Hamiltonian, and the low-energy approximation for the AB
bilayer. The momenta is measured relative to the K point (the results
near the K ′ point are identical). The results obtained from the two
approaches are in total agreement.

block diagonal Hamiltonian, where each block describes the
electronic properties of a single hBN monolayer, as expected.

Since we will be mostly interested in the low-energy op-
tical response, we restrict our analysis to the Dirac valleys,
that is, the region around the vertices of the first Brillouin
zone (1BZ), also known as the K/K ′ points. To do this, we
write p = τK + k and approximate φ(τK + k) to first order
in k as φτ (k) ≈ − 3

2 a(τkx − iky), with τ = ±1 labeling the
K/K ′ points, respectively. Notice that, hereinafter, the values
of k = (kx, ky) are measured relatively to these points in the
reciprocal space. With this approximation, one finds the fol-
lowing low-energy Hamiltonian:

HAB
low,k = σ+ ⊗

[
h̄vF (τkxσx + kyσy) + Eg

2
σz

]

+ σ− ⊗
[

h̄vF (τkxσx − kyσy) − Eg

2
σz

]

+ σx ⊗ σ+γ1, (2)

where σ± = (I ± σz )/2 and h̄vF = 3γ0a/2. Diagonalizing
this Hamiltonian we find the energy dispersion relations,

Eλ,η

k = λ

2

√
E2

g + 4h̄2v2
F k2 + 2γ 2

1 + 2γ1η�k, (3)

with �k =
√

γ 2
1 + 4h̄2v2

F k2, λ = ±1 (when used as a number)
or λ = c/v (when used as an index), and η = ±1. Just like
in the case of an hBN monolayer, the energy spectrum is the
same for τ = 1 or τ = −1 since we ignore the small effect
of spin-orbit coupling in this system. In Fig. 2, we depict the
band structure obtained from the tight-binding model as well
as from the low-energy approximation in the vicinity of the
Dirac points; the agreement between the two results is clear,
as it should be. Moreover, we find that the bands associated
with the index η = +1 take an approximately parabolic shape,
while those with η = −1 present a momentum dependence
proportional to k4. A similar band structure is found on bilayer

TMDs, such as 3R − MoS2 [32]. The eigenvectors associated
with each band read

∣∣uv,τ,η

k

〉 = 1√
Vη,k

⎡
⎢⎢⎢⎢⎣

τeτ iθ γ1+η�k
2h̄vF k

e2τ iθ

(
Eg−2Ev,η

k

)
(γ1−η�k )

4k2 h̄2v2
F

−τeτ iθ Eg−2Ev,η

k
2h̄vF k

1

⎤
⎥⎥⎥⎥⎦, (4)

∣∣uc,τ,η
k

〉 = 1√
Cη,k

⎡
⎢⎢⎢⎢⎣

τeτ iθ γ1+η�k
2h̄vF k

e2τ iθ

(
Eg−2Ec,η

k

)
(γ1−η�k )

4k2 h̄2v2
F

−τeτ iθ Eg−2Ec,η
k

2h̄vF k
1

⎤
⎥⎥⎥⎥⎦, (5)

where Cη,k/Vη,k are normalization factors and θ =
arctan(ky/kx ). Just like for any other state vector, these
spinors are defined up to a global phase factor (for example,
eτ iθ ). The particular choice used in (5) was made in order to
simplify the numerical formulation of the excitonic problem,
which will be discussed in the following section. At last, let
us note for future reference that for small momentum, these
vectors take the approximate form

|uv,−
k 〉 ≈

⎡
⎢⎢⎣

0
e2τ iθ

0
0

⎤
⎥⎥⎦, |uv,+

k 〉 ≈

⎡
⎢⎢⎣

eiτθ sin ξ

2
0

−eiτθ cos ξ

2
0

⎤
⎥⎥⎦, (6)

|uc,−
k 〉,≈

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦, |uc,+

k 〉 ≈

⎡
⎢⎢⎣

eiτθ cos ξ

2
0

eiτθ sin ξ

2
0

⎤
⎥⎥⎦, (7)

with ξ = arctan[2γ1/Eg].

B. Excitonic problem

Now that the single-particle bands and Bloch factors were
determined, let us tackle the problem of obtaining the exci-
tonic energies and wave functions.

To obtain the energies and wave functions of the excitons
in the AB bilayer, we shall solve the well-known Bethe-
Salpeter equation (BSE). The BSE is an integral equation in
momentum space, which requires the information of the
single-particle approximation and whose solution determines
the excitonic spectrum. Explicitly, for an exciton with zero
center of mass momentum, this equation reads [14,33,34](

Ec
k − E v

k

)
ψcv (k) −

∑
qc′v′

V (k − q)
〈
uc

k|uc′
q

〉〈
uv′

q |uv
k

〉
× ψc′v′ (q) = Eψcv (k), (8)

where, for the sake of a simpler notation, we have omitted the
indexes τ and η, which are now included in the band index
(c/c′ or v/v′). Here, the sum is performed over the momentum
q and all the bands of our model, ψcv (k) refers to the exciton’s
wave function projected onto the pair of bands (v, c), E cor-
responds to the exciton’s energy, and V (k − q) is the Fourier
transform of the electron-hole interaction, which we model
with the Rytova-Keldysh potential [7,35,36]. This potential
can be obtained from the solution of the Poisson equation for
a charge embedded in a thin film and is known to accurately
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capture the electrostatic interaction in 2D materials. It reads

V (k) = 2π h̄cα

εk(1 + r0k)
, (9)

with c the speed of light, α ∼ 1/137 the fine-structure con-
stant, ε the mean dielectric constant of the media above and
below the monolayer, and r0 an in-plane screening length,
which is related with the 2D polarizability of the system [37].
In the interacting part of Eq. (8), we considered only the
direct electron-hole interaction and neglected the exchange
contribution, following Ref. [34], where it was shown that
such a contribution introduces only minute corrections on the
exciton’s binding energies (smaller than 5%). We now note
that Eq. (8) corresponds, in fact, to a set of four coupled
equations, one for each pair of valence and conduction bands
(v, c), defining an eigenvalue problem. In this type of system,
the formation of an exciton cannot be a priori assigned to a
single pair of bands, but rather to a cooperative process where
the four bands of the model contribute to the formation of
such an entity. Furthermore, from Eq. (8), one already sees
that the phases chosen for the Bloch factors in Eq. (5) have an
impact on the BSE since different phase choices lead to dif-
ferent angular dependencies for the term 〈uc

k|uc′
q 〉〈uv′

q |uv
k〉. We

stress, however, that when a physical quantity is computed,
for example a conductivity, its final result is independent from
the phase that one initially chose for the Bloch factors.

Solving the BSE is no simple task and, as mentioned in
Sec. I, different techniques are frequently employed to achieve
this. The approach we consider here is to use the results of the
tight-binding model that we previously presented, and reduce
the BSE to a 1D integral equation, which can then be easily
solved with a single numerical quadrature. In what follows,
we give a brief description of the approach we use, with a
more detailed technical discussion presented in Appendix C.

The first step to transform the BSE into a 1D integral
equation is to consider the system to be isotropic, which
allows us to write the exciton’s wave function as the product
of a radial component and an angular component, such as
ψcv (k) = fcv (k)eimθk , with m an integer. At first, one might be
tempted to associate the value of m with the angular momen-
tum of the exciton; however, this is not necessarily true. From
the study of hBN monolayers (or other systems which can be
treated with a two-band model), it is known that the number
which characterizes the angular momentum is obtained from
a combination of the m present in the envelop function ψcv (k)
with an additional contribution stemming from the pseudospin
of the system [38,39]. However, for a model with four bands
(such as the one we currently consider), the identification of
the pseudospin contribution is unclear and, because of that,
we will refrain from attributing an angular quantum number
to excitons that appear from the solution of the BSE when the
four bands are accounted for. In Appendix B, we give a more
detailed discussion of this. We note in passing that the pre-
sented approach may be applied to other multilayer systems.

Making use of the above-mentioned proposal for the wave
function ψcv (k) = fcv (k)eimθk , the BSE acquires the form(

Ec
k − E v

k

)
fcv (k) −

∑
c′v′

∫
qdqdθqV (k − q)

〈
uc

k|uc′
q

〉〈
uv′

q |uv
k

〉
× fc′v′ (q)eim(θq−θk ) = E fcv (k). (10)

We now note that according to Eq. (9), V (k − q) is a function
of k, q, and cos(θq − θk ), that is, V (k − q) ≡ V (k, q, θq − θk ).
Knowing this, one easily sees that if the angular dependence
of the spinor product 〈uc

k|uc′
q 〉〈uv′

q |uv
k〉 only contains terms of

the form ein(θq−θk ), with n a real number, then the integral
over dθq can be converted into an integral over a new variable
ϑ = θq − θk , independent of q and k. By removing the mo-
mentum dependence from the angular integral, its evaluation
can be thought of as an independent step of the calculation,
thus effectively transforming the BSE into a 1D integral equa-
tion (whose only integration variable is now q), which can
then be easily solved (see Appendix C). This approach is
computationally advantageous when compared with a strictly
two-dimensional calculation (which scales as N4, while the
simpler 1D problem scales as N2, with N the number of points
in the numerical quadrature). For clarity, we note that the
method we described to solve the BSE is based on the low-
energy approximation near the Dirac points, which allowed us
to write the momentum integral as we did, instead of solving
the integral equation over the entire Brillouin zone.

The key point now is to find the spinor’s phase choice
which guarantees that their product has the desired angular de-
pendence. First, we note that for the term 〈uc

k|uc′
q 〉〈uv′

q |uv
k〉 with

c = c′ and v = v′, the angular dependence always presents
the form we are seeking, regardless of the phase choice, since
the phase of each |ket〉 is balanced by the phase of the 〈bra|
with which it is contracted. This is precisely what one finds
in the case of monolayers, where the BSE can consistently be
transformed into a 1D integral equation [14]. What about the
remaining terms where c = c′ and/or v = v′? Depending on
the phase choice for the spinors, one may find that unwanted
terms, such as einθq e−ipθk , with p = n, appear. Using Eq. (5),
however, produces the desired angular dependence for all the
products of spinors that appear in the BSE, thus allowing us
to convert the excitonic problem into a 1D integral equation.

Using the method we have just highlighted, and discuss
in more detail in Appendix C, we solved the BSE for the
AB bilayer for different values of m (which, we recall, does
not correspond directly to the angular quantum number).
We considered the bilayer to be suspended, ε = 1, and used
r0 = 16 Å, in agreement with the value found from ab initio
calculations in [29]. When solving the BSE, we employed a
Gauss-Legendre quadrature, containing 100 points, which we
verified to be more than enough to guarantee the convergence
of the energies and wave functions for the first 10 excitonic
states.

In Figs. 3(a)–3(c), we depict the wave functions, |�(k)|2 =∑
cv |ψcv (k)|2, associated with three of the states found from

the solution of the BSE. These states are some of the most
relevant ones for the linear optical response of the system
(computed in the following section), and their energies read
En=1 = 5.71 eV, En=2 = 6.13 eV, and En=3 = 6.34 eV. Ana-
lyzing the three panels, we see that the n = 1 and n = 3 states
present wave functions which are similar to those found in the
bound states of the 2D hydrogen atom [40] (which, in turn,
are similar to those of its three-dimensional counterpart). In
fact, since these wave functions are zero at the origin, have
an approximately linear behavior for small momentum, and
present zero and one nodes, respectively, they bear a particular
resemblance to the 2p and 3p states of the hydrogen atom. At
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FIG. 3. (a)–(c) Wave functions in momentum space, |�(k)|2 = ∑
cv |ψcv (k)|2, of the three excitonic states which are responsible for the

first three resonances of the optical conductivity. Their energies are En=1 = 5.71 eV, En=2 = 6.13 eV, and En=3 = 6.34 eV. (d)–(f) Real-space
representation of the absolute value of the wave function in both layers when the hole is placed on the nitrogen site of the bottom layer (|2, b〉
sublattice).

odds with this, the wave function of the n = 2 state presents a
more exotic behavior, with a broad shoulder instead of a node,
unlike a hydrogenic wave function.

To gain more information about these states, especially
regarding their configuration in real space, we compute the
projection of their wave functions onto the electron and hole
sublattices, which can be written as

�αβ (re, rh) =
∑
k,c,v

ei(K+k)·(re−rh )ψcv (k)uα
k,c

(
uβ

k,v

)∗
, (11)

where re and rh are the electron and hole positions, re-
spectively, and uα

k,c refers to the α sublattice entry of the

Bloch factor |uk,c〉 (an analogous definition holds for uβ

k,v
).

For simplicity, we consider rh = 0 and study the behavior of

the wave function with re. Notice how the the term K + k
appears on the complex exponential because the momenta
are being measured relative to the Dirac point; however, the
contribution from K vanishes when the square modulus of
the wave function is considered. In Figs. 3(d)–3(f), we depict
the real-space wave functions when the hole is placed on
the nitrogen atom of the bottom layer (|2, b〉); the position
of the hole is marked by a small black dot in the center of
each figure. For the n = 1 exciton, we find that the wave
function is mainly distributed on the bottom layer boron sites
(this is the reason we apparently only see a triangular lattice,
instead of a honeycomb one), that is, on the same layer as
the hole, with a smaller portion being present on the top
layer; this distribution of the wave function indicates that
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TABLE I. Integrate values of the square modulus of the sublattice
resolved real-space wave function for the AB bilayer. The horizontal
top row indicates the sublattice where the hole is placed, while the
two columns on the left indicate the exciton we are considering, and
the layer where the electron is located.

|1, b〉 |2, b〉 |2, t〉 |1, t〉
n = 1 Bottom 0.01 0.34 0.03 0.00

Top 0,00 0.26 0.34 0.01
n = 2 Bottom 0.00 0.17 0.01 0.00

Top 0.02 0.61 0.17 0.01
n = 3 Bottom 0.01 0.17 0.08 0.00

Top 0.00 0.57 0.16 0.01

this state has a predominantly intralayer nature. On the other
hand, for the n = 2 and n = 3 excitons, we find a rather
significant part of the wave function spread over the top layer,
indicating the interlayer character of these excitations. To
more easily understand how the wave function behaves for
different positions of the hole, we present, in Table I, the
values found for the integrated square modulus of the wave
function,

∫ |�αβ (re, 0)|2dre, which gives the probability of
finding the electron on one of the layers, for each possible
location of the hole. From the inspection of this table, one
finds that (i) there is a clear preference for the hole to be
located on the |2, t/b〉 sublattices (containing nitrogen atoms),
given the small values found for the integrated wave function
when the hole is located on either |1, b/t〉 sublattices; and (ii)
we confirm the previous assignment of the n = 1 exciton as
mainly intralayer, while the n = 2 and n = 3 ones are mostly
interlayer.

C. Optical conductivity

Now that the the BSE was solved for the AB bilayer, we are
ready to evaluate its conductivity due to the excitonic effect.
Following Ref. [33], we write the conductivity for a multiband
system as

σ (ω)

σ0
= i

π

∑
n

En
�n�

∗
n

En − h̄ω
+ (ω → −ω)∗, (12)

where σ0 = e2/4h̄ is the conductivity of graphene, the sum
over n runs over the different exciton states with energy En

and

�n =
∑
vck

ψ (n)
cv (k)�vck, (13)

where �vck is the position operator interband matrix element,
which we write as

�vck =
〈
uv

k|[H, r]|uc
k

〉
E v

k − Ec
k

, (14)

with H standing for the low-energy tight-binding Hamilto-
nian. The evaluation of the interband matrix element is crucial
to determine which of the solutions of the BSE couple with the
electric field and, consequently, contribute to the conductivity.
For the current system, the interband matrix elements impose
that only states with m = ±τ may give a finite contribution
(we recall once more that this does not correspond to the

FIG. 4. Optical conductivity of an AB hBN bilayer accounting
for the first 10 exciton states with m = τ (the contributions from
both valleys were accounted for). The first three resonances cor-
respond to the excitonic states depicted in Fig. 3. To obtain this
result, a phenomenological broadening of 35 meV was considered.
The conductivity is given in terms of the conductivity of graphene,
σ0 = e2/4h̄.

angular quantum number). In addition, the sum over the bands
also plays a role in determining which states couple more effi-
ciently with light due to the possibility of existing constructive
or destructive interference between the different terms. Using
the solutions of the BSE given in the previous section, we
compute the optical response of the system due to a linearly
polarized electric field; its conductivity is depicted in Fig. 4,
where a phenomenological broadening of 35 meV was con-
sidered for all resonances. The shaded blue area corresponds
to the conductivity accounting for 10 exciton states (all with
m = τ , since we found the m = −τ states to have rather small
oscillator strengths); the contributions of the states highlighted
in Fig. 3 are depicted in the same color as the corresponding
wave functions. From this figure, we see that the longitudinal
conductivity of the AB hBN bilayer has its more pronounced
feature on the first resonance, while a set of lower intensity
ones appear at higher energies. Furthermore, the conductivity
of the AB bilayer presents a small, yet noticeable resonance
between the first and third peaks, which can be ascribed to the
second state of Fig. 3. Above the third resonance and up to
approximately 6.5 eV, three resonances appear. These peaks,
however, overlap significantly, making it difficult to resolve
them. Moreover, since our model is based on a low-energy
approximation, the results are expected to become progres-
sively less accurate as we approach the band edge. For these
two reasons, we focus our analysis solely on the first three
resonances.

D. Exciton angular quantum number

Having determined the complete longitudinal conductivity
using the results of the four-band BSE, we shall now carry
out a complementary analysis to gain further insight into the
nature of each resonance, especially regarding the angular
quantum number of the excitons behind them.

As a first, and somewhat naive, approach, we return to the
BSE and restrict it to a single pair of valence and conduc-
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FIG. 5. Optical conductivity of an AB hBN bilayer obtained by
(i) considering only two of the original four bands when solving
the BSE (labeled as Approx. BSE), and (ii) using the Lowdin par-
titioning. As in Fig. 4, a broadening of 35 meV was introduced. The
conductivities are given in terms of the conductivity of graphene,
σ0 = e2/4h̄.

tion bands. In particular, we consider only the bands which
present an energy dispersion in k4 since intuition tells us that
these should dominate in the low-energy response. Because
in this approximation we are effectively treating a two-band
problem, we can identify the contribution of the pseudospin
to the angular quantum number (see Appendix B).

Let us define the excitonic wave function in real space for
a two-band model [38] as

�α,β (re, rh) =
∑

k

ei(K+k)·(re−rh )ψcv (k)uα
k,c

(
uβ

k,v

)∗
, (15)

which is analogous to the previously given definition, only
this time without the sum over the bands since a single pair
is being considered. From Eq. (7), one sees that for small
momentum, the product uα

k,c(uβ

k,v
)∗ approximately introduces

an additional phase of e−2iτθ (recall that only the bands with
η = −1 are being currently considered), which can be com-
bined with the angular part of ψcv (k). Hence, within this
approximation, we may define the angular quantum number
of the exciton as mX = m + mps, where mps = −2τ is the
pseudospin contribution to the angular quantum number and
m is the contribution from the envelope function, ψcv (k).

When the conductivity is evaluated, the interband matrix
element imposes that only states with m = ±τ may couple
with the external excitation. Thus, taking into consideration
the definition of the angular quantum number mX, we find
that at least approximately, only states with angular quan-
tum numbers mX = −τ or mX = −3τ are optically bright. In
analogy with the hydrogen atom, we label these states as
p- and f -states since the modulus of their angular quantum
number is 1 and 3, respectively. These selection rules are in
line with the momentum space wave functions depicted in
Fig. 3.

In Fig. 5, we depict the conductivity found with this two-
band approximation, where once again a phenomenological
broadening of 35 meV was considered; only the first two
p-states were accounted for since the f -states appear above
these two, and with a far smaller oscillator strength. Com-

paring this result with the one of Fig. 4, one clearly sees
the resemblance between the two conductivities, both in the
location of the resonances as well as their relative magnitude.
The absolute magnitude is slightly different from what was
found when the four-band BSE was solved; this is to be ex-
pected since, in the current approximation, we are neglecting
the contribution of other pairs of bands to the conductivity.
Thus, it appears that one can confidently assign, at least ap-
proximately, the hydrogenic labels of 2p and 3p states to
the excitons which originate the first and third resonances
of the conductivity in Fig. 4. Note, however, how the small
resonance at approximately 6 eV in Fig. 4 is absent in this
approximation. By repeating this procedure for all possible
pairs of bands, we find that using the η = −1 bands gives the
best results when compared with the four-band calculation.
Moreover, we note that the small resonance is only ever cap-
tured when the four bands are accounted for, indicating a clear
difference of this exciton when compared with the other two
we are considering (which can be approximately captured by
selecting two of the four bands of our model).

To further confirm the correct labeling of the resonances,
we can follow the ideas of Ref. [41], where the process of
folding a tight-binding Hamiltonian on itself, i.e., applying a
Lowdin partitioning [42,43], was used to obtain the optical
selection rules of a 3R − MoS2 bilayer. In a succinct manner,
to obtain an effective 2 × 2 Hamiltonian from a given 4 × 4
model Hamiltonian, one should start by finding the unitary
transformation which diagonalizes the model Hamiltonian at
k = 0. Then, the unitary transformation should be applied to
the model Hamiltonian with finite k, and the basis should be
reordered such that the low-energy diagonal terms appear on
the upper left 2 × 2 block. At last, the effective Hamiltonian
is obtained from this one through the relation

(Heff )i j = H̃i j + 1

2

∑
l

H̃il H̃l j

Hii − Hll
+ H̃il H̃l j

Hj j − Hll
, (16)

with i, j = {1, 2} and l = {3, 4}; H̃ corresponds to the model
Hamiltonian after applying the unitary transformation and
rearranging its basis. Hence, using the described procedure to
project the high-energy bands onto the low-energy ones, we
obtain the following effective two-band Hamiltonian:

Heff ≈
(

Eg

2 − h̄2v2
F

γ1
k2e−2iτθ

− h̄2v2
F

γ1
k2e2iτθ −Eg

2

)
. (17)

According to Ref. [41], the winding number associated with
this Hamiltonian is w = −2τ ; and the optical selection rules
follow from the winding number as mX = w ± τ , when
trigonal warping is neglected. Thus, using this alternative
approach, we once again find selection rules which only al-
low the excitation of states with mX = −τ and mX = −3τ ,
that is, p- and f -states. If the effect of trigonal warping had
been included, for example by introducing hopping to second
neighbors (either in the in-plane or out-of-plane directions),
the set of selection rules would be extended to include s-
and d-states (with angular quantum number 0 and 2, respec-
tively), due to an additional contribution of a factor of 3 to
mX stemming from the symmetry of the lattice. Since the
resonances associated with these states would be proportional
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to the square of the associated hopping integral, which is
significantly smaller than the nearest-neighbor hoppings, their
intensity would be rather small when compared to the reso-
nances we have accounted for here.

At last, we note that if one now solves the excitonic prob-
lem using Heff as a starting point, the exciton energies will be
significantly overestimated. This is a consequence of the band
structure given by Heff, where the dispersion relation presents
a k4 dependence near k → 0, but grows at a much faster
rate than the original bands as the momentum increases. This
results in a higher kinetic energy for the electrons, which in
turn reduces the exciton binding energies. Hence, even though
the Lowdin partitioning captures the qualitative features of the
conductivity of the AB bilayer and easily gives optical selec-
tion rules, it fails to quantitatively describe its conductivity, as
we show in Fig. 5.

III. AA′ BILAYER

In this section, we will focus on AA′ bilayers. In this
type of bilayer, the two monolayers are vertically aligned,
with the boron and nitrogen atoms in opposite sites, such
that a boron/nitrogen atom is always vertically aligned with
a nitrogen/boron atom. A depiction of this type of bilayer
is presented in Fig. 1. As in the previous section, we will
begin by studying the electronic band structure of the system
followed by the calculation of the excitonic response. Since
the ideas and techniques of the previous section carry on to
the current one, in what follows we will give a less detailed
description of how the results were obtained and will mainly
focus on the differences between the two types of bilayer.

A. Tight-binding model

To obtain the low-energy band structure of the AA′ bi-
layer, we will once more use a tight-binding Hamiltonian
written directly in momentum space. Working in the basis
{|1, b〉, |2, b〉, |1, t〉, |2, t〉} (see Fig. 1), we write

HAA′
TB,p =

⎡
⎢⎣

Eg/2 γ0φ
∗(p) 0 γ1

γ0φ(p) −Eg/2 γ1 0
0 γ1 Eg/2 γ0φ(p)
γ1 0 γ0φ

∗(p) −Eg/2

⎤
⎥⎦. (18)

Here we have considered E1,b = E1,t and E2,b = E2,t , and
defined Eg as E1,b = Eg/2 = −E2,b. The |1, b/t〉 and |2, b/t〉
contain boron and nitrogen atoms, respectively. As in the AB
bilayer, γ0 and γ1 refer to the intra- and interlayer nearest-
neighbor hoppings, respectively, and φ(p) is a phase factor
whose expression is the same as in the previous section. No-
tice how for the AA′ bilayer, the Hamiltonian presents twice
as many γ1 as for the AB configuration, in agreement with
the increased number of atoms which are vertically aligned.
As before, if γ1 → 0, one is left with a block diagonal Hamil-
tonian describing two decoupled monolayers. To obtain the
numerical values for the different parameters of the model, the
energy spectrum of the tight-binding Hamiltonian was fitted
to DFT calculations (obtained in an identical manner to what
was described in the previous section), yielding Eg = 4.65 eV,
γ0 = 2.491 eV, and γ1 = 0.595 eV.

FIG. 6. Valence and conduction bands obtained from the tight-
binding Hamiltonian, and the low-energy approximation for the AA′

bilayer. The momenta are measured relative to the K point (the results
near the K ′ point are identical). A good agreement is seen between
the two sets of data.

In the low-energy approximation, that is, near the Dirac
points, we write φτ (k) ≈ − 3

2 a(τkx − iky), and find the effec-
tive low-energy Hamiltonian,

HAA′
low,k = σ+ ⊗

[
h̄vF (τkxσx − kyσy) + Eg

2
σz

]

+ σ− ⊗
[

h̄vF (τkxσx + kyσy) + Eg

2
σz

]

+ σx ⊗ σxγ1, (19)

where σ± = (I ± σz )/2 and h̄vF = 3γ0a/2, and, as before,
k = (kx, ky) is a momentum measured relative to the Dirac
points.

Diagonalizing this Hamiltonian, the following dispersion
relation is found:

Eλ,η

k ≈ λ

2

√
E2

g + (2γ1 + 3ηγ0ak)2, (20)

with λ = ±1 or c/v depending on if it is used as a num-
ber or as an index, and η = ±1. As in the case of the AB
bilayer, we see that the energy dispersion is independent of
the valley index τ . The depiction of Eλ,η

k near the K point is
given in Fig. 6. There, we see that the band structure of the
AA′ bilayer presents a drastically different shape compared to
that of the AB bilayer. While before we found that the two
valence/conduction bands were clearly separated in energy,
here we see that a critical point exists at k = 0 where the
bands touch. Moreover, contrary to the AB bilayer, where the
extrema of the bands were located at zero momentum, here
we find the band maxima and minima at k = 2γ1/3γ0a. The
eigenvectors found from the diagonalization of the low-energy
Hamiltonian are

|uv,τ,η

k 〉 = 1√
Vη,k

⎡
⎢⎢⎢⎢⎣

Eg−
√

E2
g +4(γ1+ηh̄vF k)2

2(γ1+ηh̄vF k)

ητe−iτθ

ητe−iτθ Eg−
√

E2
g +4(γ1+ηh̄vF k)2

2(γ1+ηh̄vF k)
1

⎤
⎥⎥⎥⎥⎦,
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|uc,τ,η
k 〉 = 1√

Cη,k

⎡
⎢⎢⎢⎢⎣

Eg+
√

E2
g +4(γ1+ηh̄vF k)2

2(γ1+ηh̄vF k)
ητe−iτθ

ητe−iτθ Eg+
√

E2
g +4(γ1+ηh̄vF k)2

2(γ1+ηh̄vF k)
1

⎤
⎥⎥⎥⎥⎦, (21)

where Cη,k/Vη,k are normalization factors.

B. Excitons and conductivity

In order to obtain the excitonic energies and wave functions
of the AA′ bilayer, one must return to the BSE, first presented
in Eq. (8). Because in the previous section we already dis-
cussed the nuances of the BSE and outlined our approach to
solving it, we do not repeat the same analysis here. Instead,
we note only that the spinors given in Eq. (21) already have
the phase choice which allows the transformation of the BSE,
from a 2D integral equation to a 1D problem (see Appendix C
for details on how to solve the 1D integral equation).

Considering a suspended bilayer (ε = 1) and once again
using r0 = 16 Å [29], we solve the BSE and find the energies
and wave functions of the excitons for the AA′ bilayer. We
stress that similarly to the case of the AB configuration, when
the BSE was solved, a corrected band gap of Eg = 6.96 eV
was considered to match the value reported in Ref. [29]. Once
again, the exact value of the band gap should not have a signif-
icant impact on the qualitative analysis of the results. As in the
previous section, we solved the BSE using a 100-point Gauss-
Legendre quadrature, which guaranteed the convergence of
the excitonic energies and wave functions of the first 10 states.

In Figs. 7(a) and 7(b), we depict the wave functions
|�(k)|2 = ∑

cv |ψcv (k)|2 of two of the states found by solving
the BSE. These two states have energies En=1 = 5.64 eV and
En=2 = 6.36 eV and correspond to the first two bright states
of the system, i.e., the ones that originate the first resonances
of the optical conductivity (shown below). We note that both
of these states are doubly degenerate, without accounting for
spin or valley degeneracy. For comparison, in [29], the first
two peaks were predicted to appear at 5.35 and 6 eV, re-
spectively. An exact match of the binding energies was not
expected due to the different parametrizations of the band
structure. However, as we shall see below, our results agree
with those of Ref. [29] on the nature of the excitons behind
these resonances. Analyzing the representation of the wave
functions in momentum space, we realize that both resemble
the wave functions of the s-states of the hydrogen atom since
both are finite at the origin, and then decay to zero with zero
and one nodes for the n = 1 and n = 2 states, respectively.
Because of the unique band structure of the AA′ bilayer,
and contrary to what we did in the AB configuration, here
we cannot reduce the four-band problem to an approximate
two-band one since it is impossible to define a pair of bands
which could be considered the most relevant one for the
low-energy response. Hence, the labeling of these states as
s-states is based solely on their wave functions, in analogy
with the hydrogen atom for which only s-states have finite
wave functions at the origin.

In Figs. 7(c) and 7(d), we depict the wave function of
the two states in real space when the hole is placed on the
sublattice |t, 2〉 (corresponding to a nitrogen atom) and find

FIG. 7. (a),(b) Wave functions |�(k)|2 = ∑
cv |ψcv (k)|2 of the

exciton states which are responsible for the first two resonances
of the optical conductivity (highlighted in the same color as
the respective wave function). (c),(d) Real-space representation of
the absolute value of the wave function when the hole is placed in
the |t, 2〉 sublattice (containing a nitrogen atom). The position of the
hole is marked by a black dot.

that both are mostly intralayer excitons since the real-space
wave function is mainly distributed over same layer where the
hole is located. If the hole is placed on the sublattice |b, 2〉
(also a nitrogen atom), the results are identical to the ones
depicted, only this time the wave function is almost entirely
distributed over the bottom layer. When the hole is placed
in either |b/t, 1〉 sublattices (with boron atoms), the resulting
real-space wave function is essentially zero, indicating the
preference of holes to appear on nitrogen atoms. These con-
siderations are further backed by the values found when the
wave function is integrated over each layer for a given position
of the hole, which we show in Table II. The identification of
these two states as being due to (mainly) intralayer s-excitons
agrees with [29], where the same conclusion was obtained
from ab initio calculations and symmetry considerations.

Now that the solutions of the BSE have been found, we
can evaluate the longitudinal conductivity of the AA′ bilayer.
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TABLE II. Integrate values of the square modulus of the sub-
lattice resolved real-space wave function for the AA′ bilayer. The
horizontal top row indicates the sublattice where the hole is placed,
while the two columns on the left indicate the exciton, and the layer
where the electron is located.

|1, b〉 |2, b〉 |1, t〉 |2, t〉
n = 1 Bottom 0.01 0.46 0.00 0.02

Top 0.00 0.02 0.01 0.46
n = 2 Bottom 0.01 0.33 0.00 0.14

Top 0.00 0.14 0.01 0.33

Using the definition given in Eq. (12) for the conductivity, we
obtain the result depicted in Fig. 8, where the area shaded in
blue corresponds to the conductivity obtained accounting for
10 exciton states (once again, states with m = ±τ are selected,
only this time both present identical oscillator strengths.). The
dark blue and orange outlines are the individual contributions
of the two s-states whose wave functions were depicted in
Fig. 7. First, we highlight the resemblance between our result
and that of Ref. [29], especially for the first resonances, where
we see that the location of the first two peaks, as well as their
relative intensity, is similar in both works. At higher energies,
however, we observe significant differences between our con-
ductivity and the one obtained with ab initio calculations. This
mismatch at higher energies was to be expected since ours is
a low-energy theory, incapable of capturing the more nuanced
features near the band edge. Nonetheless, the similarities at
lower energies are a good indicator of the validity of our
results. The conductivity of the AA′ bilayer resembles that
of the monolayer [15] since in both cases the s-states are
the bright one, and both present a set of resonances with
monotonically decreasing oscillator strength. When compared
to the conductivity of the AB bilayer, we find that the small

FIG. 8. Optical conductivity of an AA′ hBN bilayer account-
ing for the first 10 exciton states with m = ±τ (the contributions
from both valleys were accounted for). The first two resonances
correspond to the excitonic states depicted in Fig. 8. To obtain this
result, a phenomenological broadening of 35 meV was considered.
The conductivity is given in terms of the conductivity of graphene,
σ0 = e2/4h̄. The inset shows a schematic depiction of the monolayer
conductivity [15].

FIG. 9. Conduction bands of the biased AA′ bilayer, for three dif-
ferent bias values: V = 0, V = 20, and V = 100 meV. The valence
bands present an identical dispersion relation.

peak between the first two resonances of Fig. 8 is absent in
the AA′ configuration; hence, this small resonance can then
be seen as a fingerprint of the AB stacking.

C. The effect of bias

One of the main features of the AA′ bilayer is its peculiar
band structure, particularly the degeneracy at k = 0. An inter-
esting thing to consider is the effect of lifting said degeneracy.
To study this possibility, we now briefly consider the case of a
biased AA′ bilayer. The bias can be introduced in the system
through the application of a vertical displacement field. Since
the application of such a field breaks the inversion symmetry
of the AA′ bilayer, one may expect new optical selection rules
for the biased bilayer when compared to the unbiased case.

To introduce the effect of bias in our low-energy model,
we need only add a new contribution to the low-energy
Hamiltonian given in Eq. (19),

Hbias = V I ⊗ σz, (22)

with V quantifying the magnitude of the bias, I the identity
matrix, and σz the z Pauli matrix. The bands associated with
this new Hamiltonian are depicted in Fig. 9, where we see
that for a small bias, the degeneracy at k = 0 is indeed lifted
and the lower-energy conduction band acquires the form of a
Mexican hat, similar to what is found in biased bilayer
graphene. As the bias increases, so does the separation be-
tween the two bands and the shape of the bottom band
becomes closer to a simple parabolic dispersion. We also note
that although we only show the results for positive bias, the
bands for negative bias are identical to the ones presented
here.

Solving the BSE (using the same parameters that we used
in the unbiased case) with this new Hamiltonian, and com-
puting the conductivity due to an in-plane linearly polarized
external electric field, we obtain the result depicted in Fig. 10,
where different values for V are considered (the results for
negative bias are identical). First, we see that, as expected,
for zero bias the result of Fig. 8 is recovered. Then, as the
bias increases, we observe that the first resonance is shifted to
higher energies despite the reduction of the band gap, reflect-
ing a reduction of its binding energy. Furthermore, we note
that the initially simple features at higher energies become sig-
nificantly more complex as the bias increases since different
new small resonances start to appear. From the inspection of
the real-space wave functions, we find that these new small
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FIG. 10. Optical conductivity for the biased AA′ bilayer for dif-
ferent bias values. The results for negative bias are identical. The
different conductivities are vertically shifted for clarity. Also de-
picted is the location of the band gap for each bias value.

resonances are associated with excitons which appear to be
mainly interlayer (electron and hole in opposite layers). The
excitons originating the larger resonances, which in the unbi-
ased case were almost entirely intralayer, see their interlayer
component increase. At last, we note that in the presence of
external bias, the conductivity becomes more like the one
found for the AB bilayer, which we assign to the breaking
of inversion symmetry.

As we saw in Fig. 7, at zero bias, the resonances on
the conductivity are essentially due to s-states, whose wave
functions are finite at k = 0. However, as soon as some bias
is introduced in the system, the symmetry of the problem
changes and the optical selection rules are affected. Since for
the biased bilayer we can split the bands into low-energy and
high-energy groups, an approximate two-band model can be
employed (see Sec. II D), allowing us to establish approximate
optical selection rules. Applying the Lowdin partitioning, as
described prior to Eq. (16), we find the following effective
two-band Hamiltonian:

Hbias, eff =
⎛
⎝ �(−|V |) − 9γ 2

0 γ1�(|V |)
8V 3−2V E2

g
k2

− 9γ 2
0 γ1�(|V |)

8V 3−2V E2
g

k2 −�(−|V |)

⎞
⎠, (23)

where �(x) =
√

(Eg/2 + x)2 + γ 2
1 . In its current form, this

Hamiltonian holds for both V > 0 and V < 0 (but clearly fails
to describe V = 0, the unbiased case). Using the procedure of
Ref. [41] one more time, we identify the winding number as
w = 0 and, as a consequence, the bright excitons are those
with mX = ±τ , that is, p-states. If trigonal warping had been
considered, for example by including nonvertical interlayer
hoppings, then states with m = ±2 and m = ±4 could also
be excited (due to an additional factor of 3 stemming from the
lattice symmetry contributing to mX). Note how for the biased
AA′ bilayer, the s-states are dark even if trigonal warping is
considered, in stark contrast with the unbiased case, where
s-states dominate the optical response.

IV. DISCUSSION

In this paper, we studied the optical conductivity due to the
excitonic effects of two types of hBN bilayers: the AB and
AA′ configurations. The comprehension of the properties of
these bilayers is of great utility in the study of twisted bilayers
at arbitrary angles since the results we presented correspond
to the limit cases of 0◦ and 60◦ rotation.

To obtain the excitonic spectrum of each type of bilayer,
we solved the Bethe-Salpeter equation (BSE) using the Bloch
factors given by a low-energy four-band Hamiltonian. To ease
the numerical weight of the calculation, we avoided the pro-
cess of solving a 2D integral equation by a judicious choice
of the phases of the Bloch factors, allowing us to cast the
BSE into a 1D problem, which can then be solved in a rather
efficient way. We emphasize that the method we presented
to solve the four-band BSE gives better results than those of
effective theories, such as the Lowdin partitioning. Although
useful to extract optical selection rules, this type of effective
approach fails to accurately predict the optical response (as
we saw for the AB bilayer) and may even be impossible to
apply (as we saw for the AA′ bilayer). Moreover, our approach
is far less computationally expensive than methods which
require the solution of the BSE in two dimensions, allowing
the exploration of such systems by a broader audience.

Regarding the conductivities of the two considered
bilayers, we found that the AB configuration presents an op-
tical response where both intralayer and interlayer excitons
participate. In particular, we found the first (and largest) ex-
citonic resonance to be due to a mainly intralayer exciton,
followed by a small, yet well-resolved resonance due to an
interlayer exciton (which is only captured when the four bands
of the model are accounted for); this small peak is followed
by a larger one, also due to a mainly interlayer exciton. Fur-
thermore, we found that for the AB bilayer, the two main
resonances in the optical conductivity could be assigned with
the hydrogenic label of p-states (angular quantum number
equal to 1); f -states (angular quantum number 3) are also
allowed to be excited, albeit with tiny oscillator strengths,
and s-states (angular quantum number 0) appear if trigonal
warping is accounted for.

For the AA′ bilayer, we found an optical conductivity dom-
inated by mainly intralayer excitons, to which we assigned the
hydrogenic label of s-states due to the line shape of the wave
functions in momentum space, in agreement with [12]. Con-
trary to the AB stacking, the conductivity of the AA′ bilayer
presented a set of resonances with monotonically decreasing
magnitude (similar to the monolayer). Hence, the small peak
between two larger ones in the AB bilayer is a clear differen-
tiating feature between the two considered configurations.

When the case of a biased AA′ bilayer was studied, we
found that the s-states became dark and the p-states dominated
the optical spectrum; the change of optical selection rules is a
consequence of the symmetry breaking introduced by the bias.
Moreover, as the bias increased, we found that the first (and
more pronounced) resonance was shifted to higher energies,
going against the trend of the band gap, which decreased with
increasing bias. We also found that the introduction of the bias
led to an overall more complex optical response due to the
increased contribution from interlayer excitons.
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APPENDIX A: DETAILS ON THE DFT CALCULATIONS

Density functional theory (DFT) calculations were per-
formed using the software package QUANTUM ESPRESSO [44].
We used a scalar-relativistic norm-conserving pseudopoten-
tial [45,46] and the generalized gradient approximation of
Perdew-Burke-Ernzerhof (GGA-PBE) [47]. The plane-wave
cutoff was 80 Ry and, for the integration over the Brillouin
zone, the scheme proposed by Monkhorst-Pack [48] with a
grid of 18 × 18 × 1k points was used. A vacuum size between
the layer images of 25 bohr was enough to avoid interactions
between the periodic images. We also included the van der
Waals correction proposed by Grimme [49,50]. Atoms were
relaxed to establish the spacing between layers. The tight-
binding parameters were obtained by fitting the DFT bands
along a path in the first Brillouin zone, as depicted in Fig. 11.
Only the valence bands were fitted since the DFT calculations
less accurately capture the empty states of the conduction
bands [19].

APPENDIX B: ON THE EXCITON’S ANGULAR
QUANTUM NUMBER

1. Two-band system

Let us start by considering the problem of an hBN mono-
layer, which we take as a concrete example of a two-band

FIG. 11. Fit of the tight-binding bands to the results found from
DFT calculations. For the AB bilayer, we find Eg = 4.585 eV, γ0 =
2.502 eV, and γ1 = 0.892 eV. For the AA′ bilayer, we obtain Eg =
4.650 eV, γ0 = 2.491 eV, and γ1 = 0.595 eV.

system [15]. We model the monolayer with a two-band Dirac
Hamiltonian to describe its low-energy electronic proper-
ties. From the diagonalization of the Hamiltonian, one easily
shows that the Bloch factors take the form [14]

|uc,k〉 = [eiθ sin ξk, cos ξk]T, (B1)

|uv,k〉 = [eiθ cos ξk,− sin ξk]T, (B2)

where c/v labels the conduction/valence band, θ =
arctan ky/kx, and ξk is a function which approaches zero
as the momentum k vanishes. Alternatively, we could have
defined the Bloch factors as

|wc,k〉 = [eiθ sin ξk, cos ξk]T, (B3)

|wv,k〉 = [cos ξk,−e−iθ sin ξk]T, (B4)

since state vectors are only defined up to a global phase factor.
Let us now introduce excitons in this system. We consider

that as in the main text, the wave function of an exciton in
momentum space can be written as ψcv (k) = fcv (k)eimθ . The
real-space wave function can be defined as

�u
αβ (re, rh) =

∑
k

ei(K+k)·(re−rh ) fcv (k)eimuθuα
k,c

(
uβ

k,v

)∗
, (B5)

�w
αβ (re, rh) =

∑
k

ei(K+k)·(re−rh ) fcv (k)eimwθwα
k,c

(
w

β

k,v

)∗
,

(B6)

where re and rh are the electron and hole positions, respec-
tively, and u/wα

k,c refers to the α sublattice entry of the Bloch

factor |u/wk,c〉 (an analogous definition holds for u/w
β

k,v
).

From the definition of the Bloch factors and recalling that
limk→0 ξk = 0, we see that the product uα

k,c(uβ

k,v
)∗ approxi-

mately introduces a phase e−iθ in the definition of the wave
function, while wα

k,c(wβ

k,v
)∗ introduces no phase. Hence, when

we define the wave function with the u-Bloch factors, we find
a pseudospin angular quantum number of mps

u = −1, while
for the w-Bloch factors, we have mps

w = 0. Notice how we
focused our analysis near k = 0 since that is where selection
rules are stronger; momentum dependence tends to weaken
optical selection rules.

For a linearly polarized electric field, one can show
that the optical response is proportional to �x

u/w =∑
k ψcv (k)〈u/wv,k|x|u/wc,k〉 [39,41]. Like we did in the main

text, the matrix element of the position operator can be found
from the commutator of the Hamiltonian with the position op-
erator itself. As we said in the beginning, we are considering
a Dirac Hamiltonian to model the system. Because of that, we
can write �u/w as

�x
u ∝

∑
k

fcv (k)eimuθ
〈uv,k|σx|uc,k〉
Ev,k − Ec,k

, (B7)

�x
w ∝

∑
k

fcv (k)eimwθ 〈wv,k|σx|wc,k〉
Ev,k − Ec,k

, (B8)

with Ev/c,k the dispersion relations of the model Hamiltonian,
which are obviously independent of the phase choice for the
Bloch factors. Converting the sum over k into a 2D integral
in momentum space and carrying out the necessary calcula-
tions, one finds that �u and �w are only finite if mu = ±1
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and mw = 0,−2, respectively. Thus, at first, it may appear
that the choice of phase for the Bloch factors changes the
optical selection rules since different angular dependencies
for the exciton envelope function are selected. However, when
the contribution of the pseudospin angular quantum number
is taken into account, we see that mu + mps

u = mw + mps
w =

0,−2. The sum of these two contributions is independent of
the phase chosen for the Bloch factors and is the appropriate
angular quantum number [38].

2. Four-band system

In the first part of this Appendix, we saw how to define the
appropriate angular quantum number for a two-band system
such as an hBN monolayer. To achieve this, one must sum the
angular quantum number from the excitonic envelope function
with the angular quantum number given by the Bloch factors
to obtain the appropriate angular quantum number; while the
first two depend on the phase chosen for the Bloch factors, the
last one is independent of it (as it should be, in order to be an
approximately good quantum number).

Let us now consider a four-band model, such as the ones
treated in the main text. For such a system, the real-space
exciton wave function reads

�α,β (re, rh) =
∑
k,c,v

ei(K+k)·(re−rh ) fcv (k)eimθ uα
k,c

(
uβ

k,v

)∗
, (B9)

which differs from the definition given in the first part of
this Appendix due to the sums over the bands. The problem
in defining an angular quantum number for the exciton in
a four-band system lies in the definition of the pseudospin
contribution. While the contribution from the envelope func-
tion to the angular quantum number is still well defined, the
same cannot be said for the the pseudospin part since, in
principle, each of the terms |uc,k〉〈uv,k| can contribute with
a different complex exponential (which is the case for the
two systems treated in the main text), thus stopping us from
obtaining a well-defined mps, with which the appropriate an-
gular quantum number of the exciton (independent of phase
choices) could be determined. Although this could be by-
passed with a phase choice that, for example, left all the
spinors without complex exponentials in the k → 0 limit, that
would not be helpful for our approach, where a specific phase
choice has to be performed to cast the BSE into a 1D problem,
thus simplifying its numerical solution.

APPENDIX C: SOLVING THE BSE

In this Appendix, we shall give a more in-depth description of how to numerically solve the Bethe-Salpeter equation (BSE)
presented in the main text. The method we present is an extension of the one applied for the hydrogen atom in Ref. [40]. We take
Eq. (10) of the main text as our starting point:

(
Ec

k − E v
k

)
fcv (k) −

∑
c′v′

∫
qdqdθqV (k − q)

〈
uc

k|uc′
q

〉〈
uv′

q |uv
k

〉
fc′v′ (q)eim(θq−θk ) = E fcv (k). (C1)

As discussed in the main text, we consider the spinor product to have the following form:〈
uc

k|uc′
q

〉〈
uv′

q |uv
k

〉 = ∑
λ

Acc′vv′
λ (k, q)eiλ(θq−θk ), (C2)

where λ is some integer, and Acc′vv′
λ (k, q) are coefficients determined by the explicit computation of the spinor product. Inserting

this into the previous equation, and noting that V (k − q) ≡ V (k, q, θq − θk ), one finds

(
Ec

k − E v
k

)
fcv (k) −

∑
c′v′

∑
λ

∫
qdqdϑV (k, q, ϑ )Acc′vv′

λ (k, q) fc′v′ (q)ei(m+λ)ϑ = E fcv (k), (C3)

where we introduced the variable change dθq → dϑ with ϑ = θq − θk . Now, recalling the definition of V (k, q, ϑ ), we introduce
a new function, Iν (k, q), which corresponds to the integral over dϑ , that is,

Iν (k, q) =
∫ 2π

0

cos(νϑ )

κ (k, q, ϑ )[1 + r0κ (k, q, ϑ )]
dϑ, (C4)

with κ (k, q, ϑ ) =
√

k2 + q2 − 2kq cos ϑ . Notice how only cos(νθ ) enters the integral since the analogous term in sin(νϑ )
vanishes by symmetry. From inspection, it should be clear that when q = k, the function Iν (k, q) is numerically ill behaved
and, as such, must be treated carefully. Looking at its definition, one sees that we can express Iν (k, q) in terms of partial
fractions as

Iν (k, q) =
∫ 2π

0

cos (νϑ )

κ (k, q, ϑ )
dϑ − r0

∫ 2π

0

cos(νϑ )

[1 + r0κ (k, q, ϑ )]
dϑ (C5)

≡ Jν (k, q) − Kν (k, q), (C6)

where from these two terms only the first one, Jν (k, q), is problematic when k = q since Kν (k, q) contains an additional 1 in
the denominator which prevents any divergence. Before we explain how to avoid this numerical problem, let us first express the
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BSE in a more convenient manner. First, we write(
Ec

k − E v
k

)
fcv (k) −

∑
c′v′

∑
λ

∫ ∞

0

{
Jm+λ(k, q)Acc′vv′

λ (k, q) fc′v′ (q) − Km+λ(k, q)Acc′vv′
λ (k, q) fc′v′ (q)

}
qdq = E fcv (k). (C7)

Then, we define Bcc′vv′
m (k, q) = ∑

λ Jm+λ(k, q)Acc′vv′
λ (k, q) and Ccc′vv′

m (k, q) = ∑
λ Km+λ(k, q)Acc′vv′

λ (k, q). With these new
definitions, one finds(

Ec
k − E v

k

)
fcv (k) −

∑
c′v′

∫ ∞

0
Bcc′vv′

m (k, q) fc′v′ (q)qdq +
∑
c′v′

∫ ∞

0
Ccc′vv′

m (k, q) fc′v′ (q)qdq = E fcv (k). (C8)

Now, let us focus on the numerical problem associated with Bcc′vv′
m (k, q). To treat the divergence that appears when k = q, we

introduce an auxiliary function gm(k, q) and introduce the modification∫ ∞

0
Bcc′vv′

m (k, q) fc′v′ (q)qdq →
∫ ∞

0

[
Bcc′vv′

m (k, q) fc′v′ (q) − gm(k, q) fc′v′ (k)
]
qdq + fc′v′ (k)

∫ ∞

0
gm(k, q)qdq, (C9)

with gm defined in such a way that limq→k[Bcc′vv′
m (k, q) − gm(k, q)] = 0. Following Ref. [40], we define gm as

gm = Bcc′vv′
m (k, q)

2k2

k2 + q2
. (C10)

With the analytical part of the calculation taken care of, we shall now discuss how to numerically solve the equation we have
arrived to. To achieve this, we first introduce a variable change which transforms the improper integral over [0,∞) into one
with finite integration limits, such as [0,1]; with this goal in mind, we introduce q = tan[πx/2]. Afterwards, we discretize the
variables k and x (and, consequently, q), and find

(
Ec

ki
− E v

ki

)
fcv (ki ) +

∑
c′v′

N∑
j=1

Ccc′vv′
m (ki, q j ) fc′v′ (q j )q j

dq

dx j

−
∑
c′v′

∑
j =i

Bcc′vv′
m (ki, q j ) fc′v′ (q j )q j

dq

dx j
w j − fc′v′ (ki )

{∫ ∞

0
gm(ki, p)pd p −

∑
j =i

gm(ki, q j )q j
dq

dx j

}
= E fcv (ki ), (C11)

where N is the number of points and w j is the weight function of the chosen numerical quadrature; also, qj ≡ q(x j ) and
dq/dx j ≡ [dq/dx]x=x j . Furthermore, we note that

∫∞
0 gm(ki, p)pd p is numerically well behaved as opposed to the original

integral,
∫∞

0 Bcc′vv′
m (ki, p)pd p. Regarding the choice of quadrature, we employ a Gauss-Legendre quadrature, which is defined

as [51] ∫ b

a
f (y)dy ≈

N∑
i=1

wi f (yi ), (C12)

where

yi = a + b + (b − a)ξi

2
, (C13)

with ξi the ith zero of the Legendre polynomial PN (y), and

wi = b − a

(1 − ξi )2[P′
N (ξi)]2

, (C14)

with P′
N (ξi ) ≡ [dPN (y)/dy]y=ξi .

At last, the only thing left to do is to realize that this equation can be expressed as an eigenvalue problem of a 4N × 4N
matrix. This matrix can be thought of as a 4 × 4 matrix of matrices, each one with dimensions N × N . The 16 blocks come from
the different combinations of the indexes c, c′, v, and v′, with each block corresponding to a N × N matrix stemming from the
numerical discretization of the integral. Solving the eigenvalue problem, one finds the exciton energies and wave functions.
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