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Edge spin transport in the disordered two-dimensional topological insulator WTe2
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The spin conductance of two-dimensional topological insulators (2D TIs) is not expected to be quantized in the
presence of perturbations that break the spin-rotational symmetry. However, the deviation from the pristine-limit
quantization has yet to be studied in detail. In this paper, we define the spin current operator for the helical
edge modes of a 2D TI and introduce a four-terminal setup to measure spin conductances. Using the developed
formalism, we consider the effects of disorder terms that break spin-rotational symmetry or give rise to edge-
to-edge coupling. We identify a key role played by spin torque in an out-of-equilibrium edge. We then utilize a
tight-binding model of topological monolayer WTe2 and scattering matrix formalism to numerically study spin
transport in a four-terminal 2D TI device. In particular, we calculate the spin conductances and characteristic spin
decay length in the presence of magnetic disorder. In addition, we study the effects of interedge scattering in a
quantum point contact geometry. We find that the spin Hall conductance is surprisingly robust to spin symmetry-
breaking perturbations, as long as time-reversal symmetry is preserved and interedge scattering is weak.
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Electrical control of spins is one of the central objectives
in the field of spintronics [1]. Topological insulators (TIs)
are materials with strong spin-orbit coupling and host spin-
momentum locked gapless modes confined to the boundary
of an insulating bulk [2,3]. These helical boundary modes
offer new possibilities to generate spin polarization and spin
currents with electrical means [4–6]. So far, most studies of
topological insulators from a spintronics point of view have
focused on 3D TIs [7–10], whose 2D surface hosts a massless
helical Dirac fermion. (This surface is somewhat similar to
graphene, which hosts two Dirac cones and has also been
subject to extensive spintronics research [11,12]).

However, impurity scattering limits the potential of using
the 3D TI surface states for spintronics. Even though direct
backscattering k → −k of the Dirac electrons is forbidden by
time-reversal symmetry (since k and −k are oppositely spin
polarized), scattering by any other angle is allowed, which
leads to the loss of momentum and spin conservation at a
scale set by the elastic mean free path [4]. By the same token,
current-induced spin accumulation is similarly limited by the
mean free path [13].

Impurity scattering is much more restricted in 2D TIs
whose boundary modes are confined to 1D. These helical
modes have only 2 momentum directions, left and right, and
time-reversal symmetry (TRS) forbids elastic backscattering
between the two. The modes therefore remain ballistic (and
retain their spin) at distances below the inelastic mean free
path [14–21]. Likewise, current-induced out-of-equilibrium
spin polarization of a 2D TI edge is not limited by elastic
nonmagnetic impurity scattering. Indeed, a bias voltage V
(or charge current e2V/h) leads to a spin accumulation per
density 〈Sz〉/n = eV/(4EF ) on a 2D TI edge, independent of
scalar disorder (the opposite edge would have the opposite
spin polarization). Here we denote z the spin quantization

axis at the Fermi level, assuming it does not vary on the
scale eV .

Spin transport on the one-dimensional edge states of a
2D TI was first considered in Refs. [22,23] where the spin
Hall conductance was calculated in the ideal case with the
conservation of spin-z projection. In this case, the spin
Hall conductance is found to be quantized to e/(4π ). Upon
breaking the spin conservation, the spin Hall conductance is
generally finite but not expected to be quantized [24–26].

Various spin-rotation symmetry breaking mechanisms on
the 2D TI edge have been considered in the context of charge
transport [14–19,27–30]. On a clean, translationally invariant
edge, the spin rotational symmetry may be broken due to bulk
or structural inversion asymmetry, which can lead to a mo-
mentum space spin rotation of the helical edge modes [16,31],
without breaking time-reversal symmetry. Similarly, the spin
quantization axis may rotate in real space in the presence of
a random Rashba spin-orbit term [32–34]. These TRS mech-
anisms do not lead to elastic backscattering but can modify
the charge conductance at nonzero temperatures inelastically
[14–16,28]. Elastic backscattering becomes possible when
TRS is broken [14,15,30]. This can be achieved for example
by applying an external magnetic field [35–39] or by doping
the sample with polarized magnetic impurities [40,41], which
both suppress edge conduction. While spin-nonconserving
perturbations have received considerable attention in charge
transport, relatively few quantitative studies [25,42–45] have
focused on spin transport in 2D TIs.

In this paper we formulate the low-energy scattering
theory of spin transport in 2D TI edge states and use
numerical simulations to go beyond the effective model.
Focusing on the recently discovered monolayer WTe2 topo-
logical insulator [36,37,46–50] as an example, we carry out
an extensive numerical study of disorder effects on spin
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FIG. 1. Schematic diagrams demonstrating the voltage setups considered in this paper. Each diagram corresponds to a particular voltage
arrangement indicated by the corner values. The edge states along with their propagation directions and spin orientations are depicted by
the solid lines; the Dirac cones indicate the filling of these states. The relation between the left and right currents in the presence of Sz

nonconserving disorder can be deduced using the transmission and reflection coefficients from Eqs. (7) and (8) and is shown in the center
of each diagram. (a) Voltage setup of a 2D TI nanoribbon with a quantized spin Hall conductance Gs

H = Is
z,L/V = Is

z,R/V . Only perturbations,
which cause bulk conduction or couple the top and bottom edges will cause a deviation from the quantized conductance value. In the absence of
such perturbations, the spin current is conserved since each edge is at a local equilibrium and spin torque vanishes. (b) Voltage setup producing
nonquantized spin conductances when Sz nonconserving disorder is present. Due to the non-equilibrium distribution on each edge, there is a
nonzero spin torque, which breaks the conservation of spin current, Is

z,L �= Is
z,R. The lack of spin current conservation requires the definition of

separate incident and transmitted spin conductances given by Gs
I = Is

z,L/V and Gs
T = Is

z,R/V , respectively. (c) Standard setup used to define the
two-terminal charge conductance Gc

2T = Ic
L/V = Ic

R/V . Here, voltage distribution of each edge is the same, resulting in no net horizontal spin
current.

transport. We consider both spin-conserving and explicitly
spin-symmetry-breaking terms such as random scalar on-site
disorder, spin-nonconserving disorder in the spin-orbit cou-
pling strength, TRS breaking magnetic impurities, as well as
interedge scattering in a quantum point contact geometry.

Our analytical theory clarifies how the spin conductance
quantization gets broken by spin nonconserving perturbations.
We identify a crucial role played by local equilibrium or
non-equilibrium on the TI edge. Namely, the nonconserva-
tion of edge spin current (and a resulting nonquantized spin
conductance) arises from a spin torque generated by the spin
nonconserving disorder. As we will show, the spin torque
vanishes if the edge is in local equilibrium, and is generally
nonzero when the edge is out of equilibrium (and can have a
nonzero 〈Sz〉). As a result, when using a 4-terminal measure-
ment of the spin conductances, the bias configuration is of key
importance: when the edge has no voltage drop, it can carry a
conserved spin current, see Figs. 1 and 2 and Table I.

The outline of our paper is as follows. We first introduce
an effective 1D model for the helical edge modes (Sec. I).
We derive the spin current operator and discuss how intra-
and interedge backscattering perturbations modify the aver-
age spin current. In Sec. II, we introduce the spin-resolved
Landauer-Büttiker formula to define the spin conductances for
a multiterminal setup. In Sec. III, we present our numerical
simulations for spin transport in disordered multiterminal sys-
tems and in Sec. IV we draw our conclusions.

I. EFFECTIVE DESCRIPTION OF EDGE SPIN
TRANSPORT

In this section we develop a low-energy effective Hamil-
tonian, which describes the propagation of the helical edge
states in a 2D TI. We then utilize this model to study the

effects of localized magnetic disorder and interedge scattering
on the spin transport properties of the material.

The characteristic feature of a 2D TI is the presence of a
pair of helical edge modes and a gapped bulk. On a given
edge and at a fixed energy, the helical modes have opposite
spin-polarizations and velocities. At low energies, we can
approximate the edge spectrum by a linear dispersion and
ignore any momentum space spin rotation [31]. Denoting z
the spin quantization axis of the TI, we obtain the 1D effective
Hamiltonian of a single edge,

H0 =
∫

dx �†(−ih̄v∂xσz − μ)�, (1)

where v is the velocity of the edge modes, μ is the chemi-
cal potential, σi denotes the spin Pauli matrices, and �(x) =
(ψ↑, ψ↓)T is the electron field operator.

While the effective Hamiltonian (1) does not have full
spin-rotational symmetry, it does have a U (1) spin-rotational

TABLE I. Conductance definitions for various voltage setups in
a four-terminal device. The terminal indexing matches Fig. 2; see
Eqs. (25) and (26) for the matrix elements. The additional negative
sign for the incident conductance ensures that positive current is
defined to move to the right. Fig. 1 depicts the biasing setups (except
for Gs

D).

2-Terminal Gc
2T = Gc

31 + Gc
32 + Gc

41 + Gc
42

Incident Gs
I = − 1

2

(
Gs

11 − Gs
12 + Gs

21 − Gs
22

)
Transmitted Gs

T = 1
2

(
Gs

31 − Gs
32 + Gs

41 − Gs
42

)
Hall Gs

H = 1
2

(
Gs

31 − Gs
32 + Gs

33 − Gs
34

+Gs
41 − Gs

42 + Gs
43 − Gs

44

)
Diagonal Hall [22] Gs

D = 1
2

(
Gs

31 − Gs
34

)
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FIG. 2. (a) Schematic depiction of a four-terminal TI device of length L, width W , and lead width Wlead. The dotted region denotes disorder
localized between two clean transition regions of length Ltrans, where Ltrans = 0 indicates a fully disordered sample. We evaluate the spin
conductances from the spin currents entering the terminals, see Eq. (26). (b) In order to measure the spin current entering each terminal, we
consider the terminals to be composed of two closely spaced ferromagnetic leads with magnetization axes parallel and anti-parallel to the
quantized axis of the TI, see Eq. (24). (c) Depiction of spin currents in the spin Hall setup, Fig. 1(a), with spin-nonconserving disorder between
leads 3 and 4. The spin Hall current Is

H passing through a cross section of the TI sample is conserved and equal to the sum of the currents along
the top and bottom edges, Is

H = Is
top + Is

bottom. However, spin-nonconserving disorder and a non-equilibrium distribution lead to a spin torque
on the edge connecting terminals 3 and 4, see also Fig. 1(b). Due to the spin torque, an additional current δIs

H = Is
1 − Is

2 is generated and flows
to leads 3 and 4, resulting in a total spin current Is

H + δIs
H entering the terminals and a nonquantized Gs

H .

symmetry about the z axis; we can therefore define a
conserved spin current along this axis. Starting from the spin
density Sz(x) = h̄

2 �†(x)σz�(x), we obtain the spin-z current
operator by using the continuity equation [51–53]:

∂t Sz + ∂xIs
z = 0. (2)

The time derivative in Eq. (2) can be evaluated using the
Heisenberg equation of motion: ∂t Sz = i

h̄ [H0, Sz]. The com-
mutator can then be expressed in terms of the gradient of
the density operator ρ(x) = �†(x)�(x). Remarkably, the spin
current along the conserved axis is thus tied to the local
density:

Is
z = h̄v

2
ρ. (3)

This simple result is a direct consequence of spin-momentum
locking: left and right moving electrons carry equal spin cur-
rents since they have opposite velocities and spin projections
[54]. This is in contrast to conduction by spin degenerate
states that are not spin-momentum locked and carry no net
spin current.

Importantly, we note that any local perturbation, which
does not break the U (1) spin symmetry of Eq. (1) will not
modify the spin current. We will see below that the spin
current is indeed robust against such perturbations. One might
expect even greater robustness of the spin current since Is

z ,
Eq. (3), commutes with any particle number conserving op-
erator. This robustness is manifest in the quantization of the
spin Hall conductance of a two-edge system, as long as in-
teredge scattering (which breaks the conservation of particle
number on a given edge) is absent and each edge is at a
local equilibrium, see Fig. 1(a). However, random spin-orbit
coupling or magnetic disorder terms δH in the Hamiltonian
can break the Sz conservation, leading to a spin-torque term
on the right-hand side of Eq. (2),

T = − i

h̄
[δH, Sz]. (4)

In general, this spin torque breaks the conservation of the
spin current defined by Eq. (3) [55]. We will see that in an
out-of-equilibrium situation the spin torque can be on average

nonzero and lead to a deviation of the spin conductance from
the quantized value, see Fig. 1(b).

To study the effect of Sz-nonconserving magnetic perturba-
tions, we begin by adding a spatially-dependent disorder term
to Eq. (1):

δH =
∫

dx m(x)�†σx�. (5)

The σx operator in Eq. (5) breaks time-reversal (TR) sym-
metry and the U (1) spin-symmetry, coupling right- and left
movers and resulting in spin-flipping reflections. We will as-
sume that m(x) is nonzero only in the region between 0 and x0

so that we may treat the system as a scattering problem.
In the presence of the magnetic disorder, the spin torque

term, Eq. (4), is nonzero. Thus, the spin current as defined in
Eq. (3) is no longer conserved in the disordered region. This
leads to a discontinuity in the current due to the perturbation:

Is
z (x0) − Is

z (0) =
∫ x0

0
dx T = −

∫ x0

0
dx m(x)�†σy�. (6)

This discontinuity can be evaluated explicitly by using the
scattering matrix to calculate the spin current in the left and
right regions due to, say, an incident right mover with unit
amplitude. The transmission and reflection coefficients t and
r corresponding to Eq. (5) are given by (see Appendix A)

t = sech ηm, (7)

r = −i tanh ηm, (8)

where ηm = ∫ x0

0 m(x) dx/(h̄v) and we neglect the energy-
dependence of the scattering amplitudes (assuming scattering
states near the Dirac point). We can then use the scattering
matrix S to relate the coefficients of the incoming modes �in

to the outgoing modes �out by �out = S�in, where

S =
(

r t
t r

)
. (9)

For our incident right mover of unit amplitude, the spin cur-
rent in the left (x < 0) and right (x > x0) regions are related
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to the transmission and reflection coefficients by

Is
z (0) = h̄v

2
(1 + |r|2) = h̄v

2
(1 + tanh2 ηm), (10)

Is
z (x0) = h̄v

2
|t |2 = h̄v

2
(1 − tanh2 ηm). (11)

We see that the jump, or loss, in the spin current is then
Is
z (x0) − Is

z (0) = −h̄v tanh2 ηm.
We note that for large ηm, the “transmitted” spin current

Is
z (x0) becomes exponentially small, i.e.,

Is
z (x0) ≈ 2h̄ve−x0/l0 , (12)

where l0 = x0/(2ηm) is a characteristic spin decay length. The
transmitted spin current therefore decreases in the same way
that transmitted charge current (and conductance) would.

The analysis leading to Eqs. (10) and (11) applied to an
incident left-mover from the right shows spin currents with
the values of Is

z (0) and Is
z (x0) interchanged, i.e., a spin current

Is
z (0), Eq. (10), on the right of the barrier. Hence, in general

spin-flipping reflections lead to an increase in the spin current
on the incident side and a decrease of equal magnitude on the
transmitted side. In particular, when edge modes are incident
with the same amplitude from both sides, the spin current
per unit momentum is equal on both sides of the barrier,
Is
z (0) = Is

z (x0) = h̄v, independent of the strength of spin-flip
scattering. In this case the spin torque, Eq. (6), vanishes; the
magnetic impurities experience no spin torque in equilibrium
[56]. This is a key observation that leads to the robustness of
the spin Hall conductance in a four-terminal system when the
edge is in local equilibrium, as will be discussed below.

Above, we evaluated the spin current carried by a single
scattering state on a helical edge. The thermally averaged spin
current for a single edge [obtained by averaging Eq. (3)] is
not mathematically well defined (without a UV cutoff) nor
physical. In an actual two-terminal device, there are two edges
carrying opposite spin currents, which ensures that the total
spin current vanishes at equilibrium. The single-edge Hamil-
tonian of Eq. (1) can be extended to include both edges of a 2D
TI ribbon by introducing another set of Pauli matrices τi that
act on the edge degree of freedom. The effective Hamiltonian
of two uncoupled edges at the same chemical potential μ is
given by

H0 =
∫

dx �̃†(−ih̄v∂xσzτz − μ)�̃, (13)

where �̃ = (�1, �2)T denotes the two-edge field operator
and �i = (ψi,↑, ψi,↓). The matrix τz in the kinetic energy term
ensures that the two edges carry edge modes with opposite
helicities. Generalizing Eq. (3) to the two-edge system, we
obtain the spin current operator

Is
z = h̄v

2
(ρ1 − ρ2), (14)

which consists of counter-propagating spin currents on the
two edges 1 and 2.

A spin Hall current can be driven if the two edges of
the ribbon are held at different, constant chemical potentials.
This can be modeled by setting μ → μ + τzeV/2 in Eq. (13).
Such an interedge bias can be achieved, for example, by using
four terminals [see Fig. 1(a) and Sec. II]. Since each edge is at

a constant potential, each edge carries a spin current ±h̄v per
momentum, as detailed above. Taking the thermal average of
the total spin current in the low-temperature limit gives

〈
Is
z

〉 =
∫ ∞

−∞
dE

ν0

2
h̄v

[
f

(
E − eV

2

)
− f

(
E + eV

2

)]

= e

2π
V, (15)

where f is the Fermi function and ν0 = 1/(π h̄v) is the edge
density of states per length. In this setup with a transverse
voltage, we define the spin Hall conductance as Gs

H = 〈Is
z 〉/V .

Since each edge is at a constant potential [Fig. 1(a)], the
spin Hall conductance is quantized, Gs

H = e/(2π ), even in the
presence of spin-nonconserving perturbations. This quantiza-
tion can be traced back to the fact that the spin current operator
is determined by the local electron density, which does not
change upon intraedge backscattering at equilibrium.

While the spin Hall conductance is robust against intraedge
backscattering, perturbations that couple modes on separate
edges (interedge scattering) may result in reflections without
a corresponding spin flip. The transfer of charge between the
two edges changes the spin current, Eq. (14). Hence, such per-
turbations will lead to a decrease in the spin Hall conductance.
To demonstrate this, we add an interedge scattering term to the
two-edge Hamiltonian,

δH =
∫

dx γ (x)�̃†τx�̃. (16)

This perturbation conserves Sz and therefore does not give
rise to spin-torque. Nevertheless, since it does not conserve
the number of particles on a given edge, it will lead to a
nonquantized spin conductance.

As before, in order to define a scattering problem, we will
assume that γ (x) is nonzero only in the interval 0 < x < x0.
Since there are four edge modes in the two-edge system, we
can promote r and t in the scattering matrix S in Eq. (9) to
2 × 2 matrices. In this case, ri j (ti j) denote the amplitude of
an incoming state from edge j reflecting (transmitting) into
an outgoing state on edge i. The nonzero components of r and
t are

r12 = r21 = −i tanh ηγ , (17)

t11 = t22 = sech ηγ , (18)

where ηγ = ∫ x0

0 γ (x) dx/(h̄v). The other components, mean-
while, vanish due to the lack of a term coupling states of
opposite spin. Noting that the reflected edge modes now
carry an opposing spin current to the incident and transmitted
modes, we find that

Is
z (0) = h̄v

2
(1 − |r12|2) = h̄v

2
(1 − tanh2 ηγ ), (19)

Is
z (x0) = h̄v

2
|t11|2 = h̄v

2
(1 − tanh2 ηγ ). (20)

Hence, unlike intraedge spin-flip perturbations, interedge tun-
neling without a spin flip conserves the spin current but results
in a decrease of its value. As a result, in the spin-Hall setup,
Fig. 1(a), the spin Hall conductance Gs

H is not robust against
interedge scattering. As was mentioned above, this result
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could be expected from the fact that the spin current couples to
the difference of the density operators between the two edges,
Eq. (14), and the interedge scattering does not conserve this
difference.

When an edge is not at constant potential but has a po-
tential drop V along it (left-right bias), the spin current can
have a jump in the presence of spin-flip perturbations, as is
illustrated by Eqs. (10) and (11). This jump can be thought of
as resulting from a nonzero spin torque, Eq. (6), in the non-
equilibrium setup. Due to this jump, one must define separate
spin conductances, which we call incident (Gs

I = 〈Is
z (0)〉/V )

and transmitted (Gs
T = 〈Is

z (x0)〉/V ), for current flowing on
either side of the disordered region [see Fig. 1(b)]. Even
without interedge scattering, these conductances are not quan-
tized in the presence of magnetic disorder (unlike Gs

H ); their
sum, however, is robust since Gs

I + Gs
T = Gs

H , see Eq. (30)
below. Finally, we note that when there is a voltage drop
V across both edges and no top-bottom voltage, we expect
no net spin current [see Fig. 1(c)]. This case is the con-
ventional two-terminal charge transport setup, and we define
the corresponding two-terminal charge conductance Gc

2T as a
reference.

The above results that were derived for the simple models
of Eq. (5) and Eq. (16) illustrate the generic behavior of
the spin conductances. We corroborate the findings by our
numerical transport simulation discussed in Sec. III, where we
simulate magnetic disorder as well as a quantum point contact
(QPC) system to couple the edges (see Fig. 9). Before that, we
introduce spin conductances defined in a four-terminal setup,
Sec. II.

II. MULTITERMINAL TRANSPORT

We now move from the two-terminal case to a multiter-
minal system. While a two-terminal TI system requires the
use of a proximitizing ferromagnetic heterostructure to drive
a net spin current [57], a spin Hall current can be driven
purely electrically in a multiterminal setup. In this section we
therefore give the relevant expressions for the currents and
conductances necessary to study multiterminal charge and
spin transport.

Consider a general n-terminal system with metallic leads
attached. The full scattering matrix S of such a system relates
the coefficients of the incoming modes �in to the outgoing
modes �out by �out = S�in. In particular, the i jth block Si j

is the scattering matrix for modes scattering from terminal
j to i. Furthermore, in the case that the leads share a spin-
rotational symmetry along a given axis, we may choose a new
eigenbasis, which conserves this symmetry. In this basis, the
scattering matrix takes the form Siσ, jσ ′ , where the σ indices
denote the spins of the incoming and outgoing modes.

The Landauer-Büttiker formula provides the charge current
passing through a lead in the low-temperature limit in terms
of the voltages applied to the leads and the transmission coef-
ficients Ti j (from terminal i to j):

Ic
i = e2

2π h̄

∑
j �=i

(TjiVj − Ti jVi ). (21)

In the case of spin-rotational symmetric leads, Eq. (21) may
easily be generalized to give the spin-resolved current in a lead
by considering each lead spin channel as a separate terminal:

Ir
iσ = e

2π h̄

∑
jσ ′ �=iσ

(Tjσ ′,iσVj − Tiσ, jσ ′Vi), (22)

where the spin-resolved current Ir
iσ is the outgoing current

in lead i due to electrons of spin σ . The charge and spin
currents in each lead can then be related to these spin-resolved
currents by

Ic
i = e

(
Ir
i↑ + Ir

i↓
)
, (23)

Is
i = h̄

2

(
Ir
i↑ − Ir

i↓
)
. (24)

The above equations also suggest that spin current can be mea-
sured by using two ferromagnetic terminals fully polarized
along the z and −z axes. The net current into each terminal
will be effectively spin resolved and their difference gives the
net spin current. In Fig. 2(b), we envision using this technique
to measure the spin current into each terminal [58].

In the scattering formalism, the conductance G of an n-
terminal system is the n × n matrix relating the currents in
the leads to the applied voltages. Assuming the leads share
the same spin-rotational symmetry as the TI in the pristine
limit, we define the 2n × n spin-resolved conductance matrix
Gr by the spin-resolved current response Ir

iσ to a small voltage
Vj (setting all other voltages to zero): Gr

iσ, j = Ir
iσ /Vj . From

this we then define the n × n charge and spin conductance
matrices Gc/s by

Gc
i, j = e

(
Gr

i↑, j + Gr
i↓, j

) = Ic
i /Vj, (25)

Gs
i, j = h̄

2

(
Gr

i↑, j − Gr
i↓, j

) = Is
i /Vj . (26)

By inverting the conductance matrices, one could also quan-
tify the inverse Hall effect and the inverse spin Hall effect,
where a voltage is generated by a charge or spin current,
respectively.

While the conductance matrices in Eqs. (25) and (26)
provide the current response resulting from any voltage con-
figuration, it is more illuminating to define conductance values
for specific voltage setups such as those depicted in Fig. 1.
In Table I we define several such conductance values for the
four-terminal device depicted in Fig. 2(a): the standard two-
terminal charge conductance Gc

2T due a horizontal potential
bias, the incident and transmitted spin conductances Gs

I/T due
to a vertical bias on a single side, the spin Hall conductance
Gs

H due to a vertical bias on both sides, and the diagonal
spin Hall conductance Gs

D due to a diagonal bias (this was
considered in Ref. [22]). We note that in the case of Gs

D there
is a potential drop on every edge. This leads to Gs

D being less
robustly quantized than Gs

H , see Sec. III C.
It is important to recognize that the spin conductances

defined in Table I are defined with regards to the spin cur-
rents passing through the leads. In a multiterminal system
with spin-nonconserving disorder this is not the same as spin
currents passing through a cross section of the TI sample.
In Fig. 2(c) we demonstrate this difference in the case of
the spin Hall current and conductance. The net spin current

115402-5



JUSTIN COPENHAVER AND JUKKA I. VÄYRYNEN PHYSICAL REVIEW B 105, 115402 (2022)

into leads 3 and 4 on the right has two components: the spin
Hall current from the left leads, Is

H , and the extra spin current
between leads 3 and 4, δIs

H , generated by the spin torque from
spin-nonconserving disorder, see Eq. (6). In terms of these,
the spin Hall conductance is Gs

H = (Is
H + δIs

H )/V . In general,
Gs

H is not equal to the conductance corresponding to just the
spin Hall current passing through the sample, Gs

H ′ = Is
H/V ,

especially when the connection between leads 3 and 4 is
disordered (see Sec. III C). Importantly, only Gs

H ′ is quantized
as predicted in Sec. I when the entire sample is disordered; Gs

H
is only quantized when the connection between leads 3 and 4
has no spin-symmetry breaking disorder [59]. This picture is
confirmed by our numerical study where we compare clean
and disordered connection between leads 3 and 4, see Fig. 7.

Using the definitions provided by Table I, we can derive
several relations between the four-terminal conductances. In
particular, we consider two special cases, which will be rele-
vant to the results in Secs. III A and III C. When the disorder
does not break the spin-rotational symmetry of the TI, trans-
mission between opposite spins is impossible: Tiσ, jσ ′ ∝ δσσ ′ .
This restriction results in the following relations between the
conductances:

Gs
H = h̄

2e
Gc

2T , (27)

Gs
I = Gs

T = 1

2
Gs

H . (28)

The relations in Eqs. (27) and (28) are valid so long as every
conducting state is spin-polarized and the spin-rotational sym-
metry remains unbroken. Meanwhile, if there is no interedge
scattering then only spin-preserving transmission and spin-
flipping reflections are allowed: Tiσ, jσ ′ ∝ |δi j − δσσ ′ |. The
resulting conductance relations are,

Gs
T = h̄

4e
Gc

2T , (29)

Gs
H = Gs

I + Gs
T . (30)

Unlike Eqs. (27) and (28), the relations in Eqs. (29) and (30)
rely on the localization of the edge states and are not true in
the presence of conducting bulk states.

III. NUMERICAL STUDIES OF DISORDERED
MULTITERMINAL SYSTEMS

To numerically study the transport properties of WTe2, we
utilized the Kwant package [60] for Python to implement the
tight-binding model introduced in Ref. [50]. Four-terminal
systems were created to study the conductances in Table I.
Each system is comprised of a sample in the topological
phase with four leads of width Wlead = 12 nm attached at the
corners, as depicted in Fig. 2. We model the leads with the
same WTe2 tight-binding model as the sample, except with
spin-orbit coupling set to zero. The Fermi level of the leads is
placed within the valence band (μ = −400 meV) to allow for
an abundance of conducting bulk modes; the sample Fermi
level, meanwhile, is placed near the center of the 56 meV
wide bulk gap (E = 0 in Fig. 3) to ensure only edge modes
are relevant in the pristine, zero-temperature limit. All plots
shown utilize a horizontal straight-edge termination [61] that

FIG. 3. Straight-edge terminated WTe2 band structure in a pris-
tine sample (left) and leads (right), corresponding to the TI and
metallic phases, respectively. The dashed line shows the chemical
potential; the lead bands are shifted by 400 meV relative to the
sample.

has a Dirac point buried within the valence band (see Fig. 3);
however, we find similar results for the zigzag termination,
which has a Dirac point in the bulk gap. We then use Kwant
to construct the scattering matrix for the system, which is
used with Eqs. (22)–(26) to determine the charge and spin
conductances in the zero-temperature limit [62].

Unless otherwise stated, each plot represents the average
of N = 300 disordered samples, which we find to be enough
to limit most fluctuations (see Appendix C). We also attach
the standard error bars for each plot (i.e., ±σG/

√
N). For

each plot we measure the conductances in terms of the charge
and spin conductance quanta, Gc

0 = e2/h and Gs
0 = e/(4π ),

respectively.
In the pristine limit we find the standard [22] quantized val-

ues for the two-terminal charge conductance (Gc
2T = 2e2/h)

and spin Hall conductance [Gs
H = e/(2π )]. We also find that

Gs
I = Gs

T = e/(4π ) and Gs
D = e/(4π ) [22] in the pristine

limit. In the following subsections we discuss the effects
of on-site scalar and magnetic disorder on these results, in
addition to disorder in the spin-orbit coupling parameters.
We also study interedge scattering using a QPC system and
calculate the characteristic spin decay length in the presence
of magnetic disorder.

A. Sz conserving disorder

Due to the spin-momentum locking of the edge states in
a 2D TI, it is expected that any perturbation, which neither
breaks the spin-symmetry nor couples the edges will not af-
fect current propagation, as long as the perturbation strength
is smaller than the gap to bulk excitations. Previous studies
[50,63] have demonstrated this in the context of scalar disor-
der and charge conductance. Here, we demonstrate that weak
spin-symmetric disorder does not affect the charge and spin
conductance values of our four-terminal system. We study the
effects of both on-site scalar disorder as well as disorder in the
SOC strength.

In Fig. 4(a) we add a spatially-dependent on-site potential
u(x) drawn from a Gaussian of mean 0 and standard deviation
w; we then plot the dependence of the conductances defined in
Table I on w. For small enough values of w (<200 meV), we
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FIG. 4. Conductances versus disorder strength w for spin-
conserving TR-symmetric perturbations. The system dimensions are
L = 20 nm, W = 30 nm, Ltrans = 0, and Wlead = 12 nm (see Fig. 2).
Conductances are measured in units of the charge and spin conduc-
tance quanta. Note that the lowest 3 curves, Gs

T , Gs
I , and Gs

D, are
overlapping over the full range of w in both figures. (a) On-site scalar
disorder. (b) Spin-conserving SOC disorder.

find that the charge and spin conductances remain quantized
at their expected values. This is due to the fact that scalar
on-site disorder does not break the TR and spin-rotational
symmetries of the TI, nor does it couple the two edges; the
transmission amplitudes thus remain unaffected when the dis-
order is weak. At larger w, however, we see a decrease in the
spin conductances and an increase in the charge conductance.
The increasing charge conductance is attributable to the onset
of bulk conduction within the disordered sample, whose size
is smaller than the Anderson localization length. For weak
disorder, the Fermi level of the sample remains within the bulk
gap, ensuring that only the spin-momentum locked edge states
effect the low-temperature conductances. Stronger disorder,
meanwhile, can shift the bands sufficiently so that they cross
the Fermi level, leading to bulk conduction.

The effect of disorder in the SOC strength is similar
to spin-symmetric on-site disorder. In Fig. 4(b) we multi-

FIG. 5. Transmitted spin conductance Gs
T with on-site scalar dis-

order of width w = 150 meV or w = 300 meV vs sample length L.
The other sample dimensions are W = 30 nm, Ltrans = 3 nm, and
Wlead = 12 nm (see Fig. 2).

ply the SOC strength by a spatially dependent factor λ(x)
drawn from a Gaussian of mean 1 and standard deviation
δλ; we then plot the conductances versus w = λSOCδλ, where
λSOC = 225 meV is the sum of the SOC parameter magnitudes
in the WTe2 tight-binding model [50] (see Appendix B for
details on the WTe2 tight-binding model). Importantly, this
“isotropic” modification of the SOC strength does not change
the spin quantization axis; this is unlike with anisotropic SOC
disorder, see Sec. III B below. Just as with spin-symmetric
on-site disorder, the conductances are robust against weak
spin-symmetric SOC disorder; however, this regime appears
to be smaller for SOC disorder, with the conductances deviat-
ing from their quantized values for w > 60 meV.

The conductances are remarkably robust against weak
spin-symmetric disorder. In Fig. 5 we plot the transmitted
spin conductance Gs

T versus sample length for w = 150 meV
and w = 300 meV on-site scalar disorder. In the weak dis-
order regime, the conductance remains quantized and does
not appear to depend on the length up to L = 100 nm (not
shown). Weak length-dependence appears in the very strong
disorder regime (w > 200 meV for on-site scalar disorder).
These findings are to be contrasted with a diffusive conductor
where the conductance is inversely proportional to the length.

B. Time-reversal symmetric, Sz nonconserving disorder

In Sec. III A we saw that the charge and spin conductances
remained quantized in the presence of weak on-site and SOC
perturbations that do not break the spin-rotational symmetry
of the TI. Here, we demonstrate that the conductances are
not protected against SOC perturbations that break the spin-
rotational symmetry, even when TR symmetry remains intact.
In particular, we implement a TR-symmetric, Sz nonconserv-
ing disorder term by adding a spatially-dependent iλ′

0,x(x)σx

term to the λ′
0 hopping amplitude, where λ′

0,x(x) is drawn
from a Gaussian of mean 0 and standard deviation w (see
Appendix B). We demonstrate the effects of this term on the
conductances in Fig. 6. As expected, SOC disorder that breaks
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FIG. 6. Conductances versus spin-nonconserving SOC disorder
width w. The system dimensions are L = 20 nm, W = 30 nm,
Ltrans = 0 nm, and Wlead = 12 nm (see Fig. 2). Each data point rep-
resents the average of 500 samples. Conductances are measured in
units of the charge and spin conductance quanta. Note that the Gs

T

and Gs
D curves are overlapping over almost the full range of w.

Sz conservation (Fig. 6) will lead to a stronger suppression
of edge spin conductances as opposed to Sz conserving SOC
disorder [Fig. 4(b)].

For disorder terms weaker than w < 300 meV, the con-
ductances slowly deviate from their quantized values. This
result suggests that TR symmetry alone is not enough to
ensure quantization of the spin conductances when disorder
is added to the SOC hopping amplitudes; rather, it is the
combination of TR symmetry and spin-rotational symmetry
that leads to this quantization. Of course, this distinction is
not relevant when one only considers on-site disorder terms,
as in that case spin-rotational symmetry is implied by TR
symmetry. At larger w we see a qualitatively different depen-
dence of conductance on disorder strength, corresponding to
the onset of bulk conduction in the disordered sample. While
the conductances do not remain quantized in the presence
of TR-symmetric, spin-nonconserving disorder, their devia-
tions from their quantized values appears to be much weaker
than for disorder that breaks TR symmetry, see Fig. 7(b) in
Sec. III C.

C. Magnetic disorder breaking time-reversal symmetry and Sz

conservation

Unlike spin-symmetric on-site disorder and SOC disorder,
unaligned magnetic disorder breaks both the TR symmetry
and the spin-rotational symmetry of the TI, leading to a large
deviation of the conductance from the pristine-limit quantiza-
tion even before the onset of bulk conduction. To demonstrate
this, we add a m(x)σx on-site disorder term, where m(x) is
once again drawn from a Gaussian of mean 0 and standard
deviation w. We also show how the conductances defined in
the leads depend drastically on whether or not there is disorder
along the left and right edges.

FIG. 7. Conductances versus on-site magnetic disorder width w.
For both plots L = 20 nm, W = 30 nm, and Wlead = 12 nm (see
Fig. 2). Conductances are measured in units of the charge and spin
conductance quanta. (a) A Ltrans = 2.5 nm wide clean transition
region is added to the ends of the TI to ensure no disorder at the
lead-TI interfaces. In this case the spin current entering the termi-
nals is approximately conserved and Gs

H stays quantized up to large
w � 200 meV. (b) No such transition region is added, Ltrans = 0. In
this case there is a spin torque that prevents the quantization of Gs

H ,
see Fig. 2(c).

In Fig. 7(a) we demonstrate the case of magnetic disorder
localized such that there is no disorder between leads of the
same side (Ltrans = 2.5 nm in Fig. 2). We see that the spin Hall
conductance Gs

H maintains its quantized value until the onset
of bulk conduction at about w = 200 meV, demonstrating
the robustness predicted by Eq. (15). Meanwhile, the charge
conductance Gc

2T and transmitted spin conductance Gs
T im-

mediately begin to decrease with w while the incident spin
conductance Gs

I increases. These deviations are in qualitative
agreement with Eqs. (10) and (11) if we make the identifica-
tion ηm = w2x0r0/(h̄2v2), where x0 = L − 2Ltrans is the length
of the disordered region and r0 is the correlation length of
the disorder. The conductances also obey the relations pre-
dicted by Eqs. (29) and (30). Similarly, the diagonal spin Hall
conductance Gs

D deviates from its quantized value at a much
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FIG. 8. Transmitted spin conductance Gs
T as a function of sample

length L and on-site magnetic disorder width w for a 32 by 32-mesh
grid. The other sample dimensions are W = 30 nm, Ltrans = 3 nm,
and Wlead = 12 nm [see Fig. 2(a)]. The average value of Gs

T over
50 samples was used to color each grid point; the plot was then
smoothed using a Gaussian. The solid lines are contours of constant
Gs

T and roughly follow a L ∝ w−2 dependence (black-dashed line),
as is predicted by the relation ln Gs

T ∝ −Lw2. Inset: Logarithmic plot
of Gs

T averaged over 300 samples vs L for a fixed w = 150 meV slice
(green-dashed line in the main figure). The slope of the best fit line
(solid green) is −1/(9.7 nm).

lower strength of disorder than Gs
H . We attribute this differ-

ence to the different biasing configurations: in measuring Gs
D,

every edge has a voltage drop, which allows for large spin
torque contributions (see Sec. I). We also note that Gs

D appears
to decrease to half of its zero-disorder quantized value. This is
due to the fact that in Table I for very strong disorder Gs

31 → 0
but Gs

34 = −1 due to the clean connection between leads 3
and 4.

Meanwhile, in Fig. 7(b), we demonstrate the case of a
fully-disordered sample with magnetic disorder added along
the edges connecting leads of the same side (Ltrans = 0 in
Fig. 2). We see that the removal of the clean connection
results in a different dependence on the disorder strength. The
relations given by Eqs. (29) and (30), which only relied on the
lack of bulk conduction and edge-to-edge coupling, still hold
for w < 200 meV. However, the spin Hall conductance Gs

H is
apparently no longer quantized, and the deviations of Gs

I and
Gs

T no longer agree with what is predicted by Eqs. (10) and
(11). As mentioned in Sec. II, this discrepancy is due to the
fact that we define the conductances in the leads, not in the
sample. We expect the spin Hall conductance corresponding
to the current in the sample to remain quantized even when
the sample is strongly disordered.

In addition to studying how the disorder strength affects
the conductances, we also study how the transmitted con-
ductance Gs

T varies with the sample length L. We plot the
dependence of Gs

T on the disorder strength and sample length,
as well as a constant w = 150 meV slice, in Fig. 8. We find
that, for constant w, the transmitted spin conductance decays
exponentially with the sample length, i.e., Gs

T ∝ e−L/l0 where

FIG. 9. Conductance deviations δG = G0 − G of a four-terminal
QPC system made of a L = 30 nm by W = 30 nm rectangular sam-
ple cut such that the width smoothly transitions to a narrowed region
of length LQPC = 200 nm and varying width WQPC. A scalar disorder
term with standard deviation w = 300 meV is then added to extend
the effective decay length and increase edge-to-edge coupling. Con-
ductance deviations are measured in units of the charge and spin
conductance quanta. The slopes of the corresponding best fit lines are
−1/(13.2 nm) for Gc

2T , −1/(13.6 nm) for Gs
H , and −1/(13.5 nm) for

Gs
T . Inset: Diagram of the QPC device demonstrating the definitions

of the various dimensions.

l0 is a characteristic spin decay length. For w = 150 meV, our
fit gives l0 ≈ 9.7 nm, see inset of Fig. 8. This roughly agrees
with an estimate of l0 = h̄2v2/(w2r0) ≈ 3.2 nm if we use
the average distance between neighboring lattice sites r0 ≈
0.2 nm as a disorder correlation radius and h̄v ≈ 120 meVnm
estimated from Fig. 3.

D. Quantum point contact system

As mentioned in Sec. I, interedge tunneling through the
bulk of the TI is another mechanism by which the con-
ductances can deviate from their quantized values. For each
conductance G we define the deviation δG from the quantized
value G(w = 0) by δG = G(w = 0) − G. In a QPC system of
minimum width WQPC, we expect δG ∝ e−WQPC/W0 for WQPC 
W0, where W0 is the effective decay length of the edge modes
(not to be confused with the characteristic spin decay length
l0 studied in Sec. III C). To test this relation, we create a four-
terminal QPC system where a rectangular sample is smoothly
transitioned into a narrowed region of width WQPC and length
LQPC (see inset of Fig. 9). We then add a scalar disorder term
to extend the effective decay length W0.

In Fig. 9 we plot the resulting conductance deviations
against WQPC on a logarithmic scale, along with their linear
fits. Using the inverse slopes of the best fit lines, we find that
the decay lengths of each conductance component is roughly
13 nm. The various spin conductance deviations, including the
incident and diagonal conductance deviations, which we hide
for clarity, have similar decay lengths. Physically, the decay
length serves as an indicator of the edge state width in the QPC
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geometry. We note that each conductance component decays
at the same rate as is expected from Eqs. (27) and (28), valid
for a system with spin conservation [64].

IV. CONCLUSIONS

We studied the effects of disorder on spin transport in
2D TIs and established important estimates for the level of
disorder strength that starts to hinder spin transport. One of
our main findings is that the spin current operator on the 2D
TI edge is given by the local density, Eq. (14). For this reason,
the spin Hall current generated by a transverse voltage is
remarkably robust to even spin-nonconserving perturbations,
see Eq. (15), as long as the two edges of the 2D TI are
not coupled. However, measuring the spin Hall current in a
4-terminal geometry is difficult due to additional spin currents
that flow between the terminals at different potentials, see
Fig. 2(c). These spin currents are not in general conserved and
hinder the measurement of a quantized spin Hall conductance.
These findings are confirmed by our numerical simulations,
e.g., Fig. 7. Overall, we find that spin conductance is most
sensitive to spin-nonconserving disorder such as random spin-
orbit coupling (Fig. 6) or magnetic impurities (Figs. 7 and 8).
In the former time-reversal symmetric case, the spin Hall con-
ductance is nevertheless nearly quantized even with relatively
large disorder strength of the order of the bulk band gap.

In WTe2, recent measurements of the spin quantization
axis indicate that spin-orbit disorder is relatively weak.
The canting of the edge state spin has been measured in
experiments [65,66] in agreement with theoretical models
[38,45,50,67,68]. These findings indicate that the spin quanti-
zation axis, although canted, does not vary strongly in position
or momentum space. This gives hope that the spin of the edge
carriers can be conserved over long distances.

We focused on low-temperatures at which scattering is
dominated by elastic processes. At the same time, we
found that time-reversal symmetric disorder has a weak
effect on spin transport, see Secs. III A and III B. There-
fore, at higher temperatures, inelastic scattering is expected
to become the dominant scattering mechanism, leading
to temperature-dependent corrections to the spin conduc-
tances. Finite-temperature and interaction effects on spin
transport constitute an interesting future direction (see also
Refs. [69–71] for quantum point contacts). Other intriguing
future directions would be to study the details of the tunnel-
coupling between a TI edge and a ferromagnetic contact
[72–75] or the effects of electric fields in relatively clean sys-
tems and investigate the potential to control spin polarization
electrically [76].
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APPENDIX A: DERIVATION OF TRANSMISSION AND
REFLECTION COEFFICIENTS

Here we derive the transmission t and reflection r coeffi-
cients given by Eqs. (7) and (8). We first find the eigenstates
of Eq. (5) by rearranging the Schrödinger equation H(x)ψ =
Eψ into a more convenient form,

∂xψ = 1

h̄v
[m(x)σy + i(E + μ)σz]ψ, (A1)

which can then be solved through the use of a matrix
exponential:

ψ (x0) = exp ηmσy + iξσzψ (0), (A2)

where ηm = ∫ x0

0 m(x)dx/(h̄v) and ξ = (E + μ)x0/(h̄v).
Thus, by taking 0/x0 to be at the left/right edges of the
disordered region and expanding the matrix exponential
in Eq. (A2), we can calculate how the disorder scatters
an incoming mode. Defining χ = √

ξ 2 − η2
m, the matrix

exponential in Eq. (A2) is equal to the scattering operator

Ŝ = cos χ + ηmσy + iξσz

χ
sin χ. (A3)

To calculate the transmission/reflection coefficient of an
incoming right-mover, we apply Ŝ to the state ψ (0) = |↑〉 +
r|↓〉, where r is the reflection amplitude yet to be determined:

ψ (x0) = Ŝψ (0)

=
[

cos χ + i
ξ

χ
sin χ − ir

ηm

χ
sin χ

]
|↑〉

+
[

r cos χ − ir
ξ

χ
sin χ + i

ηm

χ
sin χ

]
|↓〉. (A4)

Since the spin-down state on the right side of the barrier is
an incoming left mover, we know its coefficient must be zero.
Hence, solving for r and plugging the result into the spin-up
coefficient for t gives

t = χ2 cos χ + iξχ sin χ

ξ 2 − η2
m cos2 χ

, (A5)

r = ηmξ sin2 χ − iηmχ sin χ cos χ

ξ 2 − η2
m cos2 χ

. (A6)

Finally, we note that a similar analysis using an incoming
left mover gives the same coefficients, resulting in a unitary
scattering matrix as given by Eq. (9) in the low-energy limit.
Furthermore, the square magnitudes |t |2 and |r|2 are (restoring
χ = √

ξ 2 − η2
m)

|t |2 = ξ 2 − η2
m

ξ 2 − η2
m cos2

√
ξ 2 − η2

m

, (A7)

|r|2 = η2
m sin2

√
ξ 2 − η2

m

ξ 2 − η2
m cos2

√
ξ 2 − η2

m

. (A8)

Taking the scattering state near the Dirac point, ξ � ηm, these
expressions are used in Eqs. (10) and (11) to calculate the spin
current on the left and right of the disordered edge segment.
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APPENDIX B: TIGHT-BINDING MODEL

[Note: in this Appendix we denote z the axis perpendicular
to the monolayer, while the spin quantization axis, denoted
here z′, is tilted with respect to the normal (see the end of
this section). In the main text we drop the prime from z′
for brevity.] Here we reproduce the tight-binding model in-
troduced in Ref. [50] and detail the disorder terms used in
Sec. III. WTe2 in the 1T ′ configuration consists of a square
lattice with six atoms per unit cell. The effective tight-binding
model introduced by Ref. [50] reduces this to a four-site
square lattice, with two dx2−y2 (W) orbitals and two px (Te)
orbitals per cell.

Adopting the notation of Ref. [50], we define the Pauli
matrices si, τi, and σi to act on the spin, sublattice, and orbital
degrees of freedom, respectively, and define the �i matrices by

�0 = τ0σ0, (B1)

�±
1 = 1

2
τ0(σ0 ± σ3), (B2)

�±
2 = 1

4
(τ1 + iτ2)(σ0 ± σ3), (B3)

�3 = i

2
(τ1 + iτ2)σ2, (B4)

�±
4 = 1

4
(τ0 ± τ3)(σ1 + iσ2), (B5)

�±
5 = 1

2τ3(σ0 ± σ3), (B6)

�6 = 1
2 (τ1 + iτ2)σ1. (B7)

To be explicit, a term of the form siτ jσk acts on the operator

c�r = [c�r ↑Ad , c�r ↑Ap, c�r ↑Bd , c�r ↑Bp,

c�r ↓Ad , c�r ↓Ap, c�r ↓Bd , c�r ↓Bp], (B8)

where c�rslo annihilates a spin s ∈ {↑,↓} electron on sublattice
l ∈ {A, B} and orbital o ∈ {d, p}.

With these definitions, the tight-binding Hamiltonian
can be written as H = ∑

�r[H0(�r) + λ(�r)HSOC(�r) + δH (�r)],
where [50]

H0(�r) = μd

2
c†
�r �+

1 c�r + μp

2
c†
�r �−

1 c�r

+ tdx

2
c†
�r �+

1 (c�r+�a + c�r−�a)

+ tpx

2
c†
�r �−

1 (c�r+�a + c�r−�a)

+ tpy

2
c†
�r �−

1 (c�r+�b + c�r−�b)

+ tdAB c†
�r �+

2

(
c�r−�b+ ��1

+ c�r+�a−�b+ ��1

)
+ tpAB c†

�r �−
2

(
c�r+ ��2

+ c�r+�a+ ��2

)
+ t0AB c†

�r �3
(
c�r+ ��3

− c�r+�a+ ��3

)
− t0x c†

�r �+
4

(
c�r+�a+ ��4

− c�r−�a+ ��4

)
− t0x c†

�r �−
4

(
c�r+�a− ��4

− c�r−�a− ��4

)
+ t0ABx c†

�r �3
(
c�r−�a+ ��3

− c�r+2�a+ ��3

)
+ H.c., (B9)

TABLE II. Parameter values used in the tight-binding model of
1T′-WTe2 [50] [see Eqs. (B9) and (B10)].

H0 (eV) HSOC (meV)

μd 0.24 λz
dx –8

μp –2.25 λ
y
dx –31

tdx –0.41 λz
px –10

tpx 1.13 λy
px –40

tpy 0.13 λ
y
0AB 11

tdAB 0.51 λz
0 12

tpAB 0.4 λ
y
0 51

t0AB 0.39 λ′z
0 12

t0x 0.14 λ
′y
0 50

t0ABx 0.29

and

HSOC(�r) = − i

2
c†
�r
(
λz

dxsz + λ
y
dxsy

)
�+

5 (c�r+�a − c�r−�a)

− i

2
c†
�r
(
λz

pxsz + λy
pxsy

)
�−

5 (c�r+�a − c�r−�a)

− iλy
0ABc†

�r sy�6
(
c�r+ ��3

+ c�r+�a+ ��3

)
− ic†

�r
(
λz

0sz + λ
y
0sy

)
�+

4 c�r+ ��4

+ ic†
�r
(
λz

0sz + λ
y
0sy

)
�−

4 c�r− ��4

− ic†
�r
(
λ′z

0 sz + λ
′y
0 sy

)
�+

4 c�r−�b+ ��4

+ ic†
�r
(
λ′z

0 sz + λ
′y
0 sy

)
�−

4 c�r+�b− ��4

+ H.c., (B10)

are the spin-rotation symmetric and spin-orbit coupling terms,
respectively, λ(�r) is a potentially site-dependent scale factor
modifying the SOC strength (λ(�r) = 1 for physical WTe2 and
= 0 for no SOC), and δH (�r) describes any additional disorder
terms. The parameter values used in Eqs. (B9)–(B10) can be
found in Table II.

In Sec. III we study the effects of several on-site and
hopping disorder terms. In Sec. III A we study on-site scalar
disorder terms of the form δH (�r) = u(�r)c†

�r s0�0c�r , where u(�r)
is drawn from a Gaussian of mean 0 and standard deviation w.
We also study spin-conserving disorder in the SOC strength
by having λ(�r) be drawn from a Gaussian of mean 1 and
standard deviation δλ. In Sec. III B we break spin-rotational
symmetry (while preserving TR symmetry) by adding a dis-
order term δH (�r) = iλ′x

0 (�r)c†
�r sx(�+

4 c�r−�b+ ��4
− �−

4 c�r+�b− ��4
) +

H.c., with λ′x
0 (�r) drawn from a Gaussian of mean 0 and stan-

dard deviation w. Finally, in Sec. III C we break both TR and
spin-rotational symmetry by including an on-site perturbation
δH (�r) = m(�r)c†

�r sx�0c�r , with m(�r) once again drawn from a
Gaussian of mean 0 and standard deviation w.

Finally, we comment on the edge state spin quantization
axis of a pristine WTe2 obtained from Eqs. (B9) and (B10); let
us denote the axis z′ in this section. Noting the lack of an sx

term in Eq. (B10), it is clear that the spin quantization axis z′
lies in the yz plane. Numerically, we find z′ ≈ z cos θ + y sin θ
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FIG. 10. Normalized differences between 300 sample and 1000
sample averages. The disorder term is a localized magnetic perturba-
tion as discussed in Sec. III C and shown in Fig. 7(b).

with θ ≈ 76.7◦ and measure the spin current using Eq. (21)
along this axis. Furthermore, as detailed in the preceding
paragraph, the spin-symmetry breaking disorder terms we
consider are x polarized and thus perpendicular to both z
and z′, ensuring that these perturbations fully break the spin-
rotational symmetry. In the main text, including Eq. (1), we
drop the prime from z′ and simply denote the spin quantization
axis z.

APPENDIX C: CONVERGENCE OF
DISORDER-AVERAGED CONDUCTANCE

Here we confirm the convergence of the disorder-averaged
conductance components in the presence of magnetic disor-
der. To do this, we have extended our calculations for Fig. 7(b)

FIG. 11. Disorder-averaged conductance components versus the
number of samples used at fixed w. The disorder term is a local-
ized magnetic perturbation as discussed in Sec. III C and shown in
Fig. 7(b).

to include 1000 samples (in comparison to the 300 samples
used in the plot). We display the results of these calculations
in Figs. 10 and 11. In Fig. 10 we plot difference in the
conductance values averaged over 300 and 1000 samples, nor-
malized by their corresponding conductance quanta G0 [e2/h
for charge conductance and e/(4π ) for spin conductance].
The difference between these averages is less than ±0.03 G0

for each component, which is small enough for our purposes.
Meanwhile, in Fig. 11, we plot the average conductance val-
ues versus the number of samples for fixed values of the
disorder strength w. We note the averages appear to converge
to their long-run values after a few hundred samples, with
most of the fluctuations occurring well before 300 samples
(marked by a dashed line).
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