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Ab initio calculations of electron-phonon interactions including the polar Fröhlich coupling have advanced
considerably in recent years. The Fröhlich electron-phonon matrix element is by now well understood in the
case of bulk three-dimensional (3D) materials. In the case of two-dimensional (2D) materials, the standard
procedure to include Fröhlich coupling is to employ Coulomb truncation, so as to eliminate artificial interactions
between periodic images of the 2D layer. While these techniques are well established, the transition of the
Fröhlich coupling from three to two dimensions has not been investigated. Furthermore, it remains unclear
what error one makes when describing 2D systems using the standard bulk formalism in a periodic supercell
geometry. Here we generalize previous work on the ab initio Fröhlich electron-phonon matrix element in bulk
materials by investigating the electrostatic potential of atomic dipoles in a periodic supercell consisting of a 2D
material and a continuum dielectric slab. We obtain a unified expression for the matrix element, which reduces
to the existing formulas for three-dimensional and 2D systems when the interlayer separation tends to zero
or infinity, respectively. This expression enables an accurate description of the Fröhlich matrix element in 2D
systems without resorting to Coulomb truncation. We validate our approach by direct ab initio density-functional
perturbation theory calculations for monolayer BN and MoS2, and we provide a simple expression for the 2D
Fröhlich matrix element that can be used in model Hamiltonian approaches. The formalism outlined in this
work may find applications in calculations of polarons, quasiparticle renormalization, transport coefficients, and
superconductivity, in 2D and quasi-2D materials.
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I. INTRODUCTION

The electron-phonon interaction (EPI) plays an impor-
tant role in many materials properties [1], including the
carrier mobility of semiconductors [2,3], phonon-assisted op-
tical processes [4–6], vibrational spectroscopy [7–9], polaron
physics [10–13], and superconducting pairing [14,15]. Dur-
ing the past decade, calculations of EPIs have become more
accessible, and much work has been performed on the role
of phonons in the optical and transport properties of semi-
conductors and other functional materials [16–22]. Given the
significant interest in two-dimensional (2D) materials and
their applications [23–25], ab initio calculations of EPIs in
2D systems are also becoming increasingly popular [26–30].

The key element of ab initio calculations of EPIs is the
electron-phonon matrix element, gmnν (k, q), which describes
the probability amplitude for an electron to be scattered from
an initial Bloch state with wave vector k and band index
n to a final state with wavevector k + q and band index m
by a phonon of wave vector q and branch index ν. In the
majority of known three-dimensional (3D) semiconductors
and insulators, this matrix element diverges as 1/|q| for small
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q, as a result of the long-range nature of the electric field gen-
erated by fluctuating atomic dipoles. This singular behavior is
referred to as the Fröhlich electron-phonon coupling [31] and
occurs whenever the atoms in a crystal exhibit nonvanishing
Born effective charges [32–34].

Calculations of EPIs in bulk 3D systems including the
Fröhlich coupling are well established by now [32,33] and
are routinely performed in conjunction with Wannier-Fourier
interpolation [35,36]. In the case of 2D materials, several
proposals have been put forward for dealing with the Fröhlich
EPI, including parametrized model matrix elements [27,37],
calculations using the formalism for 3D systems [30], and
fully ab initio approaches employing Coulomb truncation
[28,29]. All these approaches focus on the case of a monolayer
system embedded in a vacuum buffer in periodic supercell
calculations. More complex configurations, including van der
Waals heterostructures, semiconductor/insulator interfaces,
and moiré bilayers [38–41], are still beyond the reach of
current methods. Furthermore, the connection between cur-
rent approaches for 2D systems and the previous theory for
3D systems remains unclear. In order to enable the study of
EPIs in a broader class of materials and their interfaces, it is
desirable to develop a single unified framework for describing
Fröhlich EPIs in 3D and 2D systems on the same footing.

At a more fundamental level, there is also the question on
how to connect ab initio calculations of EPIs in 2D systems
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with model Hamiltonian approaches. Earlier work consid-
ered the so-called “strict 2D limit” of the Fröhlich matrix
element, whereby electrons are assumed to be confined in
a sheet of vanishing thickness [42,43]. This limit was suc-
cessfully employed to investigate polarons and quasiparticle
renormalization in 2D systems [44–48], but in this model
the matrix element diverges as |q|−1/2 at small q. This be-
havior contrasts with the fact that, in realistic systems with
small but finite thickness, the long-wavelength limit of the
Fröhlich matrix elements is finite [49]. This inconsistency
poses a challenge when attempting to relate the results derived
from earlier models and even recent diagrammatic Monte
Carlo studies [48] to atomic-scale ab initio calculations of
EPIs.

Here we address these difficulties by developing a uni-
fied Fröhlich EPI matrix element which seamlessly describes
3D and 2D systems within a periodic supercell geometry.
The present approach is a generalization of the approach of
Ref. [32] for bulk 3D systems. While Ref. [32] derived the
Fröhlich matrix element by examining the electrostatics of
a dipole in a bulk crystal, here we examine the potential
generated by a dipole within a 2D slab embedded in a uniform
dielectric medium (such as vacuum, for example).

We validate this approach by comparing our analytical
expressions with explicit density-functional perturbation the-
ory (DFPT) calculations for monolayer BN and MoS2, and
we show that our method reproduces the expressions of
Ref. [32–34] in the 3D limit, as well as the expression of
Ref. [26] in the limit of large interlayer separation between
the periodic images of the 2D layer.

The paper is organized as follows. In Sec. II we discuss
the formalism to describe Fröhlich EPIs in bulk and 2D ma-
terials. In particular, in Sec. II A we review the basics of
Fröhlich coupling in bulk 3D materials from the point of
view of ab initio calculations, and the connection between
the ab initio formalism and the analytical model originally
derived by Fröhlich. In Sec. II B we briefly summarize ex-
isting approaches to Fröhlich coupling in 2D systems, the
underlying assumptions, and their limitations. In Sec. III we
derive an expression for the ab initio Fröhlich matrix element
in 2D and quasi-2D systems. In Sec. IV we show how our
expression recovers the 3D matrix element of Refs. [32–34]
(Sec. IV A) and the 2D matrix element of Ref. [26] (Sec. IV B)
in the respective limits. In the same section we also derive
an expression for the special case of atomically thin single-
layer crystals in vacuum, where all the atoms lie in the same
plane (Sec. IV C). In Sec. V we rewrite our main results from
Sec. IV in a form that depends on only macroscopic quantities
and that is particularly suitable for use in model Hamiltonian
approaches. Section VI reports applications of this methodol-
ogy to monolayer BN and MoS2. In particular, in Sec. VI A we
provide details on the computational setup and the optimized
material parameters. In Sec. VI B we calculate the ab initio
Fröhlich matrix elements in monolayer BN and monolayer
MoS2 and validate our method by direct comparison with
DFPT calculations. In Sec. VI C we examine the dependence
of the polar coupling on the size of the vacuum gap using our
closed-form expressions and ab initio materials parameters
for BN. In Sec. VII we summarize our findings and offer our
conclusions.

II. THE FRÖHLICH ELECTRON-PHONON MATRIX
ELEMENT IN 3D AND 2D SYSTEMS: EARLIER WORK

A. Fröhlich coupling in bulk 3D solids

In this section we first recall the expression for the 3D
Fröhlich matrix element as derived in Ref. [32]. The same
expression was obtained in Refs. [33,34] following a different
route. Then we clarify the connection between the ab initio
Fröhlich matrix element and the classic result by Fröhlich.

The EPI matrix element can be written [1] as gmnν (k, q) =
〈ψmk+q|�qνV |ψnk〉, where ψnk and ψmk+q are typically Kohn-
Sham wave functions, and �qνV is the linear variation of the
Kohn-Sham potential associated with a phonon of frequency
ωqν . �qνV can be calculated using DFPT [50] or the frozen
phonon method [51].

Reference [34] showed that, in crystals with a finite gap
between occupied and unoccupied states, the EPI matrix el-
ement can be expanded in a Laurent series near q = 0. This
series may contain terms that scale as O(q−1), O(q0), O(q1),
and so on, where q = |q|. The O(q−1) term corresponds to
an electric dipole potential, the O(q0) term corresponds to
a quadrupole, the term O(q) is for an octopole, and so on.
In materials with nonzero Born effective charges, such as for
example polar semiconductors and oxides, the dipole term is
nonzero and dominates in the limit q → 0. Since the dipole
and quadrupole terms are nonanalytic near q = 0, these terms
must be treated separately when performing Wannier interpo-
lation of the EPI matrix elements. The ab initio procedure to
deal with the dipole term was developed in Refs. [32,33], and
the corresponding procedure for dealing with the quadrupole
term was reported recently in Refs. [52–55]. In all cases one
writes the matrix element as

gmnν (k, q) = gSmnν (k, q) + gLmnν (k, q), (1)

where the superscripts stand for short- and long-range, respec-
tively. gLmnν (k, q) contains all nonanalyticities and is designed
to capture the exact limit of gmnν (k, q) for q → 0. The form
of gLmnν (k, q) away from q = 0 is inconsequential, as long as
it is a smooth function of the phonon wave vector.

In the following we focus on the O(q−1) component of
gLmnν (k, q), which is commonly known as the Fröhlich inter-
action. The extension of the present formalism to deal with
quadrupoles is possible, at least in principle, but this would re-
quire a separate investigation. For notational simplicity, below
we drop the superscript in gLmnν (k, q), and we use gmnν (k, q)
to indicate the Fröhlich component of the matrix element.

To obtain the Fröhlich matrix element, Ref. [32] proceeded
in two steps: (1) evaluate the electrostatic potential generated
by a point dipole p in an anisotropic medium characterized by
the high-frequency relative dielectric permittivity tensor ε∞
and (2) associate one such dipole to every atom κ in the unit
cell with lattice vector R, undergoing the displacement

�τ
(qν)
κR = (h̄/2Mκωqν )

1
2 eiq·Reκν (q). (2)

Here Mκ is the atomic mass and eκν (q) is the vibrational
eigenvector normalized in the unit cell. This atom carries the
(dimensionless) Born effective charge tensor Z∗

κ . The resulting
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matrix element is [32,56]

gmnν (k, q) = i
4π

�

e2

4πε0

∑
κ

(
h̄

2Mκωqν

) 1
2

×
∑

G �=−q

(q + G) · Z∗
κ · eκν (q)

(q + G) · ε∞ · (q + G)

× 〈ψmk+q|ei(q+G)·(r−τκ )|ψnk〉 , (3)

where � is the volume of the primitive unit cell, and τκ is the
equilibrium position of this atom. G denotes the reciprocal
lattice vectors, and the braket indicates the integral over the
Born–von Kárman (BvK) supercell.

The classic matrix element by Fröhlich can be obtained
from Eq. (3) by considering the following approximations.
(1) We consider q in the first Brillouin zone, so that the
only singularity is at q = 0 and the summation over G can
be ignored. (2) For all quantities that vary smoothly with
q, we retain only the corresponding q = 0 limit. (3) The
band structure is described using the electron gas model, so
that ψnk(r) = (N�)−1/2eik·r. (4) Phonons are described using
the Einstein model, therefore there are two transverse opti-
cal (TO) branches with ωqν = ωTO and one LO branch with
ωqν = ωLO. (v) The dielectric permittivity tensor is isotropic,
ε∞
αβ = ε∞δαβ , with Greek indices denoting Cartesian coordi-

nates. Using these approximations in Eq. (3), we find

|gν (q)|2 =
(

4π

�

e2

4πε0

1

ε∞

)2
h̄

2M0ωLO

|q · Z∗
ν |2

q4
, (4)

where we removed the redundant band indices and we intro-
duced the mode-effective Born charge Z∗

ν following Ref. [57],
Z∗

ν,α = ∑
κ,β (M0/Mκ )1/2Z∗

κ,αβeκβ,ν (0). In these expressions,
M0 is an arbitrary reference mass that is introduced to keep
Z∗

ν a dimensionless. The matrix element in Eq. (4) depends on
the angle between q and Z∗

ν . By performing a spherical aver-
age over this angle (taking into account the volume element in
three dimensions), and summing over the LO/TO manifold,
we obtain a single effective matrix element:

|g(q)|2 =
(

4π

�

e2

4πε0

1

ε∞

)2
h̄

2M0ωLO

1

q2

∑
ν

|Z∗
ν |2. (5)

The sum on the right-hand side is related to the static and high-
frequency dielectric permittivities by [57]

ε0 = ε∞ + e2

4πε0

4π

�

∑
ν |Z∗

ν |2
M0ω

2
TO

. (6)

Using this expression and the Lyddane-Sachs-Teller relation,
ε0/ε∞ = ω2

LO/ω2
TO, Eq. (5) can be rewritten in the standard

form [31]

|g(q)| = α
1/2
FR h̄ωLO

qFR

q
, (7)

where the dimensionless Fröhlich coupling strength αFR is
defined as [10]

αFR = e2

4πε0

1

h̄

√
m∗

2h̄ωLO

(
1

ε∞
− 1

ε0

)
, (8)

m∗ is the band effective mass, and qFR is a characteristic wave
vector given by q2

FR = 4π�−1(h̄/2m∗ωLO)1/2. Equations (3)

and (7) show that, in three dimensions, the Fröhlich interac-
tion diverges as 1/q, as is well known.

B. Fröhlich coupling in 2D systems

In early studies of polar electron-phonon coupling interac-
tions in 2D systems, the Fröhlich matrix element was derived
either within the strict 2D limit [43], or by considering elec-
trons confined within an infinite square-well potential along
the direction perpendicular to the slab (z direction in the
following) [42].

The square-well approximations are arrived at by con-
sidering that, in calculations of physical properties, the 3D
electron-phonon matrix element is modulated by the electron
density along the z direction [21,42,48,58,59]:

|g2D(q‖)|2 = c

2π

∫ ∞

−∞
dqz F (qz )|g3D(q‖, qz )|2, (9)

where q‖ and qz are the components of the phonon momentum
q parallel and perpendicular to the slab, respectively, c is the
slab thickness, and F (qz ) is the Fourier component of the
electron density profile along z, F (z):

F (qz ) =
∫ ∞

−∞
dz F (z)e−iqzz. (10)

When the electron is strictly confined in a 2D sheet of zero
thickness, the profile becomes a Dirac delta function, F (z) =
δ(z), and one obtains the 2D Fröhlich matrix elements in
the strict 2D limit [27,42,48]. After integrating out the third
dimension in Eq. (9), the matrix element is written as [42,48]

|g2D(q‖)| = α
1/2
FR h̄ωLO

qFR(c/2)1/2

q1/2
‖

, (11)

A similar result can alternatively be derived starting from the
Coulomb potential in two dimensions [43]. At variance with
the standard 3D Fröhlich matrix element, which scales as q−1,
the matrix elements in the strict 2D approximation scales as
q−1/2

‖ . This singular behavior is currently understood to be
an artifact of the model, which is inconsistent with experi-
ments [60]. To overcome this limitation, Ref. [27] employed a
Gaussian profile of width σ to described the electron density
along the z direction. The resulting matrix element in the
long-wavelength limits reads

|g2D(q||)| = g erfc(q‖σ/2), (12)

where the constants g and σ are determined by fitting this
expression to ab initio data. This model has successfully
been employed to investigate the transport properties of
transition-metal dichalcogenide monolayers [27]. One poten-
tial limitation of this approach is that the relation between the
electron-phonon coupling strength g and materials parameters
such as dielectric constants, Born charges, and vibrational
frequencies is not apparent as in the standard ab initio Fröhlich
matrix element [32,33]. Being able to trace the coupling back
to these properties would be desirable, so as to establish pre-
dictive analytical models for electron-phonon physics in two
dimensions.

To bridge the gap between model studies of electron-
phonon interactions in 2D materials and first-principle calcu-
lations, Ref. [26] developed a refined model which takes into
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account microscopic features such as Born charges, phonon
frequencies, and the dielectric permittivity of the 2D slab. In
this model one assumes that the atomic displacements gen-
erate a uniform macroscopic polarization density within the
slab. For brevity we quote the expression obtained by Ref. [26]
for a 2D slab surrounded by vacuum (the general expression
can be found in Ref. [26]):

|g2D(q‖)| = 2π

A

e2

4πε0

(∑
κ

h̄

2MκωLO
Z∗,2

κ,‖

)1/2 1

ε∞

2

q‖d

×
[

1 + ε−1
∞

q‖d

eq‖d − 1

1 − (1 + ε−1∞ )(1 + eq‖d )/2

]
. (13)

In this expression, d and A are the slab thickness and unit-cell
area, respectively, ε∞ is the (isotropic) high-frequency permit-
tivity, ωLO is the frequency of the longitudinal-optical (LO)
mode, and Mκ and Z∗

κ,‖ are the atomic masses and in-plane
Born charges, respectively. As for Eq. (12), the coupling given
by Eq. (13) is not singular for q‖ → 0.

The model leading to Eq. (13) has successfully been em-
ployed in calculations of electron-phonon couplings in two
dimensions [26,28,61] and constitutes the de facto state-of-
the-art approach in the field. There have been at least two
generalizations of the model of Ref. [26], which additionally
take into account the out-of-plane polarization and the effect
of exact 2D long-range screening [29,62]. However, all these
approaches are designed to describe a 2D slab between two
semi-infinite media. In some cases it may be desirable to
model the 2D system as a periodic superlattice rather than
an isolated slab, for example when studying van der Waals
heterostructures or 2D semiconductor/insulator interfaces. In
the next section we derive such a model for quasi-2D systems,
by generalizing the approach developed in Ref. [32] for bulk
crystals.

III. DERIVATION OF THE FRÖHLICH MATRIX ELEMENT
IN QUASI-2D SYSTEMS

In this section we generalize the reasoning leading to
Eq. (3) to the case of a periodic stack where two materials al-
ternate along the z direction, as shown in Fig. 1. We label these
materials as “primary” and “secondary” layer, respectively.
We consider the primary layer to be the 2D slab of interest,
and the secondary layer to be the embedding medium or
subrate. For example the primary layer could be a monolayer
of MoS2, and the secondary layer could be multilayer BN or
vacuum. We describe the secondary layer as a homogeneous
dielectric medium, without taking into account the discrete,
atomic-scale structure of this layer.

We denote the nominal thickness of the primary and sec-
ondary layer as d and D, respectively, and the unit cell length
in the z direction as c = d + D. For convenience we shall say
that the primary layer extends from z = −d to z = 0, and the
secondary layer occupies the region from z = 0 to z = D. The
unit cell is repeated periodically within a Born–von Kármán
(BvK) supercell consisting of multiple unit cells in the xy
plane and in the z direction, and periodic boundary conditions
on the BvK cell are applied.

d

D

ε∞,1

ε∞,2

z

FIG. 1. Schematic representation of a superlattice consisting of
a periodic stack of two layers alternating along the z direction. The
material under consideration is the layer of thickness d and dielectric
constant ε∞,1. The the other layer, of thickness D and permittivity
ε∞,2, is a dielectric continuum. The thick solid line denotes the
boundary of the primitive unit cell; the thick dashed line indicates the
boundary of the BvK supercell. Equation (18) gives the electrostatic
potential generated by a point charge located in one of the layers
(indicated by the disk •). To obtain a solution that is periodic in
the BvK supercell, we superimpose the potential of all periodic
images (indicated by the circle ◦). From the displacements of these
charges we obtain the dipole potential. Our Fröhlich matrix element
in Eq. (34) is then obtained by summing over the dipoles associated
with every atomic displacement.

To keep the theory as simple as possible, we assume that
the two layers can be described by effective isotropic high-
frequency (relative) dielectric permittivities ε∞,1 and ε∞,2,
following the same line or reasoning as in Refs. [26]. In
particular, we assume that the dielectric permittivity is given
by

ε∞(z) =
{
ε∞,1 −d < z < 0
ε∞,2 0 < z < D

. (14)

This assumption is legitimate because (1) we are interested
only in the long-wavelength limit of the electron-phonon ma-
trix element and (2) the out-of-plane dielectric permittivity
can effectively be made equal to the in-plane permittivity
via an appropriate choice of the thickness d [26]. Evidently
there is no sharp boundary between the primary and secondary
layer in real materials, and the dielectric permittivity evolves
smoothly [63]. However, the notion of a sharp dielectric inter-
face considerably simplifies the equations without affecting
the final results.

To extend the reasoning of Ref. [32] to the present case,
we evaluate the electrostatic potential of a point dipole lo-
cated at the position τ in the primary layer. To this aim, we
begin by determining the electrostatic potential of a point
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charge e located at τ, without considering its periodic replicas.
Subsequently, we proceed to replicate this charge in all BvK
supercells in order to describe realistic first-principles calcula-
tions. Following the notation of Ref. [32] [see Eq. (S1) of that
work], the electrostatic potential of a single charge without
its replicas is obtained as the solution of the inhomogeneous
Poisson’s equation:

ε∞(z)∇2ϕ(r; τz ) + dε∞(z)

dz

∂ϕ(r; τz )

∂z
= − e

ε0
δ(r − τzuz ),

(15)

where we have set τx = τy = 0 to start with. uz is the unit
vector along z, and −d < τz < 0. To proceed we perform a
Fourier integral for the in-plane coordinates:

ϕ(r; τz ) =
∫

dQ‖ ϕ(z, Q‖; τz )eiQ‖·r‖ , (16)

where the Q‖’s denote in-plane wave vectors and r‖ is the po-
sition in the xy plane. After replacing Eq. (16) inside Eq. (15)
we obtain the following equation for ϕ(z, Q‖; τz ):

ε∞(z)
∂2ϕ

∂z2
+ dε∞(z)

dz

∂ϕ

∂z
− Q2

‖ε∞(z)ϕ

= − e

(2π )2ε0
δ(z − τz ). (17)

The exact solution of this equation with the two-step dielectric
profile defined in Eq. (14) has been derived by Ref. [64], in the
context of a study of excitons in periodic superlattices. The
solution is

ϕ(z; Q‖; τz )

= e

2(2π )2ε0ε∞,2Q‖(γ − − γ +)

×

⎧⎪⎪⎨⎪⎪⎩
z > τz:
[(α + γ +β )eQ‖τz + (β + γ +α)e−Q‖τz ]ϕ−(z, Q‖),
z < τz:
[(α + γ −β )eQ‖τz + (β + γ −α)e−Q‖τz ]ϕ+(z, Q‖),

(18)

where Q‖ = |Q‖| and the function ϕ± is defined as

ϕ±(z, Q‖)

=

⎧⎪⎪⎨⎪⎪⎩
nc − d < z < nc:

e±nη[(α + γ ±β )eQ‖(z−nc) + (β + γ ±α)e−Q‖(z−nc)]
nc < z < nc + D:

e±nη[eQ‖(z−nc) + γ ±e−Q‖(z−nc)],

(19)

with n being an integer. The quantities α, β, γ ±, and η appear-
ing in these expressions are defined as follows:

α = (1 + ε∞,2/ε∞,1)/2, (20)

β = (1 − ε∞,2/ε∞,1)/2, (21)

γ ± = − eQ‖D − e±η(αe−Q‖d + βeQ‖d )

e−Q‖D − e±η(βe−Q‖d + αeQ‖d )
, (22)

η = cosh−1{cosh[Q‖(D − d )] + 2α2/(2α − 1)

× sinh(Q‖D) sinh(Q‖d )}. (23)

For later reference, it is useful to note that the potential
ϕ(z, Q‖; τz ) transforms as follows upon translations of the
atomic coordinate by a unit cell vector along the z axis:

ϕ(z, Q‖; τz + Rz ) = ϕ(z − Rz, Q‖; τz ). (24)

This property follows immediately from Eq. (17).
In order to determine the complete 3D Fourier transform of

the potential, we write

ϕ(r; τz ) =
∫

dQ ϕ(Q; τz )eiQ·r, (25)

and we compare this expression with Eq. (16) to obtain

ϕ(Q; τz ) = 1

2π

∫
dz ϕ(z, Q‖; τz )e−iQzz. (26)

As a consequence of Eq. (24), the potential ϕ(Q; τz ) trans-
forms like a Bloch function under translation by a unit cell
vectors along the z axis:

ϕ(Q; τz + Rz ) = eiQzRzϕ(Q; τz ). (27)

At this point we can replace Eqs. (18)–(23) inside Eq. (26)
and and evaluate the integral. After some algebra we find

ϕ(Q; τz ) = e

2(2π )3ε0ε∞,2Q‖
K (Q, τz ), (28)

where the kernel function K (Q, τz ) is a rather involved com-
bination of complex exponentials which, besides Q and τz,
depend on the geometric and dielectric parameters of the
stack, d , D, ε∞,1, and ε∞,2. The complete expression for the
kernel is provided in Appendix; see Eq. (A1).

The electrostatic potential ϕ(r; τz ) given by Eqs. (25) and
(28) corresponds to a single charge in the dielectric stack.
In order to impose BvK boundary conditions, we place this
charge at τ and replicate it in every BvK supercell. We call
the resulting potential φ(r; τ ):

φ(r; τ ) =
∑

T

ϕ(r − T; τ ), (29)

where the T’s are the the lattice vectors of the BvK super-
cell. We note that, to avoid an unphysical divergence of the
potential, we should add to Eq. (29) the potential of a neu-
tralizing background. However, this contribution cancels out
when evaluating the potential of point dipoles, therefore it can
safely be ignored. Since the potential φ(r; τ ) is periodic in the
supercell, we can expand it in a discrete Fourier series:

φ(r; τ ) =
∑

q,G �=−q

φq(G; τ)ei(q+G)·r, (30)

where the G’s denote the reciprocal lattice vectors of the unit
cell, and the q’s are the Bloch wave vectors commensurate
with the BvK supercell. The q + G = 0 term is not included
as it is canceled by the neutralizing background. By combin-
ing Eqs. (25) and (28)–(30) we find

φq(G; τ) = e

2ε0ε∞,2N�

e−i(q‖+G‖ )·τ‖

|q‖ + G‖| K (q + G, τz ), (31)

where � is the volume of the unit cell, and N is the number of
unit cells in the BvK supercell.
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The next step in our procedure is to evaluate the potential
of a point dipole. This is achieved simply by taking the linear
variation of φ(r; τ) with respect to τ:

∂φ(r; τ)

∂τ
· �τ =

∑
q,G �=−q

ei(q+G)·r ∂φq(G; τ)

∂τ
· �τ, (32)

where |�τ| is the dipole length. As in Ref. [32], we now
consider one such dipole potential for each atom in the BvK
supercell: the charge will be given by the Born effective
charge tensor, and the direction and length of the dipole
will be given by the atomic displacement pattern �τ (qν) in
a phonon mode with wave vector q:

�Vqν (G) = −e
∑

κR,αβ

∂φq(G; τκR )

∂τκRα

Z∗
κ,αβ�τ

(qν)
κRβ . (33)

The prefactor −e has been added to obtain the potential energy
experienced by an electron, and the atomic displacement in
this expression is the same as in Eq. (2).

The electron-phonon matrix element gmnν (k, q) =
〈ψmk+q|�qνV |ψnk〉 associated with the potential �Vqν is
finally obtained by combining Eqs. (33), (31), (2), and (27):

gmnν (k, q) = e2

2ε0ε∞,2�
(h̄/2ωqν )1/2

∑
G �=−q

〈umk+q+G|unk〉
|q‖+G‖|

×
∑

κ

M−1/2
κ e−i(q‖+G‖ )·τκ‖

∑
αβ

Z∗
κ,αβeκβ,ν (q)

×
[
δα,‖ i(q+G)αK (q+G, τκz )

− δα,z
∂K (q+G, τκz )

∂τκz

]
. (34)

In this expression, we have taken into account the normal-
ization ψnk = N−1/2eik·runk, where unk is the Bloch-periodic
part of the wave function, we used the perioidic gauge ψnk =
ψnk+G, and the braket 〈· · · 〉 integral is now performed over
the unit cell of the stack. Equation (34) is the central re-
sult of this work. It constitutes the generalization of the
ab initio Fröhlich electron-phonon matrix element, derived
in Ref. [32] for bulk 3D crystals, to periodic superlattices
where two slabs alternate. Equation (34) can be used (1) to
improve the Wannier-Fourier interpolation of the electron-
phonon matrix elements in the case of 2D materials, as shown
in Refs. [32,33] for the 3D case and (2) to derive realistic
analytical models of Fröhlich interactions in 2D and quasi-
2D systems. In the remainder of this work we discuss both
applications.

IV. THE LIMITS OF 3D BULK CRYSTAL, 2D SLAB IN
VACUUM, AND ATOMICALLY THIN MONOLAYER

IN VACUUM

In this section we show how Eq. (34) correctly reduces to
the result of Ref. [32] in the limit of a single layer (D = 0), and
to the result of Ref. [26] in the limit of a slab in vacuum (D =
∞ and ε∞,2 = 1). This latter situation would correspond, for
example, to a suspended MoS2 monolayer. To demonstrate the
flexibility of our approach, we also consider a third option,
namely an atomically thin monolayer in vacuum, where all

the atoms have the same z coordinate; this is the case, for
example, of monolayer h-BN.

A. The limit of a 3D bulk crystal

The Fröhlich matrix element for a 3D extended crystal is
obtained by setting the thickness of the secondary layer to
zero, D = 0, in Eq. (34). Since this parameter enters Eq. (34)
only via the kernel K (Q, τz ), we start by considering this
kernel.

In the limit of small D (D � c), we have d = c, η = Q‖c
from Eq. (23), and γ + = (α − 1)/α, γ − = α/(α − 1). Using
these relations inside in Eq. (A1), after some algebraic manip-
ulations we obtain

lim
D→0

K (Q, τz ) = 2
ε∞,2

ε∞,1

Q‖
Q2

e−iQzτz . (35)

This expression can be replaced for the square brackets in
Eq. (34). After this substitution, the matrix element for D = 0
reduces to

gmnν (k, q) = i
4π

�

e2

4πε0

∑
κ

(h̄/2Mκωqν )1/2

×
∑

G �=−q

e−i(q+G)·τκ 〈umk+q+G|unk〉

×
∑
αβ

(q+G)αZ∗
κ,αβeκβ,ν (q)

ε∞,1|q + G|2 . (36)

This result is essentially identical to the matrix element de-
rived in Ref. [32] for bulk 3D crystals; see Eq. (3). The
only difference is that, to keep the derivation tractable, in
the present study we have replaced the anisotropic dielectric
permittivity tensor by a scalar isotropic permittivity. A similar
choice was made in Ref. [26].

In summary, the Fröhlich matrix element given by Eq. (34)
correctly reduces to the bulk limit in the case of a 3D homo-
geneous dielectric.

B. The limit of an isolated 2D slab

The other important limit to be investigated corresponds to
the case of the Fröhlich interaction for an isolated 2D slab
embedded in a dielectric continuum. This limit is obtained
by taking D � d in Eq. (34). The case of an isolated slab in
vacuum is further obtained by setting ε∞,2 = 1.

Taking the limit D � d of the kernel function K (Q, τz )
given in Eq. (A1) requires a certain number of algebraic
manipulations. Here we limit ourselves to remark that, in this
limit, γ + remains finite, eη scales as eQ‖D, and γ − scales as
e2Q‖D. We find

lim
D�d

K (Q, τz ) = 2(α−β )
Q‖

Q2
‖ + Q2

z

{
e−iQzτz + + β

α2e2Q‖d −β2
.

× [eQ‖τz f1(Qd ) + e−Q‖τz f2(Qd )]

}
, (37)
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having defined

f1(Qd ) = αe2Q‖d + βe(Q‖+iQz )d , (38)

f2(Qd ) = β + αe(Q‖+iQz )d . (39)

In this form, the effect of reduced dimensionality is not appar-
ent, and the kernel is singular at long wavelength as for the
bulk 3D case. In order to see the effect of dimensionality we
need to carry out the summation over Gz appearing in (34).
Since the overlap integral 〈umk+q+G|unk〉 depends on Gz, we
need to evaluate the sum∑

Gz

〈umk+q+G|unk〉K (Q‖, qz + Gz, τz ). (40)

If the wave functions are localized within a characteristic
length comparable to the thickness d of the dielectric slab, and
if we take the limit D � d , the overlap term 〈umk+q+G|unk〉
becomes only weakly dependent on Gz, and the summation
can be carried out explicitly. The specific details of the wave
function localization around the slab are not critical to the final
result, but in order to make contact with Ref. [26] we follow
their choice and we set the Bloch-periodic components of the
wave functions to be normalized rectangular functions in the
direction perpendicular to the slab:

unk(r) =
{√

c/�d −d < z < 0,

0 0 < z < D.
(41)

The corresponding wave functions are products of plane
waves and this rectangular function. This choice is legiti-
mate since we are interested in the long-wavelength limit
of the Fröhlich matrix element, therefore the details of the
wave function at the atomic scale do not matter. With the
above choice the overlap integral becomes

〈umk+q+G|unk〉 = δmnδG‖,0
1 − e−iGzd

iGzd
. (42)

The summation in Eq. (40) can now be carried out explicitly
by combining Eqs. (37) and (42). Since we are interested in
the limit D � d , we have that qz → 0, Gz becomes a contin-
uous variable, and the summation over Gz can be replaced by
an integral. After some algebra we find

lim
D�d

∑
Gz

〈umk+q+G|unk〉K (Q‖, qz + Gz, τz )

= δmnδG‖,0
c(α − β )

Q‖d

[
2 − eQ‖τz − e−Q‖τz−Q‖d

+β(1 − e−Q‖d )

αeQ‖d − β
(eQ‖τz eQ‖d + e−Q‖τz )

]
. (43)

The matrix element given in Ref. [26] was obtained by con-
sidering that the ionic polarization is distributed uniformly
across the slab. Their choice can be incorporated in the present
formalism by averaging the atomic positions τz over the slab
thickness. To this aim, we define the kernel average as follows:

〈K (Q‖, qz + Gz )〉 = 1

d

∫ 0

−d
dτz K (Q‖, qz + Gz, τz ). (44)

By combining the last two equations and carrying out the
integrals of the terms e±Q‖τz , we obtain

lim
D�d

∑
Gz

〈umk+q+G|unk〉〈K (Q‖, qz + Gz )〉

= δmnδG‖,0c
2(2α − 1)

Q‖d

[
1 + 1

Q‖d

(2α − 1)(eQ‖d − 1)

1 − α(1 + eQ‖d )

]
.

(45)

Now we can replace this expression inside Eq. (34). We set
ε∞,1 = ε∞, ε∞,2 = 1, to find an expression for the Fröhlich
2D matrix element that is almost identical to the result of
Ref. [26] as reported in Eq. (13) of the present work:

gmnν (q‖) = iδmn
2π

A

e2

4πε0

×
∑

κ,α=‖,β

qα

q‖
Z∗

κ,αβ

√
h̄

2Mkωqν

e−iq‖·τκ‖eκβ,ν (q‖)

× 1

ε∞

2

q‖d

[
1 + ε−1

∞
q‖d

eq‖d − 1

1 − (1 + ε−1∞ )(1 + eq‖d )/2

]
.

(46)

Note that this expression contains only q‖ because we are in
the limit qz → 0, and it no longer depends on the electron
wave vector k.

The equivalence between Eq. (46) and Eq. (13) can be
made more apparent by introducing the mass-weighted mode-
effective charge Z∗

q‖ν as follows:

Z∗
q‖ν =

∑
κ

√
M0

Mk
q̂‖ · Z∗

κ · eκ,ν (q‖)e−iq‖·τκ‖ , (47)

where q̂‖ is the unit vector in the direction of q‖. Using this
definition, Eq. (46) can be rewritten more compactly as

gmnν (q‖) = iδmn
2π

A

e2

4πε0

√
h̄

2M0ωqν

Z∗
q‖ν

1

ε∞

2

q‖d

×
[

1 + ε−1
∞

q‖d

eq‖d − 1

1 − (1 + ε−1∞ )(1 + eq‖d )/2

]
. (48)

Equation (13) is recovered by taking the q‖ → 0 limit of
Z∗

q‖ν/ω
1/2
qν , and by adding the square moduli of the matrix

elements for the two in-plane directions of the zone-center
longitudinal optical modes.

C. The limit of an isolated 2D monolayer where all atoms have
the same z coordinate

An alternative expression to the 2D Frhölich matrix ele-
ment can be obtained in the limit of materials consisting of a
single atomic layer where all atoms have the same τz, such as
for example monolayer boron nitride.

In this scenario we can go back to Eq. (43), and instead of
averaging τz over the dielectric slab (which is equivalent to the
approach of Ref. [26] as shown in Sec. IV B), we can simply
set τz = −d/2 for all atoms, which corresponds to having the
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monolayer in the middle of the dielectric slab. We find

lim
D�d

∑
Gz

〈umk+q+G|unk〉K (Q‖, qz + Gz, τz = −d/2)

= δmnδG‖,0
2(2α − 1)c

Q‖d

[
1 + (2α − 1)eQ‖d/2

1 − α(eQ‖d + 1)

]
. (49)

By repeating the same steps that led to Eq. (46) in the slab
case, we obtain the Fröhlich matrix element for an isolated
2D monolayer:

gmnν (q‖) = iδmn
2π

A

e2

4πε0

√
h̄

2M0ωqν

Z∗
q‖ν

1

ε∞

2

q‖d

×
[

1 + ε−1
∞ eq‖d/2

1 − (1 + ε−1∞ )(1 + eq‖d )/2

]
. (50)

In the limit of long wavelengths, this expression reduces to the
simplified form

lim
q‖→0

gmnν (q‖) = iδmn
2π

A

e2

4πε0

√
h̄

2M0ωqν

Z∗
q‖ν

1

1 + q‖/q0
,

(51)
having defined

q0 = 4ε∞
2ε2∞ − 1

1

d
. (52)

This approximation to Eq. (50) remains very close to the the
original equation through the entire range of wave vectors q‖,
therefore this simplified matrix element is especially useful to
derive analytic expressions for the Frhöhlich coupling in two
dimensions.

V. MODEL MATRIX ELEMENTS WITHOUT BORN
EFFECTIVE CHARGES

The 2D Fröhlich matrix element for isolated slabs and
monolayers as derived in Eqs. (48), (50), and (51) can be sim-
plified further by expressing the mode effective Born charges
in terms of the dielectric constants of the slab. This step is
useful to obtain the 2D analog of the Fröhlich matrix element
used for bulk 2D solids, Eq. (7).

In the long-wavelength limit, the relation between dielec-
tric constants and the mode effective charges is provided by
Eq. (56) of Ref. [57], here rewritten without assuming Hartree
units (in the following we use ε∞, ε0 or ε∞, ε0 interchange-
ably to accommodate the other indices as needed):

ε0
q̂‖ − ε∞

q̂‖ = e2

4πε0

4π

�

∑
ν

(Z∗
q̂‖,ν )2

M0ω
2
0,ν

. (53)

In this expression, ε0
q̂‖ and ε∞

q̂‖ denote the relative static and
high-frequency dielectric permittivities evaluated along the
direction q̂‖, and ω0,ν indicates the frequency of the ν vibra-
tional mode at q = 0. This frequency does not include the
nonanalytic part of the dynamical matrix, i.e., it is the TO
frequency.

To make contact with the standard Fröhlich model for 3D
bulk systems, we must convert the TO frequencies in Eq. (53)
into LO frequencies. This can be achieved via the generalized

Lyddane-Sachs-Teller relations, namely, Eq. (64) of Ref. [57]:

∏
ν

ω2
q‖→0,ν

ω2
q‖=0,ν

=
ε0

q̂‖

ε∞
q̂‖

. (54)

The frequencies in the denominator of this expression are the
TO frequencies, and those in the numerator are the LO fre-
quencies. By combining Eqs. (53) and (54), and considering a
single infrared-active mode, we find

(Z∗
q̂‖,ν )2

ωq‖→0,ν

= ε0�M0

e2
ωq‖→0,ν (ε∞

q̂‖ )2

(
1

ε∞
q̂‖

− 1

ε0
q̂‖

)
. (55)

This relation should be replaced inside Eqs. (48), (50), and
(51), after noting that the frequency ωqν appearing in those
expressions corresponds to ωq‖→0,ν , i.e., the LO frequency.

The dielectric constants in Eq. (55) correspond to the entire
supercell. In order to disentangle the screening by the dielec-
tric slab and by the environment, we use the standard rule for
a stack of dielectrics:

d ε1 + D ε2 = (d + D) εq̂‖ . (56)

After replacing these expression in Eq. (55), taking the limit
D � d , and setting ε1 = ε and ε2 = 1, we find

(Z∗
q̂‖,ν )2

ωq‖→0,ν

= ε0AdM0

e2
ωLO(ε0 − ε∞), (57)

where the LO frequency is given by ωq‖→0,ν = ωLO. The
left-hand side is now expressed in terms of intrinsic properties
of the slab and does not depend on the size of the vacuum
buffer. We also note that the Born charge evaluated along the
direction parallel to the slab does not depend on the size c of
the supercell [65].

Incidentally, we remark that in the limit of D � d the LO
and TO frequencies tend to the same value, because the dielec-
tric constant of the vacuum buffer (or any uniform dielectric
buffer) overwhelms the dielectric screening of the slab. This
is easily proven by replacing Eq. (56) inside Eq. (54) and
taking the limit D � d . This observation is in agreement with
the absence of LO-TO splitting in 2D materials discussed in
Ref. [66].

Using Eq (57), we can now rewrite Eqs. (48), (50), and (51)
without resorting to the Born charges:

gmnν (q‖) = iδmn

[
π

2

e2

4πε0

d

A
h̄ωLO(ε0 − ε∞)

]1/2

f (q‖d, ε∞),

(58)

where the dimensionless function f (q‖d, ε∞) depends on the
chosen approximation for the slab. The function correspond-
ing to the model of Ref. [26] that yields Eq. (48) is

f1(q‖d, ε∞) = 1

ε∞

2

q‖d

[
1 + ε−1

∞
q‖d

× eq‖d − 1

1 − (1 + ε−1∞ )(1 + eq‖d )/2

]
. (59)
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The function corresponding to the present monolayer model
that yields Eq. (50) is

f2(q‖d, ε∞) = 1

ε∞

2

q‖d

[
1 + ε−1

∞ eq‖d/2

1 − (1 + ε−1∞ )(1 + eq‖d )/2

]
,

(60)

and last the function corresponding to the long-wavelength
limit of the monolayer model, yielding Eq. (51), is

f3(q‖d, ε∞) = 1

1 + q‖/q0
, (61)

with q0 given by Eq. (52).
These expressions can be used to study Fröhlich interac-

tions in two dimensions without performing explicit ab initio
calculations. For the reader’s convenience, we quote in full
the expression corresponding to the simplest approximation,
Eq. (61):

gmnν (q‖) = iδmn

[
π

2

e2

4πε0

d

A
h̄ωLO(ε0 − ε∞)

]1/2
q0

q0 + q‖
,

(62)

where q0 is given by Eq. (52), which we reproduce here for
convenience:

q0 = 4ε∞
2ε2∞ − 1

1

d
. (63)

The key difference between this expression and the 3D Fröh-
lich matrix element in Eqs. (7) and (8) is that the limit q‖ → 0
is finite, as expected.

VI. METHODS AND RESULTS

A. Computational details

In order to demonstrate the method outlined in Secs. III–V,
we consider hexagonal boron nitride (h-BN) and molyb-
denum disulfide (MoS2) as test systems. Both compounds
crystallize in a layered hexagonal structure with space group
P63/mmc. We performed calculations of the ground state
electronic structure and phonon dispersions using density-
functional theory and density-functional perturbation theory,
using plane waves and pseudopotentials, as implemented in
the QUANTUM ESPRESSO materials simulation suite [67,68].
We used ONCV pseudopotentials [69,70] (h-BN: PBE [71];
MoS2: LDA [72,73]), with plane waves kinetic energy cut-
offs of 125 Ry and 135 Ry, respectively. In both cases, the
Brillouin zone grid was sampled by using a �-centered uni-
form grid of 14 × 14 × 6 points [74]. The lattice vectors and
internal coordinates of the bulk crystals were optimized with
this setup. DFPT calculations of phonons and electron-phonon
couping matrix elements were performed using both a peri-
odic supercell geometry, and using 2D Coulomb truncation
[75]. The interpolation of the matrix elements [35] was per-
formed using the WANNIER90 [76] and EPW [77] codes.

To build the monolayer models, we start from bulk crystals
of h-BN and MoS2, we remove one of the two layers in
the crystalling unit cell, and we expand the vacuum gap in
the z direction to c = 20 Å. With this choice, the direct gap
nature of the monolayers is correctly captured. Soft phonons

TABLE I. Calculated material parameters of monolayer h-BN
and monolayer MoS2. me and e are the electron mass and charge,
respectively. ω2D

LO is the phonon energy calculated using 2D Coulomb
truncation. The calculation of the dielectric thickness d and the
effective dielectric constants ε∞ and ε0 is discussed in Sec. VI B.

Property Symbol Value Unit

h-BN Lattice constant a 2.511 Å
Aspect ratio c/a 7.965

Effective mass m∗
h,‖ 0.650 me

Base area of unit cell A 5.460 Å2

Born charge Z∗
‖ (B) 2.702 e

Z∗
‖ (N) −2.702 e

LO phonon energy h̄ωLO 181.560 meV
h̄ω2D

LO 166.992 meV
Dielectric thickness d 2.648 Å

High-frequency permittivity ε∞ 5.695
Low-frequency permittivity ε0 7.921

MoS2 Lattice constant a 3.123 Å
Aspect ratio c/a 6.404

Effective mass m∗
h,‖ 0.570 me

Base area of unit cell A 8.446 Å2

Born charge Z∗
‖ (Mo) −1.170 e
Z∗

‖ (S) 0.585 e
LO phonon energy h̄ωLO 48.734 meV

h̄ω2D
LO 48.419 meV

Dielectric thickness d 5.468 Å
High-frequency permittivity ε∞ 16.424
Low-frequency permittivity ε0 16.672

corresponding to the interlayer breathing mode are found for
8 × 8 × 1 and 12 × 12 × 1 Brillouin zone grids. To avoid
these soft modes, we start from a coarser 4 × 4 × 1 grid.
This choice, albeit approximate, does not affect the long-range
Fröhlich component of the electron-phonon matrix element.
The in-plane lattice parameters were set to the values opti-
mized the corresponding bulk crystals, namely, a = 2.51 Å
for h-BN and a = 3.12 Å for MoS2. In Table I we report
the calculated structural parameters, band effective masses,
Born charges, and phonon energies. These values agree with
previous literature [78,79].

B. Validation of the formalism against explicit
DFPT calculations

In this section we validate our formulation of the Fröh-
lich matrix element in a slab geometry, by comparing our
expression (34) to explicit DFPT calculations. We consider
two types of calculations: (1) DFPT calculations in a peri-
odic supercell configuration and (2) DFPT calculations using
Coulomb truncation, which are meant to describe an isolated
monolayer without periodic images. We recall that Eq. (34)
is a completely general expression that should be able to
reproduce both of these scenarios.

The kernel appearing in Eq. (34) and reported in Eq. (A1)
depends on the values ε∞,1, ε∞,2, and d that define the di-
electric profile; see Eq. (14). To extract these quantities from
DFPT calculations, we use a simple capacitor stack model
following Refs. [80] and [81]. The dielectric constant of the
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FIG. 2. (a, b) Calculated high-frequency dielectric constants of
h-BN (a) and MoS2 (b) monolayers in a supercell geometry, as a
function of cell length c = d + D along the z direction. See Fig. 1
for details of the supercell construction. The dashed straight lines
are guides to the eye and show that the supercell permittivity scale
linearly with 1/c. (c, d) Dielectric constants of monolayer h-BN
(c) and MoS2 (d), as extracted from Eqs. (64) and (65), as a function
of the dielectric thickness d . The crossing of the curves for the par-
allel and the perpendicular dielectric constants identify the effective
dielectric thickness and permittivity of each slab. The symbols ‖ and
⊥ indicate dielectric constant parallel and perpendicular to the slab
surface, respectively.

supercell can be written in terms of the dielectric constants of
the slab and the dielectric environment as

c εsc
‖ = Dεenv

‖ + d εslab
‖ , (64)

c ε−1
⊥,sc = Dε−1

⊥,env + d ε−1
⊥,slab. (65)

In these expressions, “sc” refers to the supercell, “env” stands
for the environment (e.g., vacuum), and “slab” stands for the
2D layer; ‖ and ⊥ refer to the dielectric constants in the
direction parallel and perpendicular to the layer, respectively.
The values εsc

‖ and εsc
⊥ are obtained from DFPT calculations

on the supercell, while the values ε−1
‖,slab, ε−1

⊥,slab, and d need
to be extracted from Eqs. (64) and (65). In the following we
consider a vacuum buffer, so that εenv

‖ = εenv
⊥ = 1.

To verify Eqs. (64) and (65), in Figs. 2(a) and 2(b) we plot
the dielectric constants of supercells containing an h-BN (a)
and a MoS2 (b) monolayer as a function of the c parameter. In
agreement with the above equations, the dielectric constants
of the supercell vary linearly with c. While Eqs. (64) and (65)
do not uniquely define ε−1

‖,slab and ε−1
⊥,slab, we can introduce

one additional relation to be consistent with the assumption
of isotropic permittivity used in Eq. (14):

ε⊥,slab = ε‖,slab. (66)

This relation is justified on the grounds that our matrix ele-
ments is designed to capture the long-range behavior of the
Fröhlich interaction, as already discussed in Ref. [26]. Taken
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FIG. 3. (a) Electron-phonon matrix elements of monolayer h-BN
calculated along a high-symmetry path in the 2D Brillouin zone.
We report the results of explicit DPFT calculations (blue disks) and
calculations using the matrix element in Eq. (34) (pink lines). In
both cases we show the average of |gmnν (k, q‖)|2 over the TO and
LO modes to avoid the discontinuity resulting from crossing phonon
bands, |g| = [

∑
ν |gmnν (k, q)|2]1/2, for m, n, k corresponding to the

valence band maximum at the K point. The calculations were per-
formed by using a supercell with a monolayer of h-BN and a vacuum
buffer, with a total size c = 20 Å along the z direction. (b) Same raw
data as in (a), but this time the matrix element is scaled by the phase-
space volume element in three dimensions, 4π |q‖|2|gmnν (k, q‖)|2.
The vertical dashed lines indicate wave vectors such that |q‖| = π/c.

together, Eqs. (64)–(66) uniquely define the dielectric con-
stants of the slab. A graphical solution of these equations is
shown in Figs. 2(c) and 2(d) for h-BN and MoS2, respectively.
The effective dielectric thickness of the slabs and the associ-
ated dielectric constants are reported in Table I.

In Fig. 3 we compare the Fröhlich matrix element obtained
for the h-BN monolayer in two ways: (1) Using the present
formalism, as expressed by Eq. (34) (pink dash line) and (2)
Using explicitly DFPT calculations in a periodic supercell
without Coulomb truncation (light purple discs). The unit cell
size along the z direction in these calculations is d = 20 Å.
In Fig. 3(a) we show the modulus of the matrix element,
|gmnν (k, q‖)|, for m, n, k corresponding to the valence band
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maximum at the K point, ν corresponding to the LO mode,
and q‖ along a high-symmetry path. We see that our formalism
matches the explicit DFPT calculations near q = 0, thereby
confirming the validity of our approach. Our Fröhlich matrix
element also matches DPFT calculations away from the zone
center, which indicates that the interaction of the highest opti-
cal mode in monolayer h-BN system is Fröhlich-like in a large
portion of the Brillouin zone.

Figure 3(a) also shows that, although the supercell size in
the z direction is as large as c = 20 Å, the matrix element
preserves the signature of 3D Fröhlich coupling, as it can be
seen from the near-singular behavior for q approaching the
zone center. This effect is best visualized by considering the
square modulus of the matrix element scaled by the phase-
space volume element in three dimensions, |gmnν (k, q)|2dq.
This is the relevant quantity in applications, because typical
expressions for electron self-energies, carrier mobilities, and
superconducting gap function, as reported, e.g., in Ref. [1], all
contain an integration of the type∑

ν

∫
dq
�BZ

|gmnν (k, q)|2 fmnν (k, q), (67)

where �BZ is the volume of the Brillouin zone, and the
function fmnν (k, q) depends on the specific application.
Figure 3(b) shows that |gmnν (k, q)|2dq scales as |q‖|1 for
|q‖| > π/c, and tends to a constant value for |q‖| < π/c. The
implication is that, for |q‖| > π/c the coupling is markedly
different from the standard 3D Fröhlich interaction, while for
|q‖| < π/c the coupling is of Fröhlich type and diverges as
|q‖|−1. This singularity is a remnant of the Fröhlich interaction
in three dimensions and originates from the periodic images of
the atomic dipoles along the z direction. Indeed, to phonons
with wavelengths longer than c, the supercell appears as a
uniform material, for which the standard 3D Fröhlich interac-
tion applies. In line with this residual 3D-type interaction, we
find a small but nonvanishing LO-TO splitting in the phonon
dispersion relations [h̄(ωLO − ωTO) = 15 meV], whereas it is
known that for a 2D system in isolation such a splitting is
forbidden at the zone center [66].

The take-home message from Fig. 3 is that Eq. (34) cor-
rectly reproduces the Fröhlich matrix element in quasi-2D
systems consisting of slab/vacuum stacks within periodic
BvK boundary conditions. Therefore our expression makes
it possible to perform calculations of electron-phonon inter-
actions using Wannier interpolation [77] as for 3D materials,
without requiring Coulomb truncation.

Now we move to the comparison between our formalism
and DPFT calculations employing 2D Coulomb truncation.
In Fig. 4 we compare the Fröhlich matrix element calculated
for monolayer h-BN and MoS2 via DFPT and Coulomb trun-
cation [26] (blue disks) with our formalism (pink lines). In
particular, we use the 2D kernel function Eq. (37), which
corresponds to the D � d limit of the exact matrix element
in Eq. (34), as discussed in Sec. IV B. Figure 4(a) shows the
modulus of the matrix element |gmnν (k, q‖)| for monolayer
h-BN, with m, n, k set to the valence band maximum at the
K point, ν corresponding to the LO mode, and q‖ along a
high-symmetry path. Figure 4(b) shows the corresponding
quantity for monolayer MoS2, also for the top of the valence
band at K .
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FIG. 4. (a) Electron-phonon matrix elements of monolayer h-BN
calculated along a high-symmetry path in the 2D Brillouin zone,
for infinite interlayer separation. We report the results of explicit
DPFT calculations employing 2D Coulomb truncation (blue disks)
and calculations using the matrix element in Eq. (34) with 2D ker-
nel [Eq. (37)] (pink lines). In both cases we show the average of
|gmnν (k, q‖)|2 over the TO and LO modes to avoid the discontinuity
resulting from crossing phonon bands, |g| = [

∑
ν |gmnν (k, q)|2]1/2. In

this expression, m, n, k correspond to the valence band maximum at
the K point. (b) Same as in (a), but for monolayer MoS2 and infinite
interlayer separation.

In both cases, we see that our formalism in the D � d
limit correctly reproduces the results of explicit 2D DFPT
calculations. In particular, now that the size of the vacuum
buffer tends to infinity, our formalism yields a finite, nonsin-
gular Fröhlich matrix element at the zone center, in complete
agreement with truncated DFPT calculations. The level of
agreement that can be seen in Figs. 3 and 4 demonstrates the
accuracy of our approach and shows that our method works
seamlessly for periodic supercell calculations with finite vac-
uum buffer and for truncated 2D calculations with infinite
vacuum.

It might be worth to point out that our matrix element is
designed to describe the long-wavelength limit of gmnν (k, q‖),
therefore a deviation between our results and DFPT calcula-
tions at large q‖ in Figs. 3 and 4 is expected. This deviation
merely indicates that, at large q‖, the coupling mechanism is
no longer of Fröhlich type. To describe the matrix element
accurately throughout the Brillouin zone, it is sufficient to
combine the present formalism with Wannier-Fourier interpo-
lation, as already demonstrated in Ref. [32].
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FIG. 5. Comparison between various models of the Fröhlich ma-
trix elements for monolayer h-BN, in the limit of infinite vacuum
size. We show the modulus of the matrix element, |gmnν (k, q‖)|,
for m, n, k corresponding to the valence band maximum at the K
point, and ν corresponding to the LO mode. The gray disks are the
reference DFPT calculations using 2D Coulomb truncation. The data
calculated using the method of Ref. [26] are shown as blue squares.
The data obtained with our exact matrix element Eq. (34) are in
magenta. The simplified model of Eq. (62), using the parameters in
Table I, is shown as yellow triangles.

Next, we validate the simplified analytical model for 2D
Fröhlich interactions given by Eq. (62). We recall that this
model is useful to replace explicit DFPT calculations by a
model matrix element that depends only on macroscopic prop-
erties such as dielectric constants, dielectric thickness, and
phonon energy. Using the parameters in Table I for h-BN,
we obtain the yellow triangles in Fig. 5. These values are
compared to the corresponding matrix elements according to
the method of Ref. [26] (blue squares), to our exact matrix
element Eq. (34) (magenta disks), and to DFPT calculations
using 2D Coulomb truncation (gray disks). It is apparent that,
in the long-wavelength region, all these approaches are in
very close agreement to each other. This successful compar-
ison further demonstrates the validity of our approach and
provides additional cross-validation of previously proposed
approaches [26].

C. Evolution of the Fröhlich coupling from 3D to 2D

In this section, we discuss the transition of the polar Fröh-
lich coupling from 3D to 2D using the matrix element in
Eq. (34). To keep the focus on the essential physics, we use the
rectangular profile for the electron wave functions, as given
by Eq. (41), and we employ materials parameter for h-BN, as
reported in Table I.

Figure 6(a) shows the modulus of the electron-phonon
matrix element, |gmnν (k, q‖)|, for m, n, ν corresponding to the
valence band top of h-BN at the K point and the LO mode.
We consider phonon wave vectors along the �M path (the
curves along the �K path look very similar as already seen in
Figs. 3–5). In Fig. 6 we compare the matrix elements obtained
for various supercell sizes c along the z direction, including
c = 20 Å (green), 40 Å (yellow), 140 Å (orange), and c → ∞
(blue).
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FIG. 6. (a) Modulus of the long-range part of the electron-
phonon matrix element, |gmnν (k, q‖)|, for m, n, ν corresponding to
the valence band top of h-BN at the K point and the LO mode.
We consider phonon wave vectors along the �M path. These data
were calculated using Eq. (34), for various supercell sizes c along
the z direction: c = 20 Å(green), 40 Å (yellow), 140 Å (orange), and
c → ∞ (blue). (b) Same raw data as in (a), but this time plotted as
2π |q‖||gmnν (k, q‖)|2.

We can see that, for all finite values of c, the matrix element
exhibits a singularity at q‖ = 0, as in the case of the 3D Fröh-
lich interaction. See, for example, the curve for c = 140 Å in
Fig. 6(a). Although a nonsingular matrix element is only ob-
tained for c → ∞, calculations using finite supercell sizes are
still meaningful, because what matters in actual calculations
is the integral of the square modulus of the matrix element
over the Brillouin zone, as already discussed in relation to
Eq. (67). Figure 6(b) shows that this quantity converges to the
infinite-vacuum case with increasing c. Correspondingly, the
singular region of the Brillouin zone shrinks as c increases,
so that the contribution of the singularity to Eq. (67) tends to
become negligible at large c. Therefore, supercell calculations
without Coulomb truncation constitute a viable strategy for
studying Fröhlich interactions in 2D and quasi-2D systems,
with the proviso that the Wannier-Fourier interpolation strat-
egy of Ref. [32] be replaced by the generalized interpolation
procedure given by Eq. (34), and that the convergence of the
target physical property with respected to supercell size c be
achieved.

One further option that could be explored to accelerate
the convergence of the calculations, is to combine our matrix
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elements at finite c with our expressions for c → ∞. For ex-
ample, if we call gDFPT the matrix element obtained by direct
DFPT calculations on a coarse Brillouin-zone grid, g2D(c) the
matrix element obtained from Eq. (34) with a finite supercell
size c, an g2D(c = ∞) the matrix element obtained from the
limit form in Eq. (51), we could envision a Wannier-Fourier
interpolation strategy as follows: (1) Perform supercell cal-
culations without Coulomb truncation, yielding gDFPT. (2)
Remove the long-range component by subtracting g2D(c).
This defines the short-range component gsr = gDFPT − g2D(c).
(3) Interpolate the short-range component as usual [35]. (4)
Add to the interpolated short-range matrix elements the long-
range component corresponding to the infinite-supercell limit,
g = gsr + g2D(c = ∞). This approach could also serve to test
the convergence of the calculations on the coarse grid vs
supercell size c.

VII. CONCLUSION

In this work we developed a unified description of the
ab initio Fröhlich matrix element that enables calculations of
long-range polar electron-phonon couplings in 3D and 2D ma-
terials within a single formalism. We showed that the present
approach recovers the limits of bulk 3D materials and isolated
2D materials obtained in previous literature. In particular, our
generalized matrix element reduces to the 3D Fröhlich matrix
element of Ref. [32] when the interlayer separation D between
periodic images of the slab vanishes, and it reduces to the
2D Fröhlich matrix element of Ref. [26] when the interlayer
separation D becomes infinite.

We validated our methodology by performing DFPT cal-
culations for two systems, monolayer h-BN and monolayer
MoS2. In each case, we performed DFPT calculations using
finite-size supercells without Coulomb truncation, as well as
DFPT calculations employing 2D Couloumb truncation. In
both cases our Fröhlich matrix element successfully matches
explicit DFPT calculations in the long-wavelength region.
These results indicate that the present technique is ready to be
employed in conjunction with Wannier-Fourier interpolation
of the electron-phonon matrix element [35]. In particular, the
present approach can be implemented as a straightforward
extension of the method of Ref. [32] in existing software
packages like EPW [77].

In this work we also developed a minimal model of polar
electron-phonon interactions in 2D. In fact, Eq. (62) provides
a simple yet very accurate expression for the Fröhlich matrix

element that depends on only the lattice parameters, the char-
acteristic phonon energy, and the static and high-frequency
dielectric constants of the 2D material. Although similar ex-
pressions were reported in previous literature [26,27], this
work establishes a transparent and direct link with macro-
scopic materials properties that are readily available. We
expect that this minimal model will facilitate the investiga-
tion of Fröhlich couplings in 2D using model Hamiltonian
approaches, and will help extracting the essential physics from
advanced ab initio calculations.

We hope that the present cross-dimensional generaliza-
tion of the ab initio Fröhlich matrix element will enable
further work in the physics of electron-phonon interactions
in semiconductor/insulator interfaces, surfaces, 2D materials
and their heterostructures.
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APPENDIX: KERNEL FUNCTION

In this Appendix we provide the complete expression for
the the kernel function K (Q, τz ) introduced in Eq. (28) and
used in the generalized Fröhlich matrix element in Eq. (34):

K (Q, τz ) = 1

γ − − γ +
1

Q2

{
[(α + γ −β )eQ‖τz + (β + γ −α)e−Q‖τz ]

×
[

(α + γ +β )(e(Q‖−iQz )τz − e−(Q‖−iQz )d )(Q‖ + iQz ) − (β + γ +α)(e−(Q‖+iQz )τz − e(Q‖+iQz )d )(Q‖ − iQz )

+ α + γ +β

e−iQzc+η − 1
(1 − e−(Q‖−iQz )d )(Q‖ + iQz ) − β + γ +α

e−iQzc+η − 1
(1 − e(Q‖+iQz )d )(Q‖ − iQz )

+ 1

e−iQzc+η − 1
(e(Q‖−iQz )D − 1)(Q‖ + iQz ) − γ +

e−iQzc+η − 1
(e−(Q‖+iQz )D − 1)(Q‖ − iQz )

]
+ [(α + γ +β )eQ‖τz + (β + γ +α)e−Q‖τz ]
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×
[

(α + γ −β )(1 − e(Q‖−iQz )τz )(Q‖ + iQz ) − (β + γ −α)(1 − e−(Q‖+iQz )τz )(Q‖ − iQz )

+ α + γ −β

eiQzc+η − 1
(1 − e−(Q‖−iQz )d )(Q‖ + iQz ) − β + γ −α

eiQzc+η − 1
(1 − e(Q‖+iQz )d )(Q‖ − iQz )

+ (e(Q‖−iQz )D − 1)(Q‖ + iQz ) − γ −(e−(Q‖+iQz )D − 1)(Q‖ − iQz )

+ 1

eiQzc+η − 1
(e(Q‖−iQz )D − 1)(Q‖ + iQz ) − γ −

eiQzc+η − 1
(e−(Q‖+iQz )D − 1)(Q‖ − iQz )

]}
. (A1)

The definitions of the parameters α, β, γ ±, and η are given in Eqs. (20)–(23).
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