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Valley polarization control in WSe2 monolayer by a single-cycle laser pulse
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The valley degree of freedom in two-dimensional materials provides an opportunity to extend the function-
alities of valleytronic devices. Very short valley lifetimes demand the ultrafast control of valley pseudospin.
Here we theoretically demonstrate the control of valley pseudospin in WSe2 monolayer by a single-cycle
linearly polarized laser pulse. We use the asymmetric electric field controlled by the carrier-envelope phase
(CEP) to make the valley polarization between K and K ′ point in the Brillouin zone (BZ). Time-dependent
density functional theory with spin-orbit interaction reveals that no valley asymmetry and its CEP dependence
is observed within the linear-optical limit. In the nonlinear-optical regime, a linearly polarized pulse induces a
high degree of valley polarization and this polarization is robust against the field strength. Valley polarization
strongly depends and oscillates as a function of CEP. The carrier density distribution forms nodes as the laser
intensity increases, our results indicate that the position of the carrier density in the BZ can be controlled by the
laser intensity. From the analysis by the massive Dirac Hamiltonian model, the nodes of the carrier density can
be attributed to the Landau-Zener-Stückelberg interference of wave packets of the electron wave function.
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I. INTRODUCTION

Mechanical exfoliation of atomically thin layers by scotch
tape from van der Waals bulk crystals has opened up
new opportunities for the design of nanoscale quantum
materials [1,2]. Specifically, the realization of monolayer
graphene in 2004 [3] has ignited extensive research efforts
on two-dimensional (2D) layered materials. 2D materials ex-
hibit unique mechanical, optical, and electronic properties
compared to their bulk counterparts [4]. Owing to their ex-
traordinary physical properties, the study of 2D monolayers
has now been established as an emerging field. For instance,
one can find numerous reports on graphene [5], silicene [6],
transition metal dichalcogenides (TMDC) [7], and phospho-
rene [8]. 2D materials have a wide range of applications in
the field of electronics and an evolving field of optoelectron-
ics. They feature strong light-matter interaction [4], ultrafast
broadband optical response [9], and large optical nonlinear-
ity [10], thus they have a great potential for optoelectronic
applications such as photodetectors, tunneling, and imaging
devices [2,4,11].

2D materials are classified as magnetic and nonmagnetic
semiconductors, topological insulators, metals, and half-
metals. Within a wide class of 2D materials family, materials
with broken inversion symmetry, such as TMDC monolayers,
have received recent attention [12]. The lack of inversion
symmetry in TMDC monolayer induces a novel Zeeman type
spin splitting which results in two degenerate yet inequivalent
valleys in the band structure [13–16]. Valleys are local minima
that correspond to different crystal momenta in the reciprocal
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space. Spin-orbit coupling (SOC) lifts the spin degeneracy in
both valleys and the opposite spin angular momenta appear
in two valleys owing to the time-reversal symmetry. Thus,
the spin-valley locking and the interplay of two inequiva-
lent valleys give rise to valley-dependent optical selection
rules [17]. Manipulation of valley pseudospin thus becomes
a central theme in the field of valleytronics. Several methods
have been proposed to achieve transient valley polarization
such as optical excitations [18–20], by applying an exter-
nal magnetic field and magnetic proximity effect induced by
the substrate [21–23]. However, due to the several practical
limitations and very short valley lifetimes 103–106 fs [24],
ultrafast control of valley selection on femtosecond timescales
is in urgent need.

Experimental demonstration of intense terahertz pulse
driven subcycle control of valley dynamics has opened a
way to manipulate the valley pseudospin that is switch-
able within a few fs [25]. Moreover, some theoretical works
have also shown the ultrafast control of valley excitation on
a fs timescale [26–31]. Recently, valley polarization using
few-cycle linearly polarized pulses with the controlled carrier-
envelope phase (CEP) has also been proposed by using the
density matrix approach [32].

In this work we investigate the linearly polarized single-
cycle laser pulse control of valley pseudospin in WSe2

monolayer employing real-time time-dependent density func-
tional theory (RT-TDDFT). The use of linearly polarized
pulses to induce valley polarization differentiate the present
study from the previous works where circularly polarized
light is used to induce population imbalance between two val-
leys. Second, the RT-TDDFT can describe electron dynamics
under intense laser field without any empirical parame-
ters [33]. We have developed the program for the electron and
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electromagnetic field dynamics, open-source package Scal-
able Ab initio Light-Matter simulator for Optics and
Nanoscience (SALMON) [34,35], which employs the RT-
TDDFT. We have implemented the SOC with noncollinear
local spin density [36–38] to the SALMON version 2.0 to
describe the spin-dependent electron dynamics.

Laser intensity and carrier-envelope phase (CEP) depen-
dence of the valley polarization is studied. A linearly polarized
single-cycle pulse induces a high degree of valley polariza-
tion. Moreover, the valley polarization is robust against the
field strength although it oscillates as a function of CEP. We
found the distinct node formation of carrier density in the
Bloch phase space induced by the quantum interference at
strong fields (�1011 W/cm2). Our results demonstrate the
single optical cycle control of valley pseudospin by linear
polarized laser pulses.

II. THEORETICAL FORMALISM

A. RT-TDDFT

We use the 2D approximation method that describes the
electron dynamics and light propagation in extremely thin
layers at normal incidence [39,40]. Here we briefly describe
the theoretical formalism for this method.

The polarization and propagation directions for light pulses
are taken along the x axis and z axis, respectively. Also, we
assume that the thin layer is in the xy plane. We consider only
the x component of vector fields and omit the label “x.” By us-
ing the Maxwell equations we can describe the propagation of
macroscopic electromagnetic fields in the form of the vector
potential A(z, t ) as

1

c2

∂2A(z, t )

∂t2 − ∂2A(z, t )

∂z2 = 4π

c
J (z, t ), (1)

where J (z, t ) is the macroscopic current density in a thin layer.
For an atomic monolayer material, the macroscopic electric
current density in Eq. (1) can be expressed as

J (z, t ) ≈ δ(z)J2D(t ), (2)

where J2D(t ) is 2D current density of the monolayer. We deal
with it as a boundary value problem where reflected (trans-
mitted) fields can be determined by the connection conditions
at z = 0. From Eq. (2) we obtain the continuity equation of
A(z, t ) at z = 0 as follows:

A(z = 0, t ) = A(t)(t ) = A(i)(t ) + A(r)(t ), (3)

where A(i), A(r), and A(t) are the incident, reflected, and trans-
mitted fields, respectively. From the Maxwell equation (1) and
Eq. (2) we get the basic equation of the 2D approximation
method,

dA(t)

dt
= dA(i)

dt
+ 2πJ2D[A(t)](t ). (4)

Here J2D[A(t)](t ) is the 2D current density that is determined
by the vector potential at z = 0 and it is equal to A(t)(t ).

By using the velocity gauge [41], the time-dependent
Kohn-Sham (TDKS) equation using Bloch orbitals ub,k(r, t ),
which is a two-component spinor with b being the band in-
dex and k the 2D crystal momentum of the thin layer, is

described as

ih̄
∂

∂t
ub,k(r, t ) =

[
1

2m

(
−ih̄∇ + h̄k + e

c
A(t)(t )

)2

− eϕ(r, t )+v̂
k+ e

h̄c A(t) (t )
NL +vxc(r, t )

]
ub,k(r, t ),

(5)

where the scalar potential ϕ(r, t ) includes the Hartree po-
tential from the electrons and the local part of the ionic
pseudopotentials and we have defined vk

NL ≡ e−ik·rv̂NLeik·r,
where v̂NL is the nonlocal part of the ionic pseudopoten-
tial. vxc(r, t ) is the exchange-correlation potential. The SOC
is incorporated through the j-dependent nonlocal potential
v̂NL [38]. The Bloch orbitals ub,k(r, t ) are defined in a box
containing the unit cell of the 2D thin layer sandwiched by
vacuum regions. The 2D current density J2D[A(t)](t ) in Eq. (4)
is derived from the Bloch orbitals as follows:

J2D(t ) = − e

m

∫
dz

∫
�

dxdy

�

occ∑
b,k

u†
b,k(r, t )

×
{
−ih̄∇ + h̄k + e

c
A(t)(t ) + m

ih̄

[
r, v̂

k+ e
h̄c A(t) (t )

NL

]}
× ub,k(r, t ), (6)

where � is the area of the unit cell and the sum is taken over
the occupied orbitals in the ground state. In the 2D approxi-
mation method, coupled Eqs. (4) and (5) are simultaneously
solved in real time.

The excited electron population is defined as

ρk(t ) =
∑
c,v

∣∣∣∣
∫

�

d3r u∗
v,k(r, t ) uGS

c,k+ e
h̄c x̂A(t) (t )(r)

∣∣∣∣
2

, (7)

where v and c are the indices for the valence and conduction
bands, respectively, and uGS

b,k(r) = ub,k(r, t = 0) is the Bloch
orbital in the ground state.

RT-TDDFT calculations are performed using SALMON
version 2.0. The lattice constant of WSe2 monolayer is set
to a = b = 3.32 Å. The adiabatic local density approximation
with Perdew-Zunger functional [42] is used for the exchange
correlation. A slab approximation is used for the z axis with
the distance of 20 Å between the atomic monolayers. The dy-
namics of the 24 valence electrons are treated explicitly while
the effects of the core electrons are considered through norm-
conserving pseudopotentials from the OpenMX library [43].
The spatial grid sizes and k points are optimized according
to the converge results. The determined parameter of the grid
size is 0.21 Å while the optimized k mesh is 15 × 15 in the
2D Brillouin zone (BZ).

B. Two-band model

In order to understand the physical mechanism behind the
RT-TDDFT results, we perform model calculations using a
minimal band model [15,44,45]. The model Hamiltonian in-
cluding the second order coupling for the low energy physics
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around K or K ′ point is described as below:

H τ [k] =
( 	

2 τat̃k

τat̃k −	
2

)
+ a2k2

(
γ1 γ3

γ3 γ2

)
+

(
0 0
0 τ sλ

)
,

(8)
where τ = +1(−1) corresponds to the K (K ′) point, a is
the lattice constant, 	 is the band gap, t̃ is the hopping
parameter, λ is the spin-orbit splitting of the valence band,
and k is relative to τK . Here we consider only the electron
motion along the x axis and omit the y direction (ky = 0). The
parameters γ1 and γ2 represent the breaking of the electron-
hole symmetry. The parameter γ3 is responsible for the band
asymmetry. These parameters are determined by fitting the
calculated band structure by SALMON. The first and second
terms are the massive Dirac Hamiltonian and its second order
correction term, respectively. The third term is the spin-orbit
coupling Hamiltonian and s = ±1 is the spin index.

By diagonalizing the Hamiltonian we have the conduction
and valence wave functions at the ground state:

φτ
ck =

⎛
⎝

√
�τ

k +ατ
k

2�τ
k

sτ
k

√
�τ

k −ατ
k

2�τ
k

⎞
⎠, φτ

vk =
⎛
⎝

√
�τ

k −ατ
k

2�τ
k

−sτ
k

√
�τ

k +ατ
k

2�τ
k

⎞
⎠, (9)

where ατ
k = (H τ

11[k] − H τ
22[k])/2 and �τ

k =√
(ατ

k )2 + (H τ
12[k])2. Here sτ

k = sgn H τ
12[k] is the sign factor

of the off-diagonal element.
The electron dynamics in the presence of the electric field

E (t ) is described by

ih̄
d

dt
ψτ

k (t ) = H τ
[
k + e

h̄c
A(t )

]
ψτ

k (t ), (10)

where ψτ
k (t ) = (ψτk

1 (t ), ψτk
2 (t ))T is the time-dependent wave

function and A(t ) is the vector potential [it satisfies E (t ) =
−(1/c)dA(t )/dt]. The initial value of the wave function is
taken as follows:

ψτ
k (t = 0) = φτ

vk . (11)

The excitation probability from the valence band to the con-
duction band is written as

Pτ (t ) = 1

Nk

∑
k

|〈φτ
ck|ψτ

k (t )〉|2, (12)

where the sum is taken over a certain region of the k-point
sampling around k = 0. Nk is the number of the sampling
points.

To get an intuitive understanding for the transition, we
describe below an approximate evaluation of Eq. (12) using
the Landau-Zener theory ignoring the second and third terms
in the Hamiltonian of Eq. (8). We note that the Landau-Zener
theory is a semiclassical approximation and can be justified
when the applied electric field is sufficiently strong. The va-
lence and conduction eigenenergies are given by

εck = +�(k), εvk = −�(k), �(k) ≡
√

	2

4
+ a2t̃2k2.

(13)
In this paper we utilize a single-cycle pulse for all the calcu-
lations. In such cases we can assume that the Landau-Zener
transitions occur twice at times t1 and t2 (t2 > t1) for each k

point, at which the vector potential crosses k as follows:

k + e

h̄c
A(t1,2) = 0. (14)

The tunneling probability at t1 and t2 may be written as PLZ

and 1 − PLZ, respectively, where

PLZ = exp

(
−2π

	2

4h̄v

)
, v = 2e

h̄
|E (t1)|at̃ . (15)

By considering the phase factor due to the adiabatic time
evolution, we have

P(t ) ∼ 4PLZ(1 − PLZ) sin2

[∫ t2

t1

dt �
(

k + e

h̄c
A(t )

)]
. (16)

The interference that originates from two transitions at t1 and
t2 is known as the Landau-Zener-Stückelberg interference.
The cancellation condition by the Landau-Zener-Stückelberg
interference is given as∫ t2

t1

dt�
(

k + e

h̄c
A(t )

)
= 0. (17)

Although the Landau-Zener-Stückelberg theory provides a
simple and intuitive understanding for excitation processes,
we should note that it provides results of quantitative accuracy
for a limited parameter region.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the monolayer of WSe2 along with the
first BZ. WSe2 is a layered structure where W atoms are sand-
wiched between the top and bottom Se layers in a hexagonal
lattice. The six corners of hexagonal BZ contain two inequiv-
alent high symmetry K and K ′ points at the edges owing
to the honeycomb crystal structure. The real space armchair
direction of WSe2 belongs to �-M while zigzag corresponds
to �-K in reciprocal space. Figure 1(b) shows the dispersion
of the bands [conduction band minimum (CBM) - valence
band maximum (VBM)] as a function of the wave vector k in
the whole BZ. The band contour at K (K ′) points is a triangle
and this so-called trigonal warping indicates the anisotropic
carrier distributions in the WSe2 monolayer. The electronic
band structure of the WSe2 is shown in Fig. 1(c). WSe2 has a
direct band gap of 1.25 eV at K (K ′) and, due to the lack of
inversion symmetry, all bands are split by the intrinsic SOC
except at the time-reversal invariant � and M point. Thus,
owing to time-reversal symmetry and strong SOC, the top of
the valence band of WSe2 is spin up (spin down) in the K
(K ′) valley. The energy degenerate valleys have a large VBM
spin splitting of ∼0.45 eV that agrees well with previous
studies [14–16].

Long pulses containing several optical cycles resemble a
continuous wave where maxima of electric field concurrence
with the zero of the vector potential. In contrast, for ultrashort
pulses containing a few optical cycles, the condition [maxima
of E (t ) = 0 of A(t )] can be controlled by CEP (ϕ). ϕ is the
relative phase of the pulse envelope and the oscillating electric
field which plays a significant role in the pulse waveform for
ultrashort laser pulses. Thus, we are taking advantage of ϕ

to manipulate the valley polarization by using a laser pulse
of a single optical cycle. To explore the ϕ dependence on
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FIG. 1. (a) WSe2 monolayer along with the first BZ. The relevant polarization directions, armchair (�-M in reciprocal space), and zigzag
(�-K) are labeled by arrows. (b) 2D WSe2 energy map of (CBM-VBM) as a function of the wave vector k in the hexagonal BZ, and (c) WSe2

band structure along high symmetry directions. The red and blue dots correspond to Sz = ↑ and Sz = ↓ respectively. Electric field and vector
potential of single-cycle 10 fs long linearly polarized laser dependence at various CEP: (d) ϕ = 0, (e) ϕ = π

4 , and (f) ϕ = π

2 .

valley pseudospin, we apply linearly polarized pulses parallel
to armchair (�-M) and zigzag (�-K) directions. We use the
vector potential of the following waveform:

A(i)(t ) = −cEmax

ω
f (t )cos

{
ω

(
t − TP

2

)
+ ϕ

}
, (18)

where ω is the average frequency, Emax is the maximum ampli-
tude of the electric field, ϕ is CEP, and TP is the pulse duration.
The pulse envelope function is of cos4 shape for the vector
potential given as

f (t ) =
{

cos4
(
π

t−TP/2
TP

)
0 � t � TP,

0 otherwise.
(19)

We use the frequency of 0.4 eV, the pulse length is set to TP =
10 fs and the total computation time is twice the pulse length,
and the time step size is set to 5 × 10−4 fs. Figures 1(d)–1(f)
show the electric field and vector potential dependence on ϕ.
At ϕ = 0, the peak of the electric field coincides with the zero
of vector potential. For ϕ = π

4 , vector potential has a nonzero
value at the peak of the pulse envelope while at ϕ = π

2 the
electric field has positive and negative peaks with the nonzero
value of vector potential.

We start from the field polarized along the �-M direction.
The band contour along with the electronic band structure [see
Figs. 1(b) and 1(c)] displays no asymmetry in �-M direction.

Thus, we do not expect valley polarization for the field po-
larized along the �-M direction. Note that for confirmation,
valley population at the end of a single cycle is checked at
different ϕ, the valley population is found to be indifferent
at both K and K ′valley (not shown here). Hence, valley po-
larization does not exist for the field polarized along �-M
because of the lattice symmetry in that direction. On the other
hand, owing to trigonal wrapping, the polarization parallel to
�-K experiences different band curvature with respect to K
and K ′ point. Hence, the field polarized along the �-K may
experience strong asymmetries that can lead to the possibility
of generating valley polarization. Therefore, from now on we
will focus on the �-K direction.

Figures 2(a)–2(c) shows the excitation energy for various
laser intensities at ϕ = 0, π

4 , and π
2 , respectively calculated

by the RT-TDDFT. Excitation energy is defined as the differ-
ence of the energy density integrated over the unit cell that
include three atoms at time t and that in the ground state. For
weak intensity (109 and 1010 W/cm2), the excitation energy is
pronounced during the irradiation of the pulsed electric field
and turns out to be zero as soon as the pulse ends because
the electronic state goes back to its ground state. On the other
hand, the excitation energy at the intense field (>1010W/cm2)
is substantially large and does not vanish even after the pulse
ends. Excitation energy has a more interesting dependence on
the ϕ that is independent of the laser intensity. For ϕ = 0 and
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FIG. 2. Temporal development of excitation energies for various intensities at CEP: (a) ϕ = 0, (b) ϕ = π

4 , and (c) ϕ = π

2 . Applied pulsed
electric field and Induced electric current density as a function of time at CEP: (d) ϕ = 0, (e) ϕ = π

4 , and (f) ϕ = π

2 . For a clear comparison,
the results of weak pulses are rescaled up by multiplying with numerous factors.

π
4 the electric field has one maxima that is present in the first
half-cycle of the pulse, thus the excitation energy is dominant
in the first half and reduces in the other half-cycle. In contrast,
the electric field at ϕ = π

2 has two field maxima (positive
and negative) and the excitation energy is even higher in
the second half than the first half-cycle. In addition, at the
given intensity the total excitation energy has the order of
ϕ = π

2 > ϕ = π
4 > ϕ = 0.

Before going to the detailed discussion on valley polar-
ization, the time profile of the incident electric field and the
induced electric current density by RT-TDDFT at multiple ϕ

is shown in Figs. 2(d)–2(f). The current density depends on the
electric field amplitude as well as on the ϕ. But regardless of
the field amplitude and ϕ, the current is not in phase with the
incident electric field representing the typical semiconducting
optical response of WSe2 monolayer. The current density at
the weak electric field (I = 109 W/cm2) indicates the linear
optical response due to a similar time profile to the pulsed
electric field. As the field amplitude increases, the current
starts to depart from the linear response and the distortion in
current density becomes very visible at the intensity I = 1012

W/cm2, an indication of the strong nonlinear response of
electrons. The behavior of the excitation energy and current
density indicates that valley asymmetry will have a strong
dependence on the intensity and ϕ.

We further investigate the distribution of k-resolved elec-
tron populations of the conduction band. Valley population
calculated by the RT-TDDFT method has been shown in Fig. 3
at various intensities and ϕ at the end of the pulse using
Eq. (7). First, we discuss the effect of intensity on the valley
population. Starting from a very weak intensity of 1 × 109

W/cm2, we find an equal population at K and K ′ point,
moreover, ϕ dependence is also not realized in the valley
population. Hence, no valley asymmetry is present within the
limit of linear optics. As we increase the intensity to 1 × 1010

W/cm2, the difference in the population at K and K ′ point
starts to arise. Further increase in intensity not only increases
the difference in the population at two valleys but also the
carrier density starts to shift around K and K ′ points.

The intensity dependence can be understood in a simple
manner, as the laser interacts with the WSe2 monolayer, elec-
trons start to tunnel from VBM to CBM. At weak intensity,
the tunneling from VBM to CBM is very weak and it be-
comes stronger with the increase in intensity. The formation
of nodes in carrier density distribution at intense laser fields is
observed around K (K ′) point. Furthermore, the difference in
valley population also strongly depends on ϕ. As we described
above, at ϕ = 0, vector potential is zero at the maxima of
the electric field owing the laser field couple equally to both
valleys regardless of the intensity. As the ϕ is varied, the value
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FIG. 3. Distribution of k-resolved electron populations in the first BZ of the conduction band at the end of a single optical cycle pulse.
Electron population is summed over the entire conduction band, at various CEP and intensities. Electron population along �-K direction at
I = 1 × 109 W/cm2field for CEP: (a) ϕ = 0, (b) ϕ = π

4 , and (c) ϕ = π

2 . (d)–(f) The same as (a)–(c) for I = 1 × 1010 W/cm2, (g)–(i) for
I = 1 × 1011 W/cm2, while (j)–(l) is for I = 1 × 1012 W/cm2.

of the vector potential at the field peaks changes which control
the population difference between two valleys. The results of
the k-resolved population reveal that the valley asymmetry by
linearly polarized pulses is a nonlinear optical phenomenon.

To explore the valley asymmetry as a function of ϕ, valley
polarization is calculated by the RT-TDDFT, shown in Fig. 4
(a). Valley polarization is defined as

VP= 2
ρn,K − ρn,K ′

ρn,K + ρn,K ′
, (20)

where ρn,K (ρn,K ′ ) is obtained by integrating the electron pop-
ulation in a so-called triangle area whose size corresponds to

the same spin area around K (K ′) point. Note that electron
population switches to the opposite valley when the vec-
tor potential changes its sign from negative to positive for
ϕ > π . The valley polarization for weakest intensity I = 1 ×
109 W/cm2 is zero for all CEP, which confirms the fact that
the valley polarization is absent within the linear-optical limit.
By increasing the intensity, we enter in the nonlinear regime
and the substantial valley polarization is observed for I =
1 × 1010 W/cm2. The valley polarization increases gradually
with ϕ and reaches its maximum value at ϕ = π

2 , showing
a typical sine wave curve. The valley polarization increases
more and also inverted its sign with the further increase in
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FIG. 4. (a) Valley polarization as a function of CEP at multiple intensities. (b) Shift in the carrier density as a function of the vector
potential amplitude and intensity.

intensity. The maximum valley polarization is achieved for
the strongest intensity of 1 × 1012 W/cm2 and the valley
polarization is almost twice as compared to 1 × 1010 W/cm2.
Valley polarization is robust against field strength but in all
cases oscillate as a function of CEP. Although, the valley
polarization is much smaller than the one-photon optical exci-
tation with circularly polarized pulses. Nonetheless, a sinelike
curve as shown in Fig. 4(a) indicates that the valley polar-
ization induced by a linearly polarized pulse can be realized
experimentally.

As shown in Fig. 3, the carrier density starts to shift around
K (K ′) point and the carrier density distribution starts to form
nodes at strong field intensities. This laser intensity depen-
dence indicates that the position of the carrier density in the
BZ can be controlled with laser intensity. Figure 4(b) shows
the shift in the carrier density as a function of the vector
potential amplitude and intensity at ϕ = π/2. Shift in the
carrier density is obtained by calculating the spreading area of
excitation from mean position of the carrier density to K point
in the BZ. The vector field amplitude has a linear dependence
on the shift of carrier density. By increasing the intensity,
more nodes in the carrier population start to appear and this
may refer to stronger quantum interferences of wave packets.
This will be explained in detail in the last section.

To go through the valley polarization details, we have
drawn the band resolved charge and spin-decomposed carrier
population calculated by the RT-TDDFT. Figure 5(a) shows
the temporal evolution of charge and spin-resolved population
of intensity 1 × 1010 W/cm2 at ϕ = π

2 . The main concerned
bands involved in this process are CBM-1 and CBM-2 that
represent the spin-orbit splitted lower and upper energy con-
duction band, respectively. Three time steps are chosen at
around the first and second maxima of the electric field and
at the end of the pulse. CBM-2 has the same spin as VBM
thus at 4.0 fs the electrons are excited to CBM-2 at K (K ′).
One can see that at 7.0 fs, which is the second half of the
pulse, more electrons are excited and we note the asym-
metry in the population at that point. The excited electron

population becomes small when the laser field ends at 10 fs
because most of the electrons go back to their ground state
due to very weak intensity. Spin is also confined at K and K ′
points. The charge and spin-resolved population of intensity
1 × 1011 W/cm2 is shown in Fig. 5(b) at ϕ = π

4 (where we
find the maximum valley asymmetry). Charge and spin dy-
namics are the same as found at 1 × 1010 W/cm2 intensity,
nevertheless the excited electrons reside in the CBM-2 even
as the pulse ends. At the most intense case of the 1 × 1012

W/cm2 field, we find highly nonlinear interaction and elec-
trons spread more widely throughout the Brillouin zone as
shown in Fig. 5(c). The delta (	) points at CBM close to K
(K ′) with opposite spin [see Fig. 1(c)] play an important role
at this strong intensity. 	 point acts as an intermediate point
which facilitates the intervalley transfer of excited electrons
to lower and upper conduction bands. Thus, unlike the other
cases, the charge along with the spin is not limited to CBM-2
and multiple conduction bands start to contribute in valley
polarization.

The spin polarization of excited charge carriers is shown in
Fig. 5(d). Overall the spin polarization (N↑ − N↓) is negligible
and independent of intensity and ϕ, except small spin starts
to appear at I = 1 × 1012 W/cm2. Degree of spin polariza-
tion (N↑ − N↓)/(N↑ + N↓) follow the same behavior as valley
polarization which shows that spin polarization is also an
observable along with valley polarization.

The valley polarization results calculated by the two-band
model as a function of ϕ are shown in Fig. 6(a). The two-band
model qualitatively reproduces the overall trends of valley
polarization with RT-TDDFT results. The origin of the carrier
density nodes at higher intensities and the phase change of the
valley polarization with respect to intensity can be explained
by the two-band model. Based on the massive Dirac model,
the phase appearing in the Landau-Zener formula is referred
to as Stückelberg phase as described in Eqs. (16) and (17).
The recurring Landau-Zener transitions driven by an oscilla-
tory external field produces an excitation density matrix with
an opposite sign which causes the interference of the wave
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FIG. 5. Charge and spin-decomposed carrier population of concerned conduction bands named as CBM-1 and CBM-2 at different time
steps for (a) I = 1 × 1010 W/cm2, (b) I = 1 × 1011 W/cm2, and (c) I = 1 × 1012 W/cm2. (d) Spin polarization of excited charge carriers as
a function of CEP.

packets. Thus the carrier density nodes appearing at high
intensity may refer to the Stückelberg interference where the
excitation probability becomes zero at a certain k.

Figure 6(b) shows the intensity dependence of the valley
polarization at ϕ = π

2 . Valley polarization has a very com-
plex behavior regarding the phase change. Thus to find the
origin of the phase change, we have shown the excitation
probability in Figs. 6(c)–6(e). The excitation probability of
P(K + k) > P(−K + k) at 1 × 1010 W/cm2, as we increase
intensity, P(−K + k) starts to increase, and the excitation
probability is roughly the same at 8 × 1010 W/cm2. Further
increase in intensity results in P(K + k) < P(−K + k) and
this brings the phase change of the valley polarization. Over-
all, the Stückelberg interference first takes place at the positive
k region, and asymmetry is observed at the peak caused by
the interference. The peak at the negative k region follows
at higher intensities and causes stronger interference of wave
packets.

Finally, it is worth commenting that the valley polarization
induced by the linearly polarized light mainly depends on the
two factors. First, the asymmetry in the band structure plays
the main role to generate valley polarization. The band con-
tour displays no asymmetry in the �-M direction. Thus, even
by varying the CEP, no valley polarization is achieved in this
direction. On the other hand, the field polarization parallels to
�-K experiences different band curvature with respect to K
and K ′ point which results in the valley polarization in WSe2

monolayer. Second, CEP plays a critical role to create valley
polarization in �-K direction. For ϕ = 0, because the vector
potential A(t ) = 0 at the maxima of E (t ), we do not observe
any asymmetry even if there is a band asymmetry. On the

other hand, for example, at ϕ = π
2 , the vector potential A(t )

has a finite negative value at both maxims of E (t ), thus a
large asymmetry of excitation because the band asymmetry
is observed.

IV. CONCLUSION

In conclusion, we investigated the single-cycle pulse con-
trol of valley pseudospin in the WSe2 monolayer. The
intensity and CEP dependence of the pulsed electric field is
varied to investigate the mechanism of valley polarization.
Linearly polarized pulse along armchair and zigzag directions
are applied.

Valley polarization remains zero within the linear optical
limit for both polarization directions. In the nonlinear regime,
there is no valley asymmetry and its CEP dependency is
realized for the field polarized along the armchair direction
while the polarization, which parallels the zigzag direction,
experiences strong asymmetries. The valley polarization is
small at weak intensities but it increases with the increase
in intensity and substantial valley polarization is achieved.
The valley polarization is robust against field strength but it
strongly depends on the CEP.

We showed that in the strong-field regime the electron
dynamics display quantum interference that gives rise to dis-
tinct node formation. More importantly, the position of the
carrier density is strongly dependent on laser intensity which
indicates the possibility to control the electron momentum in
BZ. The two-band model indicates that the carrier density
nodes appearing at high intensity may refer to the Stückelberg
interference.
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FIG. 6. Massive Dirac Hamiltonian two-band model results. (a) Valley polarization as a function of CEP at multiple intensities. (b) Valley
polarization as a function of intensity at ϕ = π/2. Excitation probabilities at (c) 1 × 1010 W/cm2, (d) 8 × 1010 W/cm2, and (e) 1 × 1011

W/cm2.

Our results provide the opportunity to manipulate the val-
ley pseudospin and optical field control of electron dynamics
faster than electron-electron scattering and electron-phonon
scattering.
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