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Charge-charge interaction in three-layer systems: Classical approach
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General explicit analytical expressions for the charge-charge interaction energy W (Z, Z ′, R) between two point
charges in heterostructures with three plane layers were obtained in the framework of classical electrostatics, i.e.,
the dielectric permittivities of the constituent media were assumed to be constant. Here, R is the lateral (along
the interfaces) distance between the charges, and Z and Z ′ are their normal coordinates. The obtained results may
be applied to the interaction between charges for their various arrangements in the layered system. For instance,
the interaction across the interlayer was calculated as the function of the dielectric constants εi (i = 1, 2, 3) of
the constituent media. It was demonstrated that the textbook Coulomb expression is far from being valid in
this case. In particular, more sophisticated formulas proposed here should be used when considering interlayer
excitons in heterostructures of various kinds and electron-hole superfluidity in such sandwiches.
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I. INTRODUCTION

The availability of a comprehensive theory describing the
electrostatic charge interaction in three-layered systems is im-
portant for a number of problems in condensed matter physics,
electrochemistry, and biophysics. Among those issues, it is
worth mentioning, first of all, the determination of binding
energy [1–16] and the calculation of the quantum or dielec-
tric confinement [7,9,17–27] of intralayer excitons and trions.
In such cases, the electron (hole) subsystem in any layer is
often assumed to be close to the limiting two-dimensional
(2D) configuration [28–31] so that the lateral distance R be-
tween the exciton constituents (the electron and the hole) is
much larger than the interlayer width L. Then, the famous
Rytova-Keldysh approximation [1,32] for the charge-charge
interaction is applied, which is not always valid (see our pre-
vious work [33]). On the other hand, studies of the interlayer
excitons in dichalcogenide heterostructures, where a vertical
geometry of the electron-hole complex is most energetically
beneficial, have been started recently [34–37]. Therefore, R
may be equal to zero so that the Rytova-Keldysh simplifica-
tion fails from the outset and a more general treatment of the
problem concerned is required.

There are also other problems where the knowledge of
Coulomb interaction in layered systems is needed. For in-
stance, we should mention the hypothetical electron-hole
superfluidity [38–42], certain surface properties studied by
scanning probe spectroscopy [43,44], the behavior of sus-
pended electron image states near the surface of materials
with low dielectric constants [45–49], the arrangement of

*gabovich@iop.kiev.ua
†masli@ifpan.edu.pl
‡szymh@ifpan.edu.pl
§voitenko@iop.kiev.ua

ions trapped in layered systems [47,50,51], the formation of
organic self-assembled monolayers on metal substrates [52],
as well as the electrostatic aspects of biologically important
molecules and multimolecular assemblies [53–56].

A number of attempts were made to solve the problem
of electrostatic charge interaction in two-layer, three-layer,
and even multilayer systems. The majority of the productive
theories dealing with this interaction used the simple approx-
imation of sharp interfaces between the media involved, with
each medium described by its own bulk dielectric function
εi(k, ω), where the subscript i marks the layer, and k and ω

mean the transferred wave vector and frequency, respectively
(below we will equally identify k and ω with the transferred
momentum and energy by putting the Planck constant h̄ = 1)
[3,4,57–67]. The medium constituent charge carriers are most
often considered as specularly reflected at layer boundaries,
although other types of the carrier behavior near the layer
surfaces were also studied and led to similar results. It is
remarkable that the macroscopic description [68–76] of the
response of a conducting or insulating medium in terms of
the function ε(k, ω) [the tensor εαβ (k, ω) for anisotropic sub-
stances [76,77]] can be successfully applied even to one-layer
materials such as graphene and its derivatives [29,78–84]. Of
course, the problems for three-layer and multilayer systems
are much more involved than in the case of two layers. The
difficulty consists in the necessity of taking into account an
infinite sequence of images if the number of interfaces is
larger than two [85–90]. In this paper, we will mainly deal
with three-layer systems, using the two-layer system as a
reference point.

Two charges in a three-layer system not only interact with
each other but also polarize the interfaces between the layers
and interact with the emerging polarization charges. As a
result, the total electrostatic energy of the system equals

Wtot = Wint + Wim + W ′
im. (1)
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Here, the summands Wim and W ′
im describe the image force

energies for each of the charges. If the charged entities do not
modify the screening properties of the media (for instance,
the polaronlike effects are neglected), each of those quan-
tities depends separately on the coordinates of the relevant
charge in the system. Therefore, sometimes they are quite
reasonably called self-energy terms [6,87,91]. The self-terms
were extensively studied by us earlier [92], so they are not
touched upon in this paper. At the same time, Wint depends on
the coordinates of both charges and suffers the influence of
the polarization charges as well because each charge interacts
not only with its counterpart, but also with the polarization
charges induced by the latter at both interfaces. It is the
quantity Wint, which is the genuine charge-charge interaction
and will be denoted as W below, is the matter of concern and
will be discussed here in detail. The emphasis will be mainly
made on the displacement of the charges directed normally
(the Z axis) to the interface since their interaction at their
identical vertical positions in three-layer structures (Z = Z ′)
and the varying distance along the interfaces has been already
considered by us earlier [33] in the context of the exciton for-
mation in almost two-dimensional layers [11–13,21,36,93].
Nevertheless, the formulas obtained now contain the full kit of
problem parameters including the charges’ coordinates with-
out any restrictions on the latter. Therefore, they present the
general solution of the formulated problem.

The general calculation scheme is valid for arbitrary physi-
cally justified functions εi(k, ω). Nevertheless, analytical and
numerical calculations were performed in the classical elec-
trostatic approximation for each layer: εi(k, ω) = εi = const
[85,94]. It allowed us to derive the general solution in the form
of exact analytical formulas. The results obtained can be con-
sidered as a useful guide at least for wide-gap semiconductors,
although they are valid even if one of the layers is metallic or
ferroelectric (εi → ∞).

The outline of the paper is as follows. The concise formu-
lation of the problem, the calculation results in the classical
electrostatic approximation (εi’s are constants, i = 1, 2, 3),
and their interpretation in the framework of the image-charge
scenario are described in Sec. II. In Sec. III, a particular case,
which is important for the problem of formation of interlayer
excitons and treating the charge-charge interaction across the
interlayer is analyzed. Section IV is devoted to various sim-
plifying approximations, which allowed us to obtain simple
expressions for the interaction between charges located arbi-
trarily in the heterostructure. Appendixes A and B contain full
sets of formulas in the general and classical electrostatic cases,
respectively.

II. FORMULATION AND RESULTS OF CALCULATIONS

A. Charge-charge interaction in three-layer structures in the
classical electrostatic approach

Let us consider a three-layer system (see Fig. 1) composed
of classically described homogeneous nondispersive insula-
tors with dielectric constants εi = const, i = 1, 2, 3. The slab
(i = 2) is a plane-parallel layer of thickness L located in-
between two semi-infinite covers (i = 1, 3). We choose a
Cartesian coordinate frame (X,Y, Z ) with the Z axis directed

FIG. 1. Arrangement of the charges Q and Q′ in a three-
layer plane heterostructure. The width of interlayer 2 (slab) is L.
Layers 1 and 3 (covers) are semi-infinite. εi (i = 1, 2, 3) are dielectric
constants of the corresponding layers. Dimensional quantities are
denoted by capital letters, dimensionless quantities normalized by L
are denoted by lowercase letters and in parentheses. The coordinate
Z (or z) is normal to the interfaces, and the coordinate X (or x) is
parallel to them. The coordinate Z is reckoned from the middle of
the interlayer. D (or d) is the distance between the charges, whereas
R (or ρ = R/L) is the lateral distance between them.

perpendicularly to the interfaces between the media and the
XY plane (Z = 0) being the midplane of the slab. Then, the
plane and infinitesimally thin interfaces between media 1 and
2 and between media 2 and 3 are the planes Z = −L/2 and
Z = L/2, respectively. The system is invariant with respect to
translations in the XY plane.

It should be recognized that this approach neglects the
atomic structure of both interfaces and implies that the latter
are sharp and separate the media described by their bulk
properties (in our case, each medium is represented exclu-
sively by its bulk dielectric constants). Thus, our approach
corresponds to the classical electrostatic limit of the more
general infinite-barrier model (IBM) [67,95–100] (in classical
electrostatics, the difference disappears between the genuine
IBM, where Friedel oscillations of the electron gas density
[101] are induced due to the electron gas perturbation by the
lattice truncation at the surface, and the even simpler semi-
classical IBM [102,103], where such oscillations are absent).
In both those models, the condensed matter media divided by
the interfaces are described by their bulk dielectric functions
εi(k, ω).

Two point charges Q and Q′ are embedded into the het-
erostructure. They have the normal coordinates Z and Z ′,
respectively, and are separated by the lateral (along the in-
terfaces) distance R. Our aim is to calculate the energy
of electrostatic interaction W between those charges and
its dependence W ({ε}, Z, Z ′, R) on the problem parameters,
where the notation {ε} = {ε1 : ε2 : ε3} means the set of cor-
responding dielectric constants. The heterostructure (without
the charges) is characterized by a single length parameter,
the interlayer width L. Such a simplicity makes it possible
and convenient, in what follows, to use L as a normalizing
parameter and change to the dimensionless coordinates

z(′) = Z (′)/L, ρ = R/L

and the dimensionless interaction energy (the {ε} dependence
is implied)

w(z, z′, ρ) =
(

QQ′

L

)−1

W ({ε}, Z, Z ′, R). (2)

115415-2



CHARGE-CHARGE INTERACTION IN THREE-LAYER … PHYSICAL REVIEW B 105, 115415 (2022)

Appendix A contains a more general analytical formulation
of the problem, where the spatial and temporal dispersion
of the dielectric permittivities for all constituent media are
taken into account. Whereas the account of the spatial dis-
persion of dielectric permittivity makes further calculations
very cumbersome, the temporal dispersion is formally easier
to be incorporated into the general scheme. Then, the plasmon
spectrum in three-layer systems can be obtained. However,
this task, being very important, e.g., for systems including
graphene layers [104], goes far beyond the electrostatic prob-
lems studied here.

The solution obtained in the considered case of classical
homogeneous nondispersive insulators (see Appendix B) is
presented below. It is written in the form that satisfies the
following, obvious for the classical electrostatic system, sym-
metry conditions (we recall that the self-image forces are not
considered in this paper):

(i) the interaction energy has to be insensitive to the sign of
ρ,

w({ε}, z, z′, ρ) = w({ε}, z, z′,−ρ); (3a)

(ii) the permutation of the charges cannot change the ex-
pression for w({ε}, z, z′, ρ), irrespective of the media where
the charges are located,

w({ε}, z, z′, ρ) = w({ε}, z′, z, ρ); (3b)

hence, the difference z − z′ can enter only as its absolute value
|z − z′|;

(iii) the specular reflection of the system with respect to
the plane z = 0 (the notation “−” so that z̄ = −z, z̄′ = −z′,
and {ε̄} = {ε3 : ε2 : ε1}) also cannot change the interaction
energy:

w({ε}, z, z′, ρ) = w({ε̄},−z,−z′, ρ). (3c)

Note that if the configuration is symmetric, i.e., ε1 = ε3,
we have {ε} = {ε̄} and condition (3c) looks like

w({ε}, z, z′, ρ) = w({ε},−z,−z′, ρ). (3c+)

As a result, in the symmetric case, the sum z + z′ can also be
included inside the absolute value brackets |z + z′|.

The solution of the posed problem consists of sev-
eral branches depending on the distribution of the charges
among the layers. To shorten further expressions, it is
convenient to employ the following enumeration for the
media:

med(z) =
⎧⎨
⎩

1 if z � − 1
2 ,

2 if − 1
2 < z < 1

2 ,

3 if z � 1
2 ,

(4)

and use the notation wi j (z, z′) (the {ε} set and the lateral
distance ρ are omitted from the arguments) to describe the
interaction energy (2) in the case when med(z) = i and
med(z′) = j, i.e., when one of the charges is in the ith and
the other in the jth layer. Now, making use of the notations �

and λi j introduced in Appendix B, some branches wi j (z, z′) of
the final solution can be written via function (B11) as follows
(the arguments � and ρ in the 	 functions are omitted for

brevity):

w33(z, z′) = 1

ε3
[	(|z − z′|) + �	(|z − z′| + 2)

−λ12	(|z + z′| + 1) − λ23	(|z + z′| − 1)], (5)

w32(z, z′) = 2

ε2 + ε3
[	(|z − z′|) − λ12	(|z + z′| + 1)], (6)

w31(z, z′) = 4ε2

(ε1 + ε2)(ε2 + ε3)
	(|z − z′|). (7)

Owing to the problem and, hence, solution symmetries,
the other components (these are w11, w12, w13, w21, and
w23) can be derived on the basis of the following reasoning.
All those expressions must and do satisfy the relationship
wi j (z, z′) = wi j (z′, z) ≡ w ji(z, z′), i.e., the interaction energy
of two charges remains invariant if we interchange the charge
positions [condition (ii)]. Thus, w13(z, z′) = w31(z, z′) and
w23(z, z′) = w32(z, z′). The formula for w12 (the charge Q is
in medium 1 and the charge Q′ in medium 2) can be obtained
from expression (6) (the charge Q is in medium 3 and the
charge Q′ in medium 2) in two steps: (i) we change z → −z
and z′ → −z′ in formula (6), which corresponds to the reflec-
tion of the system with respect to the central plane z = 0; (ii)
then we change ε1 ↔ ε3, i.e., restore media 1 and 3 at their
initial locations. The expression for w11(z, z′) can be derived
analogously. In doing those transformations, one should bear
in mind that |z − z′| = |z′ − z| and |z + z′| = | − z − z′|. As a
result, we obtain

w12(z, z′) = 2

ε2 + ε1
[	(|z − z′|) − λ32	(|z + z′| + 1)], (8)

w11(z, z′) = 1

ε1
[	(|z − z′|) + �	(|z − z′| + 2)

−λ32	(|z + z′| + 1) − λ21	(|z + z′| − 1)]. (9)

The situation with the expression of the w22 branch,

w22(z, z′) = 1

ε2
{	(|z − z′|) − �	(2 − |z − z′|)

+ λ21	[1 + (z + z′)] + λ23	[1 − (z + z′)]},
(10)

is more interesting. We should not write |z + z′| in the last
two terms. Otherwise, we should introduce two subbranches
where those terms would interchange their coefficients.

In Eqs. (5)–(10), as well as in other branch expressions,
there are four groups of terms. The terms of the first group
are proportional to 	(|z − z′|). If the charges are located in
the same medium [see Eqs. (5) and (10)], those terms con-
tain a coefficient inverse to the dielectric permittivity of the
medium. In such a case, this term can be attributed to the direct
interaction between the charges, whereas the other terms in
the expression describe the charge interaction with polariza-
tion charges. But if the charges are in different media [see
Eqs. (6) and (7)], the situation is more complicated. The plane
geometry, e.g., of the 3-2 interface [see Eq. (6)] makes it im-
possible for the charge Q′ located in medium 2 to functionally
distinguish between its interaction with the charge Q located
in medium 3 and with the polarization charge created by the
charge Q at the 3-2 interface. As a result, both contributions
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are summed up to produce a term with an “effective dielectric
permittivity” so that it cannot be attributed to the direct charge
interaction alone. This circumstance can be especially clearly
seen from expression (7) for the w31 branch, where every
component of the interaction, e.g., of the charge Q′ in medium
1 with (a) the charge Q in medium 3, (b) with the polarization
charge induced by the charge Q at the 1-2 interface, and (c)
with the polarization charge induced by the charge Q at the
2-3 interface has the identical functional dependence on the
spatial parameters and there are no other components. The
situation is analogous to that arising in the two-layer configu-
ration [see Eq. (12) below].

The terms of the second group are proportional to 	(|z +
z′| + 1) or 	[1 + (z + z′)]. They are generated by the polar-
ization of the 1-2 interface. The third group of terms contains
the functions 	(|z + z′| − 1) and 	[1 − (z + z′)], which are
generated by the 2-3 interface. The contributions of the terms
in those two groups contain the relevant factor (λ12 = −λ21

or λ23 = −λ32) in the same manner as the direct term. Finally,
there is the fourth group of terms which are proportional to
	(|z − z′| + 2) or 	(2 − |z − z′|). They reflect the interfer-
ence between the image charges arising at both interfaces
[85–90]. That is why the parameter � appears in them as a fac-
tor. All terms are very simple, which allows a straightforward
interpretation (see Sec. II C) and a relatively easy treatment.

The obtained expressions represent the general solution of
the electrostatic problem concerned and, to our knowledge,
have not been obtained earlier. They satisfy all limiting cases.
In particular, it is easy to verify that they correctly describe
the two-layer problem. For instance, if, e.g., ε2 = ε3, i.e., both
charges are in the same cover 3 adjacent to cover 1, then
formulas (5), (6), and (10) look like (� = λ23 = 0)

w33(z, z′) = 1

ε3

1√
ρ2 + (z − z′)2

− λ13

ε3

1√
ρ2 + (z + z′ + 1)2

, (11)

i.e., the interaction energy contains a direct term and an
image-force-related one, whereas formula (7) reads as

w31(z, z′) = 2

ε1 + ε3

1√
ρ2 + (z − z′)2

, (12)

as it should be in the classical case [85], i.e., the direct and
indirect contributions to the interaction energy become indis-
cernible.

Formula (5) contains two pairs of 	 functions, with the
arguments in each pair differing by 2. Therefore, according
to formulas (B12) and (B13), we can reduce the number of
	 functions. In particular, the application of formula (B13)
results in

w33(z, z′) = 1

ε3

1√
ρ2 + (z − z′)2

− ε2 + ε3

ε3(ε2 − ε3)

1√
ρ2 + (z + z′ − 1)2

+ 4ε2

(ε2
2 − ε2

3 )
	(z + z′ − 1) (13)

FIG. 2. The same as in Fig. 1, but with the indication of the
auxiliary quantity d , which is the distance of the charge Q′ from
the point (0, 0, z′). The angle θ (− π

2 � θ � π

2 ) is the angle between
the axis z and the segment d .

so that only a single 	 function survives. This formula makes
it easy to see that if the charges retain their relative arrange-
ment (ρ = const and z − z′ = const) and hence their relative
distance

d =
√

ρ2 + (z − z′)2, (14)

but move into the depth of cover 3 [i.e., (z, z′) → ∞], then
w33(z, z′) tends to its first summand, which describes the
textbook charge interaction in an infinite medium with the
dielectric permittivity ε3.

Nevertheless, formula (13) provokes a serious concern be-
cause two of its terms contain the difference ε2 − ε3 in the
denominator. If ε2 → ε3, we should apply formula (B12) once
more to obtain

w33(z, z′) = 1

ε3

1√
ρ2 + (z − z′)2

− ε2 − ε3

ε3(ε2 + ε3)

1√
ρ2 + (z + z′ − 1)2

− 4ε2

(ε2 + ε3)2

ε1 − ε2

(ε1 + ε2)
	(z + z′ + 1). (15)

Thus, in actual fact, the apparent divergences in Eq. (13)
mutually cancel out, resolving the problem.

Let us consider the long-range asymptotics of expressions
(5)–(7). Let the charge Q be fixed in the ith medium at the
point (0, 0, z), and the charge Q′ be in medium 3, in the xz
plane, at the distance d̄ from the point (0, 0, z′) (see Fig. 2).

Then, the coordinates of the charge Q′ are (d̄ sin θ, 0, z′ +
d̄ cos θ ), where θ is the angle between the normal to the
slab and the segment connecting the charge Q′ with the point
(0, 0, z′) (−π

2 � θ � π
2 ). It turns out that in all three cases

i = 1, 2, 3 [see definition (2)], i.e., irrespective of where the
charge Q is located, and irrespective of the angle θ (the only
restriction on d̄ and θ is that the charge Q′ should reside in
medium 3), we have

lim
d̄→∞

w3i(z+d̄ cos θ, z′, ρ = d̄ sin θ ) = 2

ε1 + ε3

1

d
+ O(d−2).

(16)

The same result is obtained if operating with d rather than
d̄ in the left-hand side of Eq. (16), but the intermediate cal-
culations are more cumbersome. In essence, we come once
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more to the expression on the right-hand side of two-layer
formula (12). On the other hand, the same limit (16) is also
obtained for d → ∞ from Eq. (11). It is remarkable that the
slab parameters ε2 and L (the latter as the unity in linear
combinations with z and z′) are not present in this expression.
Of course, we will obtain the same result if we move the
charge Q′ over medium 3 far from the charge Q fixed in any
of the media. It looks like the charges, when being located at
rather long (as compared with the interlayer width) distances
from each other, cease to perceive the presence of the slab. To
explain this result, let us normalize all the problem lengths by
d̄ rather than the slab width. Then, as d̄ grows, (i) the newly
normalized slab width vanishes, (ii) the slab itself transforms
into an interface between covers 1 and 3, and (iii) either one
of the charges (in the scenario above with θ �= π

2 , this is the
charge Q with the fixed z coordinate) or both of them (this is
the scenario with θ = π

2 so that the charge Q′ moves laterally
and its z coordinate also remains fixed) settle on this interface.
Thus, we obtain a two-layer configuration described by the
expression in the right-hand side of Eq. (12) with z′ = 0.

On the other hand, if the charges approach each other (ρ →
0 and z′ → z) close enough, the zeroth term (equal to d−1) in
	(|z − z′|) begins to prevail in every branch wi j (z, z′). Then

wii(z → z′, ρ → 0) → 1

εid
(17)

in each medium (i = 1–3) and

wi j (z → z′, ρ → 0) → 2

(εi + ε j )d
(18)

across each interface (1-2 or 2-3). Only the nearest vicinity of
the charges is important and the charges interact like in the
corresponding infinite medium [formula (17)] or across the
interface in a two-layer one [formula (18)]. At the same time,
if, e.g., we put z = 1

2 in expression (5) or (13) from the very
beginning, then the passage to the limit (ρ → 0, z′ → 1

2 ) will
give result (18) rather than (17). Thus, we obtain a “double
jump” across each interface.

However, such a discontinuity takes place only in the
case ρ → 0. Otherwise (ρ �= 0), the wi j branches transform
continuously if any of the coordinates z and z′ any of the
interfaces, i.e.,

lim
z,z′→± 1

2 −0
w(z, z′, ρ �= 0) = lim

z,z′→± 1
2 +0

w(z, z′, ρ �= 0). (19)

Therefore, the charge, e.g., at the (z = 1
2 ) interface cannot be

ascribed either to medium 2 or to medium 3 (bear in mind
that we are in the frame of the model with infinitely thin
interfaces!). However, calculations with the basic functions
aS and aA may be more cumbersome in comparison to those
with their a1 and a3 counterparts (see Appendix B) so that
identification (4) was made.

An interesting feature of formula (12) is that its coordinate
dependence is reduced to the dependence on the distance d
between the charges [formula (14)]. In other words, if the
charges are not embedded into the same cover (one or both of
them can even be located at the interface), only the intercharge
distance d rather than the specific charge locations matters.
A simple consideration testifies that formula (7) can also
demonstrate such a behavior but only if the charges are located

on the same normal to the interfaces, i.e., if their lateral dis-
tance equals zero, ρ = 0. In this case, the intercharge distance
equals |z − z′|.

Note that the “normal” arrangement of the charges (ρ = 0)
is rather important for applications (see Sec. III). Then, the
function 	 is reduced to the tabulated Lerch transcendent �

[see formula (B14)]. In this case, Eqs. (5)–(10) look like

w33(z, z′, ρ = 0) = 1

2ε3

{
�

[
−�, 1,

|z − z′|
2

]

+��

[
−�, 1,

|z − z′| + 2

2

]

− λ12�

[
−�, 1,

|z + z′| + 1

2

]

− λ23�

[
−�, 1,

|z + z′| − 1

2

]}
, (20)

w32(z, z′, ρ = 0) = 1

(ε2 + ε3)

{
�

[
−�, 1,

|z − z′|
2

]

− λ12�

[
−�, 1,

|z + z′| + 1

2

]}
, (21)

w31(z, z′, ρ = 0)

= 2ε2

(ε1 + ε2)(ε2 + ε3)

{
�

[
−�, 1,

|z − z′|
2

]}
, (22)

w11(z, z′, ρ = 0) = 1

2ε1

{
�

[
−�, 1,

|z − z′|
2

]

+��

[
−�, 1,

|z − z′| + 2

2

]

− λ32�

[
−�, 1,

|z + z′| + 1

2

]

− λ21�

[
−�, 1,

|z + z′| − 1

2

]}
, (23)

w12(z, z′, ρ = 0) = 1

(ε2 + ε1)

{
�

[
−�, 1,

|z − z′|
2

]

− λ32�

[
−�, 1,

|z + z′| + 1

2

]}
, (24)

w22(z, z′, ρ = 0) = 1

2ε2

{
�

[
−�, 1,

|z − z′|
2

]

+ λ21�

[
−�, 1,

1 + (z + z′)
2

]

+ λ23�

[
−�, 1,

1 − (z + z′)
2

]

−��

[
−�, 1,

2 − |z − z′|
2

]}
. (25)

Again, w ji(z, z′, ρ = 0) = wi j (z, z′, ρ = 0).

B. Calculation results

The interaction of two point charges located identically
(z = z′) within the same layer of a three-layer system
was studied in detail in our previous publications [33,105].
Our results demonstrated that the famous Rytova-Keldysh
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approximation [1,32] applied to present Coulomb potential
in thin films, especially to calculate the exciton formation
and properties [10,29,30], is overused because its range of
applicability is narrower than it is sometimes assumed (see
discussion in Sec. III). However, another arrangement can be
realized when the charges are located in different layers or in
the same layer but at different z’s. In the latter case, if R � L,
the results obtained in the cited works can be applicable within
the allowable accuracy. But, if R � L, i.e., ρ � 1, the situation
changes. For instance, such a relationship corresponds to the
interlayer Wannier-Mott excitons [34–37], as well as charged
colloidal particles [106–112] suspended in different layers of
immiscible liquids [113–121]. This subsection is serves to
illustrate the formulas obtained for the electrostatic interaction
in the previous subsection.

To be specific, here we plot the w(z, z′, ρ) (or related,
see below) dependencies when the charge Q location is as-
sumed to be fixed (z = const), whereas the charge Q′ is
shifted (z′ = var) perpendicularly (ρ = const) to the inter-
faces. In such a manner, it is possible to cover all kinds
of relative arrangements of both charges in the layers. To
illustrate the whole situation, we selected three “toy” {ε}
sets: {1 : 2 : 5} (monotonically changing ε’s), {2 : 1 : 5} (the
dielectric constant ε2 in the slab is minimal), and {1 : 5 :
2} (the dielectric constant ε2 in the slab is maximal). Fur-
thermore, we fully recognize that the classical electrostatic
approach with constant dielectric permittivities may turn
out to be rather crude, so one cannot expect quantitative
agreement with, e.g., precise experiments on the dielectric
confinement of charge carriers [7,9,17,20,23,122]. Therefore,
to obtain a qualitative picture, we mainly restrict the inter-
val of charges’ z coordinates to [−2.5, 2.5], i.e., the charges
are not shifted away from the nearest interlayer surface (z =
± 1

2 ) by more than twice the slab width. Nevertheless, when
describing the long-range asymptotics, this interval will be
extended.

Figure 3(a) demonstrates the calculated results of the de-
pendencies w(z, z′, ρ = 0.1) for the configuration {ε} = {2 :
1 : 5}. Namely, we selected the set {z} = {−1,− 1

2 , 0, 1
2 , 1}

describing the fixed positions of the charge Q in cover 1, at
the cover 1–slab 2 interface, in the middle of slab 2, at the slab
2–cover 3 interface, and in cover 3, respectively. The charge
Q′, being at the lateral distance ρ = 0.1, “moves” along a
normal to the slab. The plotted dependencies demonstrate
rather sharp peaks when the charges approach to the minimal
distance between them (when z → z′), which makes it hard
to notice peculiar cusps at z′ = ± 1

2 . Figure 3(b) is more in-
formative. There, the dependencies w(z, z′, ρ) × d are plotted
for the same parameter set. Here, the factor d compensates to
a great extent variations associated with the direct Coulomb
interaction between the charges and makes the deviations
associated with the system heterogeneity more evident. The
dependencies retain qualitative information about the peak
amplitude ratios (see the circles). However, now, the corre-
sponding distinctive points can become even a minimum of
the whole dependence [see the (z = 1) curve].

Nevertheless, in our opinion, the reciprocal combina-
tion (wd )−1 is even a more illustrative and understandable
quantity. It is so because very often the interaction en-
ergy is approximated by means of the classical Coulombic

(a) (b)

(c)

FIG. 3. (a) Dependencies of the dimensionless interaction en-
ergy w(z, z′) = W (Z, Z ′) × (QQ′/L)−1 between the charges Q and
Q′ on the coordinate z′ of the charge Q′ for the lateral distance
ρ = 0.1 and various values of the coordinate z of the charge Q.
The dielectric constants of the layers are {ε} = {2 : 1 : 5}. Similar
dependencies of d × w(z, z′) and the effective dielectric permittivity
εeff = [d × w(z, z′)]−1 are displayed in (b) and (c), respectively.

dependence

w = 1

εeffd
, (26)

thus introducing the effective dielectric constant εeff . Then,
the quantity (wd )−1 equals εeff, which allows a simple
comparison of the results with the dielectric constants of con-
stituting media to be made. It should be noted that in layered
systems, where all three dielectric permittivities are constants
εi (i = 1, 2, 3), the effective dielectric “constant” εeff is no
longer a constant but depends on spatial coordinates [16,123],
being in essence a nonlocal dielectric function. However,
in certain cases, the introduction of spatially averaged true
“effective dielectric constants” in such systems may also be
useful [87,124,125]. Figure 3(c) depicts the dependencies
εeff (z, z′, ρ) for the same parameter set as in Figs. 3(a) and
3(b). Note that according to formula (16), all plotted curves
must tend to 1

2 (ε1 + ε3) (in the presented configuration, this
is 3.5) as z′ → ±∞. Our calculations show that this limit
is achieved at such large distances from each interface that
it might be considered as the quantity of academic interest.
However, its existence is important from the principal view-
point and proves the validity of the whole approach adopted
here. One can also easily see that the parameter εeff changes
rather strongly across the heterostructure, so that the very
concept of the effective dielectric constant is vague, whereas
the dielectric function εeff (z, z′, ρ), although being per se a
loose quantity, serves as a good measure of deviations from
the textbook Coulomb law whatever constant is inserted into
Eq. (26). A detailed analysis of the Coulomb law modification
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(a) (b)

FIG. 4. The same dependencies as in Figs. 3(a) and 3(c), but for
ρ = 0.

in two- and three-layer systems was carried out elsewhere
[33,105,126].

The representation of results as εeff (z, z′, ρ) has an addi-
tional advantage: it demonstrates a continuity even if the w

representation becomes discontinuous. In Fig. 4, analogs of
Figs. 3(a) and 3(c) are shown in the extreme case ρ = 0,
when the both charges are located on the same vertical line.
At z′ → z, the charge Q′ can approach infinitesimally close
to the charge Q and the w(z′) dependence has a singularity
[Fig. 3(a)]. This singularity effectively “obscures” other spe-
cific features associated with the system heterogeneity. But
the corresponding εeff (z′) dependencies [Fig. 3(b)] are free
of such singularities. By comparing Figs. 3(c) and 4(b), one
can see that the corresponding curves are very similar to
each other and smoothly transform into each other when the
problem parameter (in the considered case, this is ρ) changes.
Thus, the εeff dependencies can provide valuable information,
which can be lost while analyzing singular w dependencies.
Therefore, hereafter, we will mainly use the εeff representation
to illustrate the calculation results.

Figure 5 extends the parameter scope of Fig. 3. Here, the
εeff (z, z′, ρ) dependencies are plotted not only for ρ = 0.1
but for the set {ρ} = {0.1, 0.2, 0.5, 1, 2}. The solid curves
correspond to the curves displayed in Fig. 3(c). One can see
that all remarks made concerning Fig. 2(c) remain valid in this
case as well.

Let us consider Fig. 4 where the charges can approach
infinitesimally close to each other, once more. According to
the discussion in Sec. II A [formulas (17) and (18)], if they are
in the bulk of the same medium, the presence of other media,
as well as the interfaces, located at finite distances from them
has no matter because the singularity of direct interaction
effectively wipes out any traces of the polarization charge
influence. As a result, εeff (z, z) corresponds to the dielectric
permittivity of the relevant medium. In Fig. 4(b), this can be
seen for the curves corresponding to z = {−1, 0, 1}. On the
other hand, if the charge Q is located at the interface and the
charge Q′ approaches it infinitesimally close, they behave as in
the two-layer system and, according to the discussion above,
εeff = 1

2 (ε2 + εi ), where i is the number of the corresponding
cover. In Fig. 4(b), this can be seen for the curves correspond-
ing to z = {− 1

2 , 1
2 }.

Then, there arises a question: How does the dependence
εeff (z, z′) change when the charge Q crosses the interface?
This issue was briefly and qualitatively discussed (the “double

FIG. 5. The same as in Fig. 3(c), but for various ρ.

jump”) in the previous subsection [Eqs. (17) and (18)]. To il-
lustrate the answer, we performed calculations for the {z} sets
corresponding to the charge Q crossing the interfaces at − 1

2
[Fig. 6(a)] and 1

2 [Fig. 6(b)]. Again, the w(z, z′) dependencies
(the upper subpanels) are not of much help in this regard. The
singularities seem to be rather symmetric, and only their width
changes depending on where the charge Q is located. Two
lower subpanels provide more detailed information. However,
they still leave uncertainties concerning the coordinate depen-
dence of εeff .

A definite answer to the question is given by Fig. 7, which
corresponds to the lower panel of Fig. 6(a) describing the
cases where the charge Q is extremely close to the (− 1

2 )
interface. One can see that the corresponding εeff (z, z′) de-
pendencies tend to something like a δ function as the charge

(a) (b)

FIG. 6. Dependencies w(z′) and εeff (z′) for {ε} = {2 : 1 : 5}, ρ =
0, and various z near the (− 1

2 ) (a) and ( 1
2 ) (b) interfaces.
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FIG. 7. The same as in the lower panel of Fig. 6(a), but for z
extremely close to the (− 1

2 ) interface.

overlap point approaches the interface and we really have a
transition between the bulk- and interface-dominating regimes
discussed above. Thus, the charge Q crossing any interface
provokes an abrupt modification of the εeff (z, z′) dependence
if both charges are on the same normal to the interfaces.

The numerical results of Figs. 6 and 7 can be qualitatively
explained by analytical formulas (23) and (26). Indeed, if the
charge Q is located at any point in cover 1 except at z = − 1

2 ,
only the first term in Eq. (23) is singular at z′ → z. Since

lim
α→0

�
(
−�, 1,

α

2

)
→ 2

α
, (27)

we obtain that εeff → ε1 = 2. It is exactly what we see in the
lower panel of Fig. 6(a) to the left from z′ = − 1

2 . At the same
time, if z = − 1

2 , the fourth term in Eq. (23) also becomes
singular at z′ → z − 0. In this case, the sum of two terms leads
to

εeff →
[

1

2ε1
(2 − 2λ21)

]−1

= ε1 + ε2

2
= 1.5.

One can see a clear illustration of this fact in Fig. 7. If it were
no other (at z = 1

2 ) interface, this value would be retained
for z′ located to the right from z = − 1

2 , but the polarization
charges at the 1

2 interface violate this permanence.
Almost the same scenario takes place on the other side of

the − 1
2 interface [the middle panel in Fig. 6(a)]. If z �= − 1

2 ,
only the first term in Eq. (25) is singular at z′ → z so that,
again according to limit (27), εeff → ε2 = 1. If z = − 1

2 and
z′ → z + 0, then εeff is determined by the first and second
terms in Eq. (25), and again

εeff →
[

1

2ε2
(2 + 2λ21)

]−1

= ε1 + ε2

2
= 1.5.

Thus, we obtain drastically different behavior of εeff de-
pending on whether the charges are in the same layer or are
separated by the interface. Those dependencies demonstrate a
“double jump” as one of the charges crosses the interface. If
this charge is located at the interface, we obtain a chevronlike
εeff dependence owing to the influence of polarization charges
emerging at the other interface [the (z = −0.5) curve in the
middle and lower panels of Fig. 6(a)].

(a) (b)

FIG. 8. The same as in Fig. 7, but for ρ = 0.001 (a) and 0.01 (b).

However, if the lateral distance between the charges is
finite, ρ �= 0, there is no double jump. This is illustrated in
Fig. 8 for the lateral distances ρ = 0.001 [Fig. 8(a)] and 0.01
[Fig. 8(b)]. These figures are analogs of Fig. 7. Now, the trend
εeff (z, z′) → ε1 when the charges maximally approach each
other [see Eq. (17)] disappears. Instead, another limit (18) is
realized and the εeff (z, z′) dependencies evolve smoothly.

Figure 9 demonstrates the counterparts of Figs. 3(a) and 5
but for the “monotonous” set of the layer dielectric functions
{ε} = {1 : 2 : 5}. The same, but for the set {ε} = {1 : 5 : 2}, is
depicted in Fig. 10.

Long-range asymptotics

The results presented above confirm the common sense
reasoning that the most interesting features in the interaction
between charges in three-layer systems of classic insulators
are observed if the distance between the charges is comparable
with the interlayer width L and the charges are not located
too far from the slab. Therefore, all illustrative dependencies
were chosen on the basis of this consideration. On the other
hand, in Sec. II A, it was shown that the interaction between
the charges separated by large distances d has asymptotics
(16). The word “large” means that this distance must con-
siderably exceed the slab width (in the normalized notation,
d � 1) irrespective of where the charges are located and how
the segment connecting them is oriented with respect to the
interfaces. So, it is of interest to determine how the indicated
asymptotics is realized. For illustration, we took the charge Q
to be at rest in one of the media (at z = −1, 0, or 1), whereas
the charge Q′ moves either in parallel to the interfaces (also

(a) (b)

FIG. 9. The same as in Figs. 3(a) and 3(c), but for {ε} = {1 : 2 :
5}.
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(a) (b)

FIG. 10. The same as in Figs. 3(a) and 3(c), but for {ε} = {1 : 5 :
2}.

at z′ = −1, 0, or 1) or perpendicularly to them at the lateral
distance ρ = 0, 1, or 2 from the charge Q.

The corresponding calculation result for the {ε} set {2 :
1 : 5} is shown in Fig. 11. Here, the long-range asymptotic
value is 1

2 (ε1 + ε3) = 3.5 and is indicated by thin dashed
lines. Figure 11(a) corresponds to the “parallel” motion mode,
and Fig. 11(b) to the “normal” one. The plotted dependencies
confirm the theoretical result: if the intercharge distance is
large enough, the charges cease to “feel” the slab, even if
they are located in it, and the system becomes “effectively
two layered,” i.e., composed of semi-infinite media 1 and
3. However, this asymptotics can be reached at rather large
distances between the charges.

Analogous results obtained for two other chosen {ε} sets
{1 : 2 : 5} and {1 : 5 : 2} are shown in Figs. 12 and 13, respec-
tively.

C. Image-charge interpretation of the obtained formulas

It is possible and instructive to interpret the formulas ob-
tained above for the interaction energy wi j in the form of
infinite series in a close analogy to the related problem of the
image-charge interaction in three-layer structures [92], where
the infinite series approach is quite traditional [85–90]. We
recall that in the framework of the image-force theory, the
potential created at some location by a point charge and con-
comitant polarization charges induced by it can be calculated
in an equivalent and more simple way [85,127]. Namely, one

(a) (b)

FIG. 11. Long-range εeff (ρ, z′ = const) (a) and εeff (z′, ρ =
const) (b) dependencies for various z and {ε} = {2 : 1 : 5}.

(a) (b)

FIG. 12. The same as in Fig. 11, but for {ε} = {1 : 2 : 5}.

should sum up the Coulomb potential created by the given
point charge in a fictitious infinite homogeneous medium with
ε corresponding to the point of charge location and the poten-
tials of the extended polarization charges. The latter potentials
are equivalent to those of point image charges located in the
same fictitious infinite homogeneous medium but at certain
positions beyond the region concerned.

Similarly, in our case, we can consider any wi j (z, z′) as (i)
the interaction energy of the charge Q located at z with the
charge Q′ located at z′ and its polarization charges located
somewhere or (ii) the interaction energy of the charge Q′
located at z′ with the charge Q located at z and polarization
charges induced by the latter; anyway, the lateral distance be-
tween them equals ρ. The analysis is convenient to be carried
out on the basis of the template{

1

ε

} {charge}Q × {charge}Q′√
ρ2 + ({z}Q − {z′}Q′ )2

(28)

normalized according to Eq. (2). Each {. . .}Q or {. . .}Q′ com-
plex contains the relevant quantity for the corresponding
(indicated as the subscript) charge and the common {. . .}
prefactor is associated with the inverse dielectric permittivity
of the fictitious infinite homogeneous medium.

As an example, let us consider Eq. (6).
(i) The charge Q (medium 3) is in the electrostatic field of

the charge Q′ (medium 2) and its polarization charges. Then,
formula (6) should be rewritten in the form

w32 =
∞∑

i=0

{
1

ε3

} {1}Q ×
{

ε3

(ε2 + ε3)
(−�)i

}
Q′√

ρ2 + ({z}Q − {z′ − 2i}Q′ )2

+
∞∑

i=0

{
1

ε3

}

×
{1}Q ×

{
− ε3(ε1 − ε2)

(ε1 + ε2)(ε2 + ε3)
(−�)i

}
Q′√

ρ2 + ({z}Q − {−z′ − 1 − 2i}Q′ )2
. (29)

We see that this is the interaction of the charge Q with two
infinite sets of charges. One of them consists of the charges
ε3(−�)i

(ε2+ε3 ) Q′ (i = 0 . . . ∞), each having the z coordinate equal to
z′ − 2i and located at the lateral distance ρ (along the same
normal to the interfaces) from the charge Q. The other set
consists of the charges − ε3(ε1−ε2 )(−�)i

(ε1+ε2 )(ε2+ε3 ) Q′ (i = 0 . . . ∞), each
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(a) (b)

FIG. 13. The same as in Fig. 11, but for {ε} = {1 : 5 : 2}.

having the z coordinate equal to −z′ − 1 − 2i and located at
the same lateral distance ρ (along the same normal to the
interfaces as the previous charge set) from the charge Q. All
charges are located in the infinite medium 3.

(ii) The charge Q′ (medium 2) is in the electrostatic field of
the charge Q (medium 3) and its polarization charges. Then,
formula (6) should be rewritten in the form

w32 =
∞∑

i=0

{
1

ε2

}
{

ε2

(ε2 + ε3)
(−�)i

}
Q

× {1}Q′

√
ρ2 + ({z′}Q′ − {z + 2i}Q)2

+
∞∑

i=0

{
1

ε2

}

×

{
− ε2(ε1 − ε2)

(ε1 + ε2)(ε2 + ε3)
(−�)i

}
Q

× {1}Q′

√
ρ2 + ({z′}Q′ − {−z − 1 − 2i}Q)2

. (30)

Quite similarly, we see that this is the interaction of the
charge Q′ with two infinite sets of charges arranged along
the same normal to the interfaces at the lateral distance ρ

from the charge Q′. The charges ε2(−�)i

(ε2+ε3 ) Q (i = 0 . . . ∞) of
one set have the z coordinates equal to z + 2i and the charges
− ε2(ε1−ε2 )(−�)i

(ε1+ε2 )(ε2+ε3 ) Q (i = 0 . . . ∞) of the other set have the z co-
ordinates equal to −z − 1 − 2i. Now, all charges are located
in the infinite medium 2.

In the both cases, the sign of the charges in both sets will
either alternate (if � > 0) or remain invariant (if � < 0).

But what if either of the charges is or both of them are
located at the interfaces? We may be strictly governed by rule
(4). But, we propose another solution, which can be useful in
certain cases. In particular, in case (i), formula (29) can be
rewritten in the form

w32 =
∞∑

i=0

{
(−�)i

(ε2 + ε3)

} {1}Q × {1}Q′√
ρ2 + ({z}Q − {z′ − 2i}Q′ )2

+
∞∑

i=0

{
− (ε1 − ε2)(−�)i

(ε1 + ε2)(ε2 + ε3)

}

× {1}Q × {1}Q′√
ρ2 + ({z}Q − {−z′ − 1 − 2i}Q′ )2

. (31)

Formally, according to template (28), the first sum can be
regarded as a linear combination of interaction between the

charge Q and a set of identical(!) charges Q′ through a set
of channels i = 0 . . . ∞. In each ith channel, the charges Q
and Q′ (now they are treated on equal footing) are arranged as
described for the first set in case (i), but the effective dielectric
constant of the ith fictitious infinite medium equals ε2+ε3

(−�)i ,
i.e., it can even be negative. The second sum is interpreted
analogously. The advantage of this approach consists in the
formal equivalence of the charges and their images (all mod-
ifications are related to the properties of the medium in the
corresponding interaction channel) and the independence of
where the charges are located: in a certain medium or at the
medium interface, which should facilitate further consider-
ation of more complicated entities. Case (ii) can be treated
similarly.

III. VERTICAL CHARGE-CHARGE INTERACTION
ACROSS THE SLAB

As stems from Eqs. (20)–(25), when the charges are lo-
cated on the same normal to the interfaces, the exact formulas
for the charge-charge interaction can be expressed in terms
of the Lerch transcendent � [128]. At the same time, the
vertical arrangement of opposite-sign charges is the most
likely one since they tend to approach each other as closely
as possible, which is attained at R = 0. Therefore, the exact
formulas are luckily able to represent the most important
and abundant case of the interlayer electron-hole interaction.
Equation (22) for the electron-hole attraction across the slab
is the simplest one among Eqs. (20)–(25) and turns out to be
the most significant for applications. Indeed, it describes, in
particular, two experimental setups with the remote electron-
hole attraction. We mean the formation of the strongly bound
interlayer Wannier-Mott excitons [34–37,129], as well as
superfluid electron-hole pairs spatially separated by the inter-
layer (especially, by the vacuum gap) [38–41,130–134]. Both
scenarios can be realized in various layered van der Waals het-
erostructures [30,36,135–137], in particular, transition metal
dichalcogenides [93,129,138,139], AIIIBV-based alternating
layers [41,140–142], suspended non–van der Waals–type lay-
ered Bi2O2Se semiconductors [143], or hybrid perovskite
semiconductors [25].

As a rule, the formation of excitons in the slabs of
three-layer systems is considered in the framework of the
Rytova-Keldysh approximation (RKA) [1,32]. A detailed
analysis of the latter was done in our work [33]. The RKA
expression for the energy of charge-charge interaction in the
case of symmetric structures (ε1 = ε3 = ε) and for ε2 � ε

looks like (here, the variables are non-normalized, see Fig. 1)

WRKA = QQ′ π

ε2L

[
H0

(
2ε

ε2

R

L

)
− N0

(
2ε

ε2

R

L

)]
, (32)

where H0 and N0 are the Struve and Neumann functions of
the zeroth order, respectively. Note that formula (32) does
not include the Z coordinates of the charges. Its long-range
(R/L → ∞) asymptotics is identical to asymptotics (16). The
RKA is very popular in relevant studies (see references in
Ref. [33], as well as Refs. [37,144–148] ). Although being
derived for the conditions ε 	 ε2, R � L, and L → 0, it
is sometimes overused when applying outside the indicated
parameter region.
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In particular, it concerns the short-range (R → 0) asymp-
totics. Since WRKA does not depend on Z and Z ′, it diverges
logarithmically as R → 0 irrespective of the charge locations
in the slab. However, it is already intuitively clear [and it can
be easily verified using Eq. (10)] that the true W22(Z, Z ′, R →
0) dependence must be finite if Z �= Z ′ and must have an R−1

pole otherwise. Since the required dependence is absent, the
latter is often assumed to be the classical Coulomb one for an
infinite medium with the dielectric permittivity equal to that
of the slab ε2.

Formula (22) differs substantially from the expression

wC
31(z3, z1) = 1

ε2|z3 − z1| , (33)

naively adopted to describe interaction across the slab. To
solve various problems based on the knowledge of charge-
charge interaction through the interlayer, it is necessary to
estimate this difference quantitatively. In the cases we are
interested in, namely, the analysis of the electron-hole inter-
action in semiconductor heterostructures, we may put z3 = 1

2
and z1 = − 1

2 (of course, such an approximation is unsatisfac-
tory, e.g., for electrons suspended far over thin helium films
[45,46]). Then,

w31

(
1

2
,−1

2

)
= 2ε2

(ε1 + ε2)(ε3 + ε2)
�

(
−�, 1,

1

2

)
, (34)

whereas

wC
31

(
1

2
,−1

2

)
= 1

ε2
. (35)

In terms of the effective dielectric function (26), one has an
analytical expression for a three-layered heterostructure,

εeff = (ε1 + ε2)(ε3 + ε2)

2ε2�
(−�, 1, 1

2

) , (36)

whereas in case (34),

εC
eff ≡ ε2. (37)

Our goal is to calculate the dependencies of the ratio M =
εeff/ε2 on two relevant parameters ε1/ε2 and ε3/ε2. This ratio
directly indicates the modification of the effective Coulomb
interaction as compared to the naive classical scenario. In the
general case, one has

M = (ε1/ε2 + 1)(ε3/ε2 + 1)

2�
(−�, 1, 1

2

) , (38)

with

� = − (ε1/ε2 − 1)

(ε1/ε2 + 1)

(ε3/ε2 − 1)

(ε3/ε2 + 1)
. (39)

The Lerch function in the denominator of Eq. (38) reduces to
the algebraic functions

�

(
−�, 1,

1

2

)
=

⎧⎪⎪⎨
⎪⎪⎩

1√−�
ln

∣∣∣∣1 + √−�

1 − √−�

∣∣∣∣ if � < 0,

2√
�

arctan
√

� if � > 0.

(40)

FIG. 14. (a) Dependence of the effective (normalized by ε2)
dielectric permittivity εeff of the slab [see Eq. (36)] for the inter-
action of the charges across the slab on the normalized dielectric
permittivities of the covers (see further explanations in the text) in
the log-log-log scale. The solid curve illustrates this dependence
for the symmetric heterostructure (ε1 = ε3 = ε). This curve is also
exhibited in (b) in the lin-lin scale.

In Fig. 14(a), the dependence M(ε1/ε2, ε3/ε2) is shown in
the log-log-log scale. It is clearly seen that M can be much
larger or much less than unity, which means that the effective
dielectric permittivity (36) can differ substantially from its
slab counterpart ε2.

For symmetric structures, when ε1 = ε3 = ε, the quantity
M depends on only one parameter, μ = ε/ε2. This particular
degenerate case is practically important, especially for sand-
wiches assumed to show the electron-hole superfluidity. Then,
we have

� = − (μ − 1)2

(μ + 1)2 < 0 (41)

so that
√−� = |μ − 1|

(μ + 1)
(42)

and

M(μ) = μ2 − 1

2 ln μ
> 0. (43)

If μ � 1, which is realized, e.g., in the case of a vacuum gap
between semiconductor layers, M(μ) � 1. Therefore, in this
situation, the layers strongly screen the electrostatic interac-
tion, and the effective permittivity εeff is much larger than
ε2. The opposite case, when μ 	 1, describes, for instance,
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the mutual interaction of charges located on the upper and
lower boundaries of a semiconductor thin layer surrounded by
the vacuum (or vapor media) [12,18,19,36,149–152]. Then,
M(μ) → 0 abruptly [see Fig. 14(b) plotted in the lin-lin
scale]. The dependence M(μ) is also shown in Fig. 14(a) as
a thick line. Actually, a low effective dielectric permittivity
can be achieved only when the suspended layer is made of
ferroelectric [153–155].

The results shown in Fig. 14 can be directly checked
when the calculated energy spectrum of interlayer excitons
[34–37,129] is compared to the experimental data for various
three-layer structures. The usage of the correct formula (36)
and its particular cases can provide a satisfactory agreement
with the experiment. One should bear in mind that the quan-
titative agreement can be achieved if one takes into account
some additional factors, including the spatial dispersion of the
dielectric permittivities.

To summarize this section, we emphasize that any over-
simplified approach to the electrostatic phenomena in layered
systems should be avoided. On the contrary, our approach
is exact in the classical frame. Of course, to make more
quantitative predictions for three-layer heterostructures, one
must take into account the spatial dispersion of the dielectric
permittivities in the framework of the same formal scheme
[33,63,65].

IV. APPROXIMATIONS

Modern computers allow numerical calculations to be per-
formed at extremely high rates. However, very often we need
to analytically estimate the behavior of a certain quantity, e.g.,
to analyze the dependence of its derivative on the problem
parameters or use the result in further analytical calculations.
Then, simple analytical approximations become highly desir-
able. This is true, in particular, for the electrostatic problem
dealt with in this paper.

The formulas obtained for the wi j branches in Sec. II A
reduce this task to that of finding proper approximations for
the function 	 (see Appendix B). Series (B11) converge rather
rapidly, which follows from inequality (B7) and the monoton-
ically growing denominator of the series terms. Therefore, it
is easy to find the calculation error if sum (B11) is truncated
at its nth term:

	TRn(�,ρ, α) =
n∑

i=0

(−�)i√
ρ2 + (α + 2i)2

. (44)

Such approximations will be referred to as TRn.
It is worth noting that the easiest way to calculate w and εeff

quantities with a required accuracy is to follow the indicated
routine. Just this method was used in the previous sections to
calculate the w(z, z′, ρ) and εeff (z, z′, ρ) dependencies with a
relative accuracy of 10−8. As a result, the “exact” w(z, z′, ρ)
values were calculated as the TR13 approximation for {ε} =
{2 : 1 : 5} with � ≈ −0.222, as the TR10 approximation for
{ε} = {1 : 2 : 5} with � ≈ 0.143, and as the TR15 approxi-
mation for {ε} = {1 : 5 : 2} with � ≈ −0.286 (the dielectric
permittivities of the covers can be swapped). If we are inter-
ested in the w values with a “practical” accuracy of 10−2,

(a) (b)

(c)

FIG. 15. Comparison of the exact dependencies w(z′) (a) and
εeff (z′) (b) with their various TR approximations (see explanations
and abbreviations in the text) for {ε} = {2 : 1 : 5}, z = 0, and ρ = 1.
(c) The corresponding relative errors δ.

the application of the TR4, TR3, and TR4 approximations,
respectively, are required.

Figure 15 demonstrates the application of various TR
approximations to the w(z, z′) [Fig. 15(a)] and εeff (z, z′)
[Fig. 15(b)] dependencies in the case when the charge Q is
located at the center of the slab (z = 0) in the system with
{ε} = {2 : 1 : 5} and the charge Q′ is shifted normally to the
interfaces at the lateral distance ρ = 1. A comparison of the
panels shows again that the εeff (z, z′) dependencies are more
informative than the w(z, z′) ones. Figure 15(b) also testifies
that the proposed approximations can well reproduce the local
qualitative behavior of the dependencies. Since w and εeff

are mutually reciprocal quantities [see Eq. (26)], the relative
errors of their approximation are identical:

δ(z, z′) =
∣∣∣∣wapprox(z, z′) − w(z, z′)

w(z, z′)

∣∣∣∣
=

∣∣∣∣ε
approx
eff (z, z′) − εeff (z, z′)

εeff (z, z′)

∣∣∣∣. (45)

This quantity for the case concerned is depicted in Fig. 15(c).
One can see that the TR0 approximation is rough even at low
values of the parameter � so that higher-order approximations
are required. This conclusion remains valid if the w(z, z′)
dependencies are singular, which is illustrated in Fig. 16.

The growth of the absolute value of the parameter �

enlarges the number of terms in sum (B11) to ensure a re-
quired accuracy. This fact is illustrated in Fig. 17 for a system
with a moderate |�| ≈ 0.545. An accuracy of 10−2 for w is
reached only if an approximation not lower than TR8 is used.
Moreover, we should take into account that each wi j branch
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(a) (b)

(c)

FIG. 16. The same as in Fig. 15, but for ρ = 0.

demands the calculation of several 	 functions. So, it is more
productive to consider integral (B5) itself.

It is very difficult, or even impossible, to substitute the
Bessel function by something else in the whole integration
range q = [0,∞) to produce a useful result. At the same time,
the Bessel function itself gives a poor choice for other ways
to calculate integral (B5) analytically. Our main idea was [33]
to substitute the inverse denominator

Den−1(q) = 1

1 + � exp (−2q)
(46)

by a function with correct values at q → 0 and q → ∞, and
with an “exponential” saturation at q → ∞. The simplest
variant is

Fun(q) = 1 − �

� + 1
exp (−aq). (47)

(a) (b)

FIG. 17. The same as in Figs. 15(a) and 15(c), but for {ε} = {1 :
10 : 2} and z = −1.

Then, the integral in Eq. (B5) can be calculated with the help
of formula (B10):

	(�,α, ρ) ≈ 1√
ρ2 + α2

− �

� + 1

1√
ρ2 + (α + a)2

≡ 	EE(�,α, ρ). (48)

The “effective exponent” a remains to be found. The approx-
imation was called “effective exponential” (EE).

For this purpose, earlier [33] we proposed the condition∫ ∞

0
Den−1(q) dq =

∫ ∞

0
Fun(q) dq, (49)

which brought about the value

aEE1 = 2�

(1 + �) ln (1 + �)
. (50)

Another way to determine a is to demand that integral (B5)
and its approximation (48) should have the same long-range
(at α → ∞ and/or ρ → ∞) asymptotics. The required value
can be calculated by equating the dominant terms in the
long-range asymptotics of expressions (B11) and (48). But at-
tention should be paid to the fact that the factors exp(−αq) (at
α → ∞) and J0(ρq) (at ρ → ∞) in the integrand of Eq. (B5)
make the behavior of the other factors insignificant at large
q’s: the former is a rapidly decaying function and the latter
is a rapidly oscillating one. Only the integrand’s behavior at
q → 0 matters in this case. The condition Den−1(0) = Fun(0)
was already provided by selecting Fun(q) in form (47). There-
fore, we put[

d

dq
Den−1(q)

]
q=0

=
[

d

dq
Fun(q)

]
q=0

and obtain

aEE2 = 2

� + 1
. (51)

The EE approximations wEE(z, z′) are described by formu-
las (5)–(10) and their modifications for w(z, z′) presented in
Sec. II A, with the substitution of 	EE(�,α, ρ) [see nota-
tion (48)] instead of 	(�,α, ρ), and the relevant aEE value
[Eq. (50) or (51)].

In Fig. 18, the results of both approximations are shown
for the {ε} set {2 : 1 : 5}. Figure 18(a) corresponds to the
lateral distance ρ = 0.1. The plots clearly demonstrate that the
both approximations excellently reproduce the exact profiles
of interaction energy, including cusps at the interfaces. The
corresponding curves are almost indistinguishable from each
other because the relative approximation errors within the
indicated z′ interval do not exceed 0.3% for the EE1 approxi-
mation and 0.6% for the EE2 one. At larger |z′|’s, the relative
errors of both approximations decrease, with δEE2 being two
to three times lower than δEE1. This relationship between
δEE1 and δEE2 at large |z′|’s also holds true for all parameter
combinations illustrated below. The exhibited data testify that
the proposed EE approximations retain the continuity of the
wEE(z, z′) dependence if either or both charges cross any of
the medium interfaces z = ± 1

2 provided that ρ �= 0. This is
a very useful property stemming from the continuity of the
w(z, z′) dependence itself. Figure 18(b) corresponds to the
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(a) (b)

FIG. 18. Comparison of the exact εeff (z′) and their various EE
approximations (see explanations and abbreviations in the text) for
{ε} = {2 : 1 : 5} and ρ = 0.1 (a) and 5 (b).

lateral distance ρ = 5. Here, the EE2 approximation is always
better than the EE1 one: δEE1 � 0.6% and δEE2 � 0.3%.

In Fig. 19, the same dependencies as in Fig. 18 are plot-
ted but for the set {ε} = {1 : 5 : 2}, for which |�| is larger
(0.286 versus 0.222). In general, both approximations remain
satisfactory but the relative errors increase: δEE1 � 0.6% and
δEE2 � 1% at short distances [Fig. 19(a)], and δEE1 � 0.9%
and δEE2 � 0.3% at long ones [Fig. 19(b)].

But, if we diminish |�|, the approximation quality be-
comes higher. In Fig. 20, the same dependencies are plotted
for the dielectric constant set {ε} = {1 : 2 : 5}. Here, � ≈
0.14, which is the smallest value among the considered {ε}
sets. As a result, the quality of both approximations is also
the best: δEE1 � 0.1% and δEE2 � 0.16% at short distances
[Fig. 20(a)], and δEE1 � 0.15% and δEE2 � 0.08% at long
ones [Fig. 20(b)].

Thus, the proposed EE approximations provide excellent
results for the parameter sets considered above. The EE1
variant is better at short distances between the charges, and
the EE2 variant has an advantage at long ones. Nevertheless,
let us examine those approximations more attentively. A com-
parison of formulas (48) and (44) shows that, in essence, the
former can be considered similar to the TR1 approximation:
the zeroth-order term exactly reproduces the dominant term

(a) (b)

FIG. 19. The same as in Fig. 18, but for {ε} = {1 : 5 : 2}.

(a) (b)

FIG. 20. The same as in Fig. 18, but for {ε} = {1 : 2 : 5}.

in series (B11), whereas the second one approximately substi-
tutes the sum of all other terms. In both cases, the correction to
the first (dominant) term is governed by the parameter �: the
smaller the � magnitude, the better approximation. Therefore,
it is of interest to compare the EE and TR approximations.

In Fig. 21, we did it for the toy system {ε} = {2 : 1 :
5} in a wider interval of the parameter z′ = [−40, 40]. The
figure clearly demonstrates the following facts: (i) the EE1
approximation is better at short |z − z′| spacings, and the
EE2 approximation at long ones (recall that the EE2 approxi-
mation was designated to properly reproduce the long-range
asymptotics); (ii) at short distances, the EE1 and EE2 ap-
proximations are comparable with the TR2 one; and (iii) the
EE1 and EE2 approximations can be more successful than the
higher-order TR approximations.

As stems from the results presented above, the quality
of the EE approximation is better for smaller values of the
parameter �. Nevertheless, the approximation EE remains ad-
equate for rather large �’s as well. In particular, in Fig. 22(a),
which is a complement to Fig. 17(b), one can see that the
EE1 approximation (we consider short distances) is at least

FIG. 21. Comparison of the relative errors δ given by all pro-
posed approximations at short and large distances in the case {ε} =
{2 : 1 : 5}, z = −10, and ρ = 1.
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(a) (b)

FIG. 22. Comparison of the TR3 and EE1 approximations in the
case of large � values: |�| ≈ 0.545 (a) and 0.887 (b).

not worse than the TR3 approximation at the moderate |�| ≈
0.545. But even at high |�| magnitudes, the EE1 approx-
imation provides reasonable estimations (to an accuracy of
10%–15%) for the w(z, z′) dependence, being much better
than the TR3 [this is illustrated in Fig. 22(b) for the {ε} =
{1 : 50 : 2} heterostructure with |�| ≈ 0.887].

Thus, the proposed approximations are a convenient tool
for calculating the interaction energy of two charges in three-
layer structures with a fairly high accuracy making use of
simple analytical expressions. Nevertheless, they possess a
shortcoming. Specifically, any proposed approximation of the
interference terms induced by polarization charges at the inter-
faces (those are the terms containing the coefficient �) in the
formulas for the wii branches [in particular, Eqs. (5) and (10)]
possesses a cusp at z = z′. Since the terms are proportional to
�, the cusp is also comparatively small for small �’s. This
cusp can be almost unobservable against a steep background,
as one can see from Fig. 17(a). Nevertheless, Fig. 17(b) clearly
demonstrates that this unphysical cusp does exist, being espe-
cially pronounced for the TR0 approximation.

However, the situation may change if |�| is large enough
and the background is not steep. Figure 23 demonstrates
the calculated w(z = −1, z′) dependencies for a system with

FIG. 23. Possible manifestation of unphysical extrema in the w

approximation dependencies (see explanations in the text).

{ε} = {1 : 10 : 2} (the same as in Fig. 17) but for the lateral
intercharge distance ρ = 5. At their nearest approach, the
charges are located rather far from each other, and the maxi-
mum of the exact w(z = −1, z′) dependence (the thick curve)
is wide and smooth. It makes it easy to observe cusps arising
in the approximation curves when the charge Q′ crosses the z
level of the charge Q (z = z′ = 1, indicated by an arrow). As
a result, there appears an unphysical minimum or maximum
in the corresponding dependence. The figure testifies that the
indicated cusp is effectively smoothed out as the order of
TR approximation grows. But, the cusps in the proposed two
EE approximations are uncontrollable for the given problem
parameters.

Whether this cusp matters or not depends on the problem
concerned. For instance, the charge interaction energy is only
one component of the total electrostatic energy of charges in
the heterostructure. To obtain the total energy, the interaction
energy has to be combined with the image force energy [the
self-energies of both charges, see Eq. (1)] [92], which can
obscure the unphysical behavior of w(z, z′). Anyway, it is
not possible now to give general recommendations how to
exterminate those tiny false features.

This minor difficulty is, however, practically insignificant,
whereas the approximations EE1 and EE2 per se may be
useful as an analytical guide to the problems dealing with
the electrostatic energy of charges in layered systems, being
a preliminary step before carrying out cumbersome numerical
calculations.

V. CONCLUSIONS

In this paper, a theoretical framework capable of studying
the charge-charge interaction in three-layer heterostructures
with different dielectric permittivities of the constituent me-
dia has been outlined. The specific calculations were carried
out in the classical electrostatic approximation, when all di-
electric permittivities are constants. Compact formulas were
obtained for all possible arrangements of charges. The results
are expressed in terms of tabulated special functions when
charges are positioned on the same normal to the layers. We
demonstrated that the interaction energy dependencies on the
charge-charge distances differ substantially from the Coulomb
law. Therefore, we introduced the effective dielectric function
εeff making the results concise and illustrative. The modifica-
tion of the Coulomb law obtained here should be applied when
studying various problems of the condensed matter physics.
The necessity of the adequate treatment of the three-layer
electrostatics is especially clear for electron-hole interaction
leading to the formation of interlayer excitons and appearance
of the excitonic lateral superfluidity.
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APPENDIX A

Let us consider a system consisting of three plane-parallel
layers and invariant with respect to translations along the layer
interfaces. Each ith layer is a medium described by the dielec-
tric function εi(k, ω), i = 1, 2, 3. Two point charges Q and Q′
are located in this system at the coordinates Z and Z ′, respec-
tively (reckoned perpendicularly to the interfaces). They are
separated by the lateral (along the interfaces) distance R (see
Fig. 1). Then, their electrostatic interaction energy W can be
written in the form [33,63,65]

W (Z, Z ′, R) = −2QQ′
∫ ∞

0
K dK D(K, Z, Z ′)J0(KR), (A1)

where J0 is the zeroth-order Bessel function of the first kind
and D is Green’s function of the problem.

In the system concerned, a slab (i = 2) of thickness L
is confined between two semi-infinite covers (i = 1, 3), so
that we have a good natural scaling length parameter L. It is
convenient to perform the corresponding normalization for all
relevant quantities in the integrand of formula (A1),

q = KL, z(′) = Z (′)/L, ρ = R/L, (A2)

and the interaction energy itself,

w(z, z′, ρ) =
(

QQ′

L

)−1

W

= −2
∫ ∞

0
q dq D(q, z, z′)J0(qρ). (A3)

The kernel D(q, z, z′) is rather cumbersome. Its form strongly
depends on the media where the charges are positioned
[see Eq. (4)]. Nevertheless, the expression for D(q, z, z′) can
be simplified by introducing the following quantities gen-
eralizing (for z �= 0) the so-called inverse surface dielectric
functions [57,58,156]

a1,3(q, z) = 1

π

∫ ∞

−∞

dk⊥ cos k⊥z

(k2
⊥ + q2)ε1,3(q, k⊥, ω)

(A4)

and

aS,A(q, z) = 2
∑
kS,A
⊥

exp
[
ik⊥

(
z + 1

2

)]
(k2

⊥ + q2)ε2(q, k⊥, ω)
, (A5)

where

kS
⊥ = 2nπ, kA

⊥ = (2n + 1)π, n = 0,±1,±2, . . . .

Then, the kernel D(q, z, z′) looks like

D = A(q, z)B(q, z′) + Ã(q, z)B̃(q, z′)
C(q)

− F (q, z, z′), (A6)

where (to shorten the formulas, we omit the q dependence
from the argument list for ai)

A(q, z) =
⎧⎨
⎩

a1(z + 1
2 ) if med(z) = 1,

−aS (z) if med(z) = 2,

a3(z − 1
2 ) if med(z) = 3;

(A7)

Ã(q, z) =
⎧⎨
⎩

a1(z + 1
2 ) if med(z) = 1,

−aA(z) if med(z) = 2,

−a3(z − 1
2 ) if med(z) = 3;

(A8)

B(q, z′) =
⎧⎨
⎩

a1(z′ + 1
2 )[a∗

A + a∗
3] if med(z) = 1,

− 1
2 [aS (z′) + aA(z′)][a∗

A + a∗
3] − 1

2 [aS (z′) − aA(z′)][a∗
A + a∗

1] if med(z) = 2,

a3(z′ − 1
2 )[a∗

A + a∗
1] if med(z) = 3;

(A9)

B̃(q, z′) =
⎧⎨
⎩

a1(z′ + 1
2 )[a∗

S + a∗
3] if med(z) = 1,

− 1
2 [aS (z′) + aA(z′)][a∗

S + a∗
3] + 1

2 [aS (z′) − aA(z′)][a∗
S + a∗

1] if med(z) = 2,

−a3(z′ − 1
2 )[a∗

S + a∗
1] if med(z) = 3;

(A10)

C(q) = [a∗
S + a∗

1][a∗
A + a∗

3] + [a∗
S + a∗

3][a∗
A + a∗

1]; (A11)

F (q, z, z′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

[
a1

(∣∣z + 1
2

∣∣ + ∣∣z′ + 1
2

∣∣) + a1
(∣∣z + 1

2

∣∣ − ∣∣z′ + 1
2

∣∣)] if med(z) = med(z′) = 1,
1
4

[
aS (z + z′ + 1

2 ) + aS (z − z′ − 1
2 )

]
+ 1

4

[
aA(z + z′ + 1

2 ) + aA(z − z′ − 1
2 )

]
if med(z) = med(z′) = 2,

1
2

[
a3

(∣∣z − 1
2

∣∣ + ∣∣z′ − 1
2

∣∣) + a3
(∣∣z − 1

2

∣∣ + ∣∣z′ − 1
2

∣∣)] if med(z) = med(z′) = 3,

0 otherwise;

(A12)

and

a∗
1 = a1(0), a∗

3 = a3(0),

a∗
S = aS

(− 1
2

)
, a∗

A = aA
(− 1

2

)
. (A13)

Note that the presented formulas can also be used to cal-
culate the image force energy Wim(Z ), i.e., the energy of
interaction between the charge Q located at the point with
the coordinate Z (the coordinates X and Y can be arbitrary)
and the self-induced polarization charges at both interfaces.

Namely,

Wim(Z ) = 1

2
lim

Z ′→Z
R→0

Q′→Q

[
W (Z, Z, R) − QQ′

ε|Z − Z ′|
]
. (A14)

Here, ε is the dielectric constant of the medium where the
charge is located, the last term in the brackets is the bulk
self-energy of the examined charge (infinite at Z = Z ′) [157],
and the multiplier 1

2 takes into account the fact that the polar-
ization charges are not external ones and appear only under the
influence of the charge Q. The insertion of this multiplier
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can be justified, e.g., by the Güntelberg charging process
[158–163]. It should be emphasized that in order to obtain
the total energy of external charges in the polarized three-
layer system, one should add terms W (Z, Z ′, R) given by
Eq. (A1), Wim(Z ) given by Eq. (A14) and its counterpart
Wim(Z ′) [see Eq. (1)]. This fact was recognized decades ago
[87,91,164–166]. However, the correct analytical expressions
for Wim(Z ) in three-layered systems, which are expressed via
the Lerch transcendent function [128] in the classical electro-
static framework, have been obtained only recently [92].

APPENDIX B

In the case of homogeneous nondispersive insulators (εi =
const, i = 1, 2, 3), the functions a1,3(q, z) and aS,A(q, z) can
be expressed analytically. In particular [128, Eq. (3.723.2)],

a1,3(q, z) = 1

ε1,3q
exp (−q|z|). (B1)

Formula (A5) can be rewritten in the form

aS,A(q, z) = 2

ε2

∑
kS,A
⊥

cos
[
k⊥

(
z + 1

2

)]
k2
⊥ + q2

. (B2)

For calculations, let us apply the tabulated sum [128,
Eq. (1.445.2)]

S0(x, α) =
∞∑

k=1

cos (kx)

k2 + α2
= π

2α

cosh α(π − x)

sinh απ
− 1

2α2

for 0 � x � 2π.

Then,

S(n, x, α) =
∞∑

k=−∞

cos (nπkx)

(nπk)2 + α2

= 1

(nπ )2

( −1∑
k=−∞

+
∑
k=0

+
∞∑

k=1

)
cos (k · nπx)

k2 +
( α

nπ

)2

= 1

α2
+ 2

(nπ )2 S0

(
nπx,

α

nπ

)

= 1

nα

cosh
(nx − 1)α

n

sinh
α

n

.

Now,

Seven(x, α) = S(2, x, α) = cosh
[(

1
2 − x

)
α
]

2α sinh
α

2

and

aS (q, z) = 2

ε2
Seven(z + 1

2 , q)

=

⎧⎪⎨
⎪⎩

1

qε2

cosh (qz)

sinh
(q

2

) if − 1
2 � z � 1

2 ,

aS (q, z ± 1) otherwise.

(B3)

At the same time,

Sodd(x, α) = S(1, x, α) − Seven(x, α) = sinh
[(

1
2 − x

)
α
]

2α cosh
α

2

and

aA(q, z) = 2

ε2
Sodd(z + 1

2 , q)

=

⎧⎪⎨
⎪⎩

− 1

qε2

sinh (qz)

cosh
(q

2

) if − 1
2 � z � 1

2 ,

−aA(q, z ± 1) otherwise.

(B4)

Then, the kernel D(q, z, z′) [see Eq. (A6)] transforms into
a linear, specific for each (med(z), med(z′)) pair [see Eq. (4)],
combination of integrals

	(�,α, ρ) =
∫ ∞

0

exp (−αq)

1 + � exp (−2q)
J0(ρq)dq, (B5)

where α � 0 and the parameter

� = (ε1 − ε2)(ε2 − ε3)

(ε1 + ε2)(ε2 + ε3)
(B6)

is less than unity by magnitude in almost all practically sig-
nificant cases,

|�| < 1. (B7)

One can see that � → 1 in the cases ε1 	 ε2 	 ε3 and
ε1 � ε2 � ε3. The limiting value � = −1 is realized if ε2

is finite and (ε1, ε3) → ∞ or if ε2 → ∞ and ε1 and ε3 are
finite. It is convenient to express the parameter � as the
product

� = λ12λ23, (B8)

where

λi j = εi − ε j

εi + ε j
(B9)

in the case of two-layer system, i.e., if ε1 = ε2 or ε2 = ε3,
the parameter � and either the parameter λ12 or λ23 equal
zero.

Integral (B5) is not classified as a special function. Never-
theless, using the property (B7), we may expand the integrand
in Eq. (B5) in a power series in � and then use the formula
[128, Eq. (6.611.1)]∫ ∞

0
exp (−βq)J0(ρq)dq = 1√

ρ2 + β2
, (B10)

where β � 0. Then integral (B5) can be written in the
form

	(�,ρ, α) =
∞∑

i=0

(−�)i√
ρ2 + (α + 2i)2

. (B11)

By extracting the first summand in the sum, this formula can
be rewritten as follows:

	(�,ρ, α) = 1√
ρ2 + α2

− �	(�,ρ, α + 2), (B12)
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which allows the approximation of the next order
of smallness in the parameter � to be obtained for
the function 	(�,ρ, α). The inverse formula is also
useful:

	(�,ρ, α) = 1

�
√

ρ2 + (α − 2)2
− 1

�
	(�,ρ, α − 2).

(B13)

In the particular case ρ = 0,

	(�, 0, α) =
∫ ∞

0

exp (−αq)

1 + � exp (−2q)
dq

=
∞∑

i=0

(−�)i

α + 2i
= 1

2
�

(
−�, 1,

α

2

)
, (B14)

where � is the Lerch transcendent [128, section 9.55].
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