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Charging of Majorana edge modes caused by interaction: Exact results
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The ground-state behavior of a spinless fermion chain with pairing (the Kitaev chain) and an interaction
between fermions at neighboring sites is studied for free open boundaries. Using the exact quantum solution, it
has been shown that there can exist boundary bound states for many values of the interaction. The interaction
produces charging of the vacua of the model and charging of the boundary bound states. The theory also describes
the behavior of an XYZ spin-1/2 chain with free open edges.
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I. INTRODUCTION

Recently, Majorana zero-energy edge modes have become
a subject of interest to researchers; see, e.g., Refs. [1–3]. Ac-
cording to Ref. [4] those modes can be used as a topological
qubit in quantum computers. The qubit is a two-level system,
an elementary bit for a quantum computer. A topological qubit
can be formed by two Majorana fermions situated at different
edges of the system. The topological qubit is more stable
with respect to local noise than the standard qubit. It is more
difficult to destroy the quantum coherence for a set of such
topological qubits. Majorana edge modes were proposed to
be realized in many systems, and some realizations have been
observed by now; see, e.g., Refs. [5–8].

Majorana edge modes must have energies lying inside the
gap of bulk states, to distinguish them from the latter; that is,
they are the manifestation of the topological superconductiv-
ity. A Majorana state fixed at one edge can be observed [9,10].
In the original contribution [4] and in most of the publications
that followed (for a review, see, e.g., Refs. [2,3]), noninter-
acting fermions were considered. The question appears, How
can interactions between fermions affect edge Majorana zero
modes in quantum chains? In recent years several studies
[11–26] considered such a situation. However, in those works
the interaction was taken into account in the framework of,
e.g., the density matrix renormalization group (numerically),
the Luttinger liquid limit (which neglects higher-energy
states), the variational matrix product state technique, or,
perturbatively, using, e.g., the renormalization group (except
for the exact result [21]; see below). In some works, special
cases were studied, in which interacting models were mapped
onto noninteracting ones. On the other hand, the theory of
integrable models implies that there is a possibility to obtain
exact results for the interacting chain. Motivated by that
question, based on the exact quantum Bethe ansatz solution,
in this paper it is shown that for the interacting Kitaev chain
with free open boundaries there can exist boundary bound
states equivalent to edge Majorana operators with zero (in the
limit of an infinite-length chain) energy. It is also shown that

the model possesses degenerate ground states. In addition to
simple boundary bound states for the noninteracting system
(cf. Ref. [4]), in the interacting case there exist boundary
string bound states with zero energy in the infinite chain,
caused by the interaction, which yield charged vacua and
charged boundary bound states of the system.

II. CONSIDERED MODEL

Let us study the open Kitaev chain of spinless fermions,
which interact at neighboring sites, with the Hamiltonian

H =
L−1∑
j=1

(−μ[n j − (1/2)] − (ta†
j a j+1 − �a ja j+1 + H.c.)

+V [n j − (1/2)][n j+1 − (1/2)]) − μ[nL − (1/2)]. (1)

Here, a†
j (a j) denotes the creating (destroying) operator of a

spinless fermion at the site j, n j = a†
j a j , t denotes the hopping

integral, � = |�| exp(iθ ) denotes the pairing amplitude, μ �
0 is the chemical potential, V is the nearest-neighbor coupling
parameter, and L is the number of sites in the chain. Kitaev [4]
considered the noninteracting chain V = 0. He suggested that
one can replace Dirac fermion operators a†

j and a j with other
fermion operators, Majorana ones, c j , j = 1, . . . , 2L, as

c2 j−1 = eiθ/2a j + e−iθ/2a†
j , c2 j = −ieiθ/2a j + ie−iθ/2a†

j ,

(2)

where j = 1, . . . , L. Majorana operators satisfy the fol-
lowing relations: c†

j = c j , and c jcm + cmc j = 2δ j,m, j, m =
1, . . . , 2L. In the representation of Majorana operators the
considered Hamiltonian can be rewritten as

H = i

2

L−1∑
j=1

(
−μc2 j−1c2 j + (t + |�|)c2 jc2 j+1 + (−t + |�|)

× c2 j−1c2 j+2 + iV

2
c2 j−1c2 jc2 j+1c2 j+2

)
− i

2
μc2L−1c2L.

(3)
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Kitaev has pointed out that the pair of Majorana operators,
which forms the Dirac operator, can be connected to the same
site of the original lattice, i.e., Majorana operators with the
indices 2 j and 2 j − 1 [see Ref. (2)], or to the neighboring
sites of the original lattice

ã j = (c2 j + ic2 j+1)/2, ã†
j = (c2 j − ic2 j+1)/2. (4)

In that case the Majorana operators c1 and c2L remain unpaired
(for instance, they do not enter the Hamiltonian for |�| = t
and V = μ = 0). For the chain without interactions V = 0,
Kitaev has shown that for finite L for 2|t | > |μ| and � �= 0
the system possesses two ground states with an exponentially
small energy difference between them and different fermionic
parities P = ∏

j (−ic2 j−1c2 j ). Both states have the same bulk
properties, but they have different boundary ones. It should
be mentioned that two Majorana operators can be bonded into
a boundary mode, constituting the phase coherence between
two edges. Boundary modes are localized at either edge of the
chain with zero energy for L → ∞. For the noninteracting
situation V = 0 the condition 2|t | < |μ| defines the region of
a normal superconductor, where there are no boundary states.

Now our goal is to find whether boundary modes can exist
in the interacting case. From now on we consider for sim-
plicity the case of real �, i.e., θ = 0, and μ = 0. According
to Ref. [4], the case with zero chemical potential for V = 0
belongs to the interval where two edge Majorana operators
are bound into the edge bound state. The Jordan-Wigner
transformation [27] c2 j−1 = σ x

j

∏ j−1
k=1 σ z

k , c2 j = σ
y
j

∏ j−1
k=1 σ z

k ,
with σ

x,y,z
j being the Pauli operators of the projections of

spin 1/2 at the site j, can be applied. In the terms of spin
operators, Hamiltonian (1) or (3) can be exactly rewritten as
the Hamiltonian of the spin-1/2 XYZ chain with open free
boundaries as

H = (1/2)
L−1∑
j=1

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1

)
, (5)

with Jx,y = −(t ± �), Jz = V/2. After unitary transformation
the system has the same set of eigenvalues. Notice, however,
that Kitaev has pointed out also that after the nonlocal Jordan-
Wigner transformation for the Jz = 0 case (the XY spin-1/2
chain model) the spin chain is ordered with a nonzero order
parameter 〈σ x

j 〉 �= 0 in the ground state [28]. For the spin
chain, external fields can interact with the order parameter,
breaking the phase coherence between the two mentioned
ground states [4].

III. BETHE ANSATZ SOLUTION

In our solution the exact Bethe ansatz integrability [29]
is used. In the Bethe ansatz scheme each eigenvalue and
eigenstate of the Hamiltonian equations (1), (3), and (5) can
be parametrized by the set of quantum numbers, rapidities, u j .
Let us write the parameters of the Hamiltonians (1), (3), and
(5) as

Jx = −t − � = eiπηϑ1[η + (τ/2)]

ϑ1(τ/2)
,

Jy = −t + � = eiπηϑ1[η + (1 + τ )/2]

ϑ1[(1 + τ )/2]
,

Jz = V

2
= ϑ1[η + (1/2)]

ϑ1(1/2)
. (6)

Here, ϑ1(u, τ ) = i exp(iπτ/4)
∑∞

m=−∞(−1)m exp (iπ [(m2 +
m)τ + (2m + 1)u]) is the elliptic theta function, so that the
complex values η and τ totally determine the parameters of
the Hamiltonians (1), (3), and (5) for any relations between
Jx,y,z (or between t , �, and V ). In what follows we will use
the standard shorthand notations ϑ1,2,3,4(u, τ ) ≡ ϑ1,2,3,4(u), if
theta functions are used for the same parameter τ . Here, one
considers imaginary τ with Imτ > 0; sometimes one uses the
notation q = exp(iπτ ).

Using the quantum inverse scattering method (the algebraic
Bethe ansatz [29]), it is possible to show that Hamiltonian
equation (5) [and hence Hamiltonian equations (1) and (3)]
is the derivative (up to the constant multiplier; see below) of
the logarithm of the transfer matrix t (u) with respect to the
spectral parameter u taken at u = 0, where

t (u) = Tr0[K+
0 (u)L0L(u)L0L−1(u) · · · L01(u)

× K−
0 (u)L10(u)L20(u) · · · LL0(u)]. (7)

Here, 0 denotes the auxiliary subspace, and each L op-
erator can be written as L0 j (u) = ∑

α=0,x,y,z w j (u)σα
0 ⊗ σα

j ,
with σ 0 = I being the unity matrix. The following functions
are used: wx,y(u) = [c(u) ± d (u)]/2 and w0,z(u) = [a(u) ±
b(u)]/2, with

a(u) = ϑ4(u, 2τ )ϑ1(u + η, 2τ )

ϑ4(0, 2τ )ϑ1(η, 2τ )
,

b(u) = ϑ1(u, 2τ )ϑ4(u + η, 2τ )

ϑ1(0, 2τ )ϑ4(η, 2τ )
,

c(u) = ϑ4(u, 2τ )ϑ4(u + η, 2τ )

ϑ4(0, 2τ )ϑ4(η, 2τ )
,

d (u) = ϑ1(u, 2τ )ϑ1(u + η, 2τ )

ϑ1(0, 2τ )ϑ1(η, 2τ )
, (8)

where ϑ4(u, τ ) is the elliptic theta function ϑ4(u, τ ) = exp ( −
iπ [u + (1/2) + (τ/4)])ϑ1[u + (τ/2)]. L operators satisfy the
Yang-Baxter equation [29–31]

L12(u − v)L13(u − w)L23(v − w)

= L23(v − w)L13(u − w)L12(u − v). (9)

The reflection matrices K±
0 (u) for free open boundary condi-

tions can be written as unitary 2 × 2 matrices I in the auxiliary
subspace as

K− = ϑ1(2u)

2ϑ1(u)
I, K+ = ϑ1(−2u − 2η)

2ϑ1(−u − η)
I; (10)

they satisfy the reflection equations [29,32,33]

L12(u − v)K−
1 (u)L21(u + v)K−

2 (v)

= K−
2 (v)L12(u + v)K−

1 (u)L21(u − v),

L12(v − u)K+
1 (u)L21(−u − v − 2)K+

2 (v)

= K+
2 (v)L12(−u − v − 2)K+

1 (u)L21(v − u). (11)

Transfer matrices with different spectral parameters commute,
[t (u), t (v)] = 0; this constitutes the exact integrability of the
problem [31,34]. Then, the Hamiltonian of the open free
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chains, which can be presented as a function of the transfer
matrix,

H = ϑ1(η)

2ϑ ′
1(u)u=0

[(
t ′(u)

t (u)

)
u=0

− (L − 1)
ϑ ′

1(η)

ϑ1(η)
− ϑ ′

1(2η)

ϑ1(2η)

]
,

(12)

where t ′(u) = ∂t (u)/∂u and ϑ ′
1(u) = ∂ϑ1(u, τ )/∂u, com-

mutes with t (u) and hence has the same set of eigenfunctions
as the transfer matrix t (u).

In the framework of the Bethe ansatz there are many ways
to obtain the set of equations for rapidities. In this paper the
procedure of the functional Bethe ansatz (also called T -Q
relations [31,35]) is used. For instance, one can apply the
result of the T -Q relations of the XYZ spin-1/2 chain with
arbitrary boundary fields [36] to the case of free open bound-
aries. For odd L the rapidities uM

j=1 satisfy the Bethe ansatz
equations (BAEs)

X 2L+1
η/2 (u j )X

−1
η/2[u j + (1/2)]X −1

η/2[u j − (1 + τ )/2]

× X −1
η/2[u j + (τ/2)] =

M∏
k=1

Xη(u j − uk )Xη(u j + uk ),

(13)

where M = (L − 1)/2 and Xα (u) = ϑ1(u + α)/ϑ1(u − α).
The eigenvalue of the Hamiltonian is

E = ϑ1(η)

ϑ ′
1(u)u=0

(
−L − 1

2

ϑ ′
1(η)

ϑ1(η)

+
M∑

j=1

[
ϑ ′

1(u j − [η/2])

ϑ1(u j − [η/2])
− ϑ ′

1(u j + [η/2])

ϑ1(u j + [η/2])

])
. (14)

IV. LIMITING CASES

First, let us consider two known limiting cases of the
BAEs and the energy. The case Jx = Jy (� = 0) corresponds
to the limit τ →= +i∞. For that limit we can use the first
terms in the series for theta functions, limτ→+i∞ ϑ1(u) =
−2 exp(iπτ/4) sin(πu) + · · · , and limτ→+i∞ ϑ4(u) = 1 −
2 exp(iπτ ) cos(2πu) + · · · . In that case the expressions for
the Hamiltonian, the energy (14), and the BAEs (13) co-
incide with the Hamiltonian, the energy, and the BAEs of
the XXZ spin-1/2 chain, respectively (or the Hamiltonian
and the energy of the interacting spinless fermions without
pairing); see, e.g., Ref. [37]. Notice that for the easy-axis
anisotropy case of the XXZ spin chain one uses imaginary
values of η, while for the easy-plane case real values of η are
used. That limiting case was studied in detail in Ref. [37].
It was shown there that for the open chain with free edges
for the easy-axis anisotropy (|Jx = Jy| < Jz) of the XXZ an-
tiferromagnetic spin chain related to the Mott insulator case
V > 2|t | of the spinless fermion chain there exist solutions
of the BAEs localized at the boundary with zero energy at
L → ∞; the analysis is equivalent to the one presented below.
In the simplest case they are related to zero Majorana modes;
however, there are other boundary bound states (strings; see
below) with zero energy at L → ∞. On the other hand,
for the easy-plane anisotropy (|Jx = Jy| � Jz) of the XXZ

spin chain related to the metallic case V � 2|t | of fermions
there are no such boundary bound states for the chain with
free boundaries. Similar results can be obtained for Jx = Jz

(−t − � = V/2) or Jy = Jz (−t + � = V/2). In the former
case, localized boundary bound states exist for |Jx = Jz| < Jy

[i.e., for V = −2(t + �) with | − t − �| < −t + �], while in
the latter case they exist for |Jy = Jz| < Jx [for V = 2(� − t )
with | − t + �| < −t − �].

In the other known limiting case it is easy to see that the
BAEs for the case in which any of the coupling constants Jx,y,z

is equal to zero [38] (such a limiting case can be reached by
the choice of the parameter η) describe noninteracting quasi-
particles: The right-hand sides of Eqs. (13) do not depend on
uk , i.e., each rapidity u j is determined from its own equa-
tion, independent of other rapidities. Notice that specifically
such a situation was studied in Refs. [20,23–26] for t = �,
related to Jy = 0 [it is reached for η = −(1 + τ )/2]. For
example, for the noninteracting Kitaev chain Jz = V/2 = 0
[4] (or the XY spin-1/2 chain) the condition η = 1/2 can be
applied. For that case, Jx = J−1

y = iϑ1[(1 + τ )/2]/ϑ1(τ/2) =
ϑ3(0, τ )/ϑ4(0, τ ), where ϑ3(u, τ ) = ϑ4(u + [1/2], τ ) is the
elliptic theta function. The BAEs are the quantization condi-
tions for quasimomenta (the latter can be written as a function
of the rapidities for any Bethe ansatz solvable model [29])
of noninteracting quasiparticles. In the general case of � �= 0
(Jx �= Jy) there exist solutions of the BAEs, which describe
boundary bound states. Physical eigenstates, related to those
solutions, have zero energy for L → ∞ and are nothing else
than Majorana zero edge modes. On the other hand, taking
then the limit τ → +i∞, the situation without pairing of
noninteracting fermions (� = 0, t = −1), i.e., the spin-1/2
XX chain (Jx = Jy = 1), is obtained. In that case there are no
boundary bound states and, thus, no edge Majorana modes in
the system, in agreement with the analysis [4] for μ = 0.

V. GENERAL CASE

Then, returning to the general case of the interacting Kitaev
chain (or the XYZ spin-1/2 chain), the most important sit-
uation will be studied, namely, the so-called thermodynamic
limit, in which one has L → ∞, M → ∞ with the finite ratio
M/L. The standard technique of the Bethe ansatz is used
[29]. Obviously, in the thermodynamic limit there must be
no difference between even and odd L, while for the finite
L such a difference exists. The ground state of any fermion
system is formed by the total filling of the Fermi sea: All
eigenstates with negative energies have a filling factor of 1,
while for eigenstates with positive energies the filling factor
is zero. Simple excitations of fermion systems are related to
holes for eigenstates with negative energies and/or filling of
eigenstates with positive energies, or combinations of such
states. In the main contribution in the L−1 approximation
(E = LE0 + E1 + · · · ; i.e., for E0), the ground state of our
system corresponds to only real roots of Eqs. (13) for u j . Due
to nonzero V there can exist many other solutions to Eqs. (13),
namely, bound states (called strings) [29], which are related
to complex values of uj . Such states do not exist, obviously,
for the noninteracting Kitaev chain or the XY spin-1/2 chain.
However, none of those string solutions have negative ener-
gies, and therefore they do not contribute to the ground-state
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formation [31,34,35]. (Notice that for finite L the situation can
be different.)

Using the known Bethe ansatz technique for densities of
roots of BAEs in the thermodynamic limit [29], the main
contribution in L−1 to the ground-state energy can be found
(from now on the region of totally imaginary η with 0 <

−iη < −iπτϑ2
3 (0)/8 is considered [34]; it is possible to show

[31,34,39] that other regions of parameters of the Hamiltonian
can be obtained using that solution):

E0 = ϑ1(η)

ϑ ′
1(u)u=0

[
iπ + 2iπ

∞∑
n=1

sin[πn(τ − η)]

sin(πnτ ) cos(πnη)

− ϑ ′
1(η)

2ϑ1(η)

]
. (15)

This coincides with the ground-state energy of the periodic
spin-1/2 XYZ chain (in the thermodynamic limit) [31,34].

Elementary bulk excitations with respect to the ground
state are related to holes in the distribution of real rapidities uj ,
which form the Fermi sea (i.e., which have negative energies)
[40]. The generic physical excitation, related to two holes,
u1,2, has the energy

ee = iπ
ϑ1(η)

ϑ ′
1(u)u=0

∑
1,2

∞∑
n=−∞

exp[iπnu1,2]

sin(πnτ ) cos(πnη)
, (16)

with the quasimomenta of each hole related to the rapidity
via p1,2 = −i ln Xη/2(u1,2). Each hole carries the fractional
charge 1/2 with respect to the ground state. (Notice that for
finite odd L there exist excitations related to one hole in
the distribution of the rapidities situated at the edge of the
band (real roots of the BAE u j are distributed in the interval
[−1, 1]), i.e., with u = ±1, which is gapless. However, it is
possible to show that the eigenfunctions (see, e.g., Ref. [35])
of those states are exactly zero in the thermodynamic limit.)
According to Ref. [41], physical excitations can carry only
integer charge, i.e., they are formed by an even number of
holes, so the elementary generic physical bulk excitation is
formed by the pair of holes. Such a state has an activa-
tion (gap) [40] for any nonequal pairs of |Jx,y,z| (nonequal
| − t − �|, | − t + �|, |V |/2).

This work is interested in the finite-size corrections to
the energy E0 of the order of L−1 [29]. Those corrections
determine, among other important properties, the difference
between the system with periodic boundary conditions and
the system with open boundary conditions. Edges of the chain
in the limit L → ∞ do not interact, so one can consider
the effects of both edges separately. Let us first consider,
for instance, the left edge of the chain. The most interest-
ing contribution from open free edges is determined by the
second, third, and fourth multipliers on the left-hand side of
Eqs. (13), which are present in the BAEs for the open chain
and absent for the ones for the periodic chain [31,34]. Let
us investigate the effect of those terms separately. Consider
the effect of the second term. Similar to Refs. [37,42], the
additional (with respect to the bulk ones) root of Eqs. (13)
can be found, namely, with u(1)

0 = −(1/2) + (η/2) (imagi-
nary η). It is the solution to Eqs. (13) because of the mutual
cancellation of the increasing modulus of the first multiplier
on the left-hand side of Eqs. (13) and the decreasing mod-

ulus of the second multiplier, when L → ∞ and u j → u(1)
0 .

That boundary bound state is localized at the left edge of
the chain: Its eigenfunction decays exponentially with the
distance from that edge. Such a boundary bound state has the
energy

e(1)
b = − ϑ1(η)

ϑ ′
1(u)u=0

(
ϑ ′

1(η − [1/2])

ϑ1(η − [1/2])
+ 2π i[1 + 2 cot(2πη)]

)
.

(17)

The second term in Eq. (17) is introduced to remove the
solution u j = u(1)

0 from the right-hand side of the BAEs to
keep the total number of solutions M. That procedure is often
called the renormalization of the vacuum [42]. The boundary
bound state has negative energy, and hence it contributes to
the Fermi sea of the open chain. The boundary bound state
carries the fractional charge −1/2 with respect to the ground
state of the periodic chain. The energy of that bound state
is smaller than the energy of the minimal bulk excitation.
This means that such a boundary bound state of the inter-
acting fermion chain has an energy whose value is inside the
gap for bulk excitations. For the interacting chain there also
exist boundary bound states, which correspond to complex
boundary solutions to Eqs. (13), similar to the string bound
states of the bulk. They correspond to the roots of Eqs. (13)
of the form u0 − 2lη, u0 − 2(l − 1)η, . . . , u0 + 2mη with in-
teger m, l � 0 (the case m = l = 0 is the “pure” boundary
bound state). They also carry fractional charges. However, it
is possible to show, similar to the analysis of Refs. [37,42],
that either their energies are zero for strings with nonzero m
and l = 0 (they represent charged vacua) or they are equal to
e(1)

b for boundary strings with nonzero m and l � 1 (they rep-
resent charged boundary excitations). There are no such string
boundary states for the noninteracting case V = 0. Similar
to bulk excitations, physical boundary excitations also should
carry an integer charge. The analysis shows that the boundary
state at the other (right) edge of the chain has the energy −e(1)

b
(i.e., it is positive) and carries positive charge 1/2. [The other
possibility to keep the integer total charge of the Fermi sea of
the system is to have the bulk excitation (the hole in the distri-
bution of rapidities with real u j) with the energy −e(1)

b and the
charge 1/2.] Hence the energy of the physical boundary edge
states of this type is zero in the thermodynamic limit L → ∞,
and the physical boundary bound state carries zero charge. It
does not matter at which edge the boundary bound state with
the negative energy is situated; hence the doubly degenerate
situation takes place, as in the noninteracting case [4].

A similar analysis can be applied to the third and fourth
multipliers of the left-hand side of the BAEs (13). Bound-
ary bound states at each edge with u(2)

0 = (1 + τ )/2 + (η/2)
and u(3)

0 = −(τ/2) + (η/2), respectively, and related bound-
ary bound strings for the general case V �= 0 are found. Those
solutions also describe boundary bound states carrying frac-
tional charges. However, their energies are positive, and hence
these states do not contribute to the ground state.

In general our analysis shows that boundary bound states
and strings with zero energy for L → ∞ (the former are
totally equivalent to pure Majorana edge states for the non-
interacting case: They are located at the edges of the chain,
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FIG. 1. The ground-state phase diagram of the interacting Kitaev
chain.

they have zero energy, being inside the gap of bulk eigenstates,
and they are doubly degenerate, according to the definition in
Ref. [4]) in the Kitaev chain exist for any finite interaction
V between fermions if | − t − �|, | − t + �|, and |V |/2 (or
|Jx|, |Jy|, and |Jz|) are pairwise unequal to each other. For
pairwise equal cases, pure boundary bound states exist, e.g.,
for the spinless fermion counterpart with strong coupling of
the easy-axis magnetic (XXZ) spin-1/2 chain. In that case,
bulk eigenstates are gapped, and there exist doubly degener-
ate pure boundary bound eigenstates with zero energy [37]:
From those aspects they have the same properties as Kitaev’s
zero modes [4]. Notice that the XXZ gapped case belongs
to the region of existence of so-called strong zero modes,
studied exactly by Fendley [21]. In contrast, for � = 0 and
|V | � 2|t |, i.e., the normal metallic regime, the counterpart of
the easy-plane spin chain, the localized boundary bound states
do not exist. In Fig. 1 the zero-temperature phase diagram is
presented. Boundary zero-energy modes exist everywhere ex-
cept on the bold lines, which distinguish phases with different
order parameters for the spin-1/2 XYZ chain counterpart. In
the phases with large |V | (left and right parts of the figure)
the magnetic order parameter is directed along the z axis (the
ordering is ferromagnetic for V < 0 and antiferromagnetic for
V > 0), while the phases with large |�| (upper and lower
parts of the figure) manifest the ordering with the magnetic
order parameter directed along axes x and y, depending on
the relative values of Jx and Jy. The region of the exis-
tence of boundary bound states obtained in this paper agrees
with the exact result obtained in Ref. [21]. Fendley provided
explicit expressions for the operators of strong zero modes
in the XYZ spin-1/2 chain. With the BAE technique used
in this paper, it is demanding to obtain such expressions for
those operators. In the conclusion of Ref. [21], Fendley asks
to what extent his results are related to the integrability of
the model. From this viewpoint, the present results, based
on the integrability, provide the complementary information
about boundary zero-energy modes compared with Ref. [21].
However, the technique used in Ref. [21] does not permit

one to study boundary strings, i.e., the charging of boundary
modes (and vacua), which is shown here to be present in the
considered model. Boundary strings, as well as other strings,
appear as eigenstates only in interacting systems; hence they
are the manifestation of the interaction present in the model
compared with the noninteracting Kitaev case. While pure
boundary bound states with zero energy, considered in this
paper, have the same properties as Kitaev’s zero-energy edge
modes, the boundary bound strings differentiate the noninter-
acting case from the interacting one. In the field-theoretical
approach the boundary bound strings can be interpreted as
“breathing” of the pure boundary bound states. The fact that
those boundary bound strings have the same (zero) energy
as simple boundary bound states (which can be considered
as strings of length 0) means that interaction in the Kitaev
chain produces a much higher level of degeneracy of boundary
bound states than is produced in the noninteracting Kitaev
chain.

The ground-state behavior of the interacting spinless
fermion periodic chain with pairing (related to the XYZ spin-
1/2 chain) is reminiscent of that of the chain of fermions
without pairing in the strong-interaction regime (easy-axis
XXZ spin-1/2 chain). This is not a surprise, because already
Gaudin pointed out that similarity [35]: For example, the
density of real roots of the Bethe ansatz equation in the
thermodynamic limit L → ∞ for the ground state does not
depend on τ . However, for the open chain there exists a
difference, which results, e.g., in the boundary bound states
of several types (though some of them do not contribute to the
ground-state formation).

The ground-state surface energy Es, which is the difference
between the ground-state energy of the fermion chain with
free open boundary conditions [related to M = (L − 1)/2 for
both situations in the thermodynamic limit] and the ground-
state energy of the chain with periodic boundary conditions,
is

Es = ϑ ′
1(η)

ϑ ′
1(0)

− ϑ1(η)

ϑ ′
1(0)

(
ϑ ′

1(η − [1/2])

ϑ1(η − [1/2])

+
∞∑

n=1

2π i

cos(πnη)
[sin(πn[τ − η − 1]) − sin(πn[η + 1])

+ sin(πn[η − 1]) cos(πn[2η − 1])]

)
. (18)

VI. SUMMARY

In summary, using the exact integrability of the considered
model, it has been shown that for the interacting spinless
fermion chain with pairing for open free boundary conditions,
edge bound states emerge. The regions of values of the in-
teraction between nearest-neighbor fermions, at which they
exist, have been analyzed. The energy of those edge modes
is zero for the infinite chain, and there is a degeneracy of the
ground state, similar to the noninteracting spinless fermions
with pairing (Kitaev chain). On the other hand, we show that
boundary string states for such a one-dimensional interacting
topological superconductor can exist. Those strings charge
the vacua and physical boundary bound states. This means
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that in the interacting Kitaev chain, zero-energy boundary
bound states are highly degenerate. The developed theory
also describes the behavior of the XYZ spin-1/2 chain with
free open edges. The exact information about edge modes
with zero energy, studied in this paper, can be used for the
description of the behavior of topological qubits in topological
quantum computation, because interaction effects (though
perhaps small) have to be present in any realistic quantum
devices. When constructing topological qubits, one needs
to take into account the higher degeneracy of zero edge

Majorana modes due to their charging caused by the in-
terfermion interaction. It will take additional efforts to
distinguish pure edge Majorana modes from other string
boundary bound states.
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