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Valley-resolved Fano resonance in monolayer transition metal
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Besides spin, the valley degree of freedom is also a promising candidate as a carrier of information. Spintronics
has come a long way, and spin modulation can be realized by quantum interference and the spin-orbit coupling
effect. However, how to control the valley degree of freedom using quantum interference is still a problem to
be explored. Here, we discover a mechanism for producing valley polarization in a monolayer transition metal
dichalcogenide nanoribbon with attached stubs, in which valley-resolved Fano resonance is formed due to the
quantum interference of intervalley backscattering. When the quantum interference occurs between the localized
states at the edge of the stubs and the continuous channels in the nanoribbon, the transmission dips of the Fano
effect are valley polarized. As the number of stubs increases, the valley-polarized transmission dips will split, and
valley-resolved minigaps are formed by Fano resonance with intervalley backscattering in the stub superlattice.
When the electron incident energy is in these valley-resolved gaps of the superlattice, even with several stubs,
the transmission can have a significant valley polarization. Our findings point to an opportunity to realize valley
functionalities by quantum interference.
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I. INTRODUCTION

Fano resonance arises from the quantum interference be-
tween two interfering configurations, one directly through
the continuum states and the other through a discrete
level [1]. The constructive and destructive interferences of
the two configurations give rise to a characteristic asym-
metric line shape in the spectrum. Although the Fano
resonance is established in spectroscopy, it has been ob-
served as a ubiquitous phenomenon in a wide variety of
physical processes with coexisting discrete and continuum
states, particularly electronic transport in a low-dimensional
nanostructure [2–15]. Both experimental and theoretical in-
vestigations have indicated that Fano resonance has potential
application in spintronics [7–10] and optoelectronics devices
[16,17].

Fano resonance also occurs in monolayer materials, such
as graphene and monolayer transition metal dichalcogenides
(MTMDs) [6,11,18,19]. The energy dispersion of electrons
in these materials usually has a pair of degenerate minima
located at well-separated momentum space points, known
as valleys. Besides spin, the valley degree of freedom also
provides a feasible way to design information-storage or
information-processing devices. Similar to the control of the
spin polarization in spintronics, the manipulation of valley
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polarization configurations, i.e., unequal population distribu-
tion among the degenerate valleys, is one of the key elements
for valleytronics devices. The valley polarization has been
widely studied by using edges [20], doping [21], defects
[22,23], lattice strains [24–28], intervalley scattering [29,30],
or valley-dependent trigonal warping of the dispersions [31].
Meanwhile, the spinlike properties of the valley, including
the valley Hall effect [32–34], the valley magnetic response
[21,35–42], and the valley optical selection rules [43,44], al-
low its manipulation similar to the spin controls. A large spin
polarization can be generated in semiconductor nanostruc-
tures that involves both the spin properties and the quantum
interference effects related to spin-dependent Fano resonance.
However, it is still a pertinent challenge to realize valley
polarization in monolayer honeycomb lattice materials using
valley quantum interference effects, such as valley-dependent
Fano resonance.

Here, we discover that in a MTMD nanoribbon with an
attached stub, the Fano resonance, i.e., the dip in the transmis-
sion spectrum caused by the quantum interference between
the localized states of the stub and the continuum states in
the nanoribbon, is split into two valley-resolved dips. This
valley selectivity is made possible by the intervalley backscat-
tering induced by the localized states in the stub. When the
number of stubs attached to the nanoribbon increases, each
valley-resolved Fano dip will further split into multiple dips.
Therefore the valley-resolved minigaps will be formed for
stub superlattice structures. A sizable valley polarization can
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FIG. 1. Valley-resolved Fano resonance as electron transmission
through a MTMD nanoribbon with an attached stub. (a) Schematic
of nanoribbons with attached stubs connected to MTMD leads on
the two sides. (b) Valley-resolved transmission and reflection coef-
ficients as functions of the incident energy, with L = 10a, a being
the lattice constant of MTMDs. (c) Valley-resolved transmission
and reflection coefficients for L = 20a. (d) Valley polarization Pv

of the transmission as a function of the incident energy for the two
configurations. All calculations here use parameters D = 10

√
3a and

H = 4
√

3a [cf. Fig. 1(a)].

be obtained when the electron incident energy is in these
valley-resolved gaps even for a nanoribbon with several stubs
attached.

II. MODEL AND METHODS

Let us consider a MTMD zigzag nanoribbon with attached
stubs of length L and width H [Fig. 1(a)]. The width of
the nanoribbon is D, and the spacing of the stubs is W .
In MTMDs, the conduction edges at the ±K valleys are
contributed predominantly by the three metal d orbitals [45]:
dz2 , dxy, and dx2−y2 . For a quantitative characterization of the
valley-polarized transport and superlattice minibands, with
the Fano interference of intervalley backscattering, we have
calculated the valley-dependent transport properties and en-
ergy dispersion using the tight-binding model constructed
with the three orbitals that describes well the band edge elec-
trons [45],

H =
∑

i

∑
μ

εiμc†
iμciμ +

∑
〈i, j〉

∑
μv

tiμ, jvc†
iμc jv. (1)

Here, εiμ and c†
iμ are the on-site energy and the creation

operator, respectively, for the electron on orbital μ at metal
site i, the sums 〈i, j〉 run over all pairs of nearest-neighbor
metal sites, and tiμ,iν are the hopping terms fitted from first-
principles band structures [45].

Consider a nanoribbon with stubs connected to the outer
world by left and right semi-infinite pristine MTMD leads;

the valley-resolved transport properties of the system with the
tight-binding Hamiltonian in Eq. (1) are calculated using a
recursive Green’s function technique [46] in Appendix A.

III. RESULTS AND DISCUSSION

As examples, we numerically demonstrate the sizable
valley polarization effects driven by Fano resonance of inter-
valley backscattering in monolayer MoS2 nanoribbons with
stubs. The widths of the nanoribbon and the stub are set
as D = 10

√
3a and H = 4

√
3a, respectively, a being the

lattice constant of MoS2. Figure 1(b) shows the calculated
valley-conserved and valley-flip transmission and reflection
coefficients for a nanoribbon with one stub attached with L =
10a. The two valley-conserved reflection coefficients R←

K,K
and R←

−K,−K are always identical, as they correspond to in-
travalley backscatterings with the same momentum transfers.
The two valley-flip transmission coefficients are equal, i.e.,
T →

K,−K = T →
−K,K , as the two scattering channels are conjugates

of each other [29]. Both of the valley-conserved transmission
coefficients, T →

K,K and T →
−K,−K in Fig. 1(b), exhibit a wide

plateau and a series of dips on the plateau. These dips arise
from the Fano-type interference between the continuous states
propagating in the main channel and a bound state formed in
the stub. This type of resonance is called structure-induced
Fano resonance. The peaks of valley-flip reflection coeffi-
cients in Fig. 1(b) indicate that the Fano resonance here is
a quantum destructive interference behavior with strong in-
tervalley backscattering. The valley-resolved Fano resonance
of transmission coefficients in Fig. 1(b) is caused by the
combined effect of intervalley backscattering and quantum
interference.

The charge current passing through the nanoribbon with
a stub is accompanied by a valley-polarized flow when the
electron incident energy is set at the Fano resonant position.
In order to study the valley polarization caused by Fano res-
onance with intervalley backscattering, we do not consider
the effect of the edge state, because the valley-dependent
transport properties of the edge state are obvious. At the
upper boundary of the nanoribbon, the electrons in the −K
valley propagate steadily to the right lead and will not be
affected by the stub [47]. At the bottom of the conduction
band, the edge states propagating to the right belong only
to the −K valley. In any low-energy region, the contribu-
tion of edge states to transmission is always 1. Here, what
we are concerned with is the contribution of bulk states to
valley polarization, so we remove the edge state contribu-
tion. The valley polarization can be defined as Pν ≡ 1

T (T →
K,K +

T →
−K,K − T̃ →

−K,−K − T →
K,−K ), where T̃ →

−K,−K = T →
−K,−K − 1 and

T = T →
K,K + T →

−K,K + T̃ →
−K,−K + T →

K,−K remove the edge state
contribution. Figure 1(d) plots the valley polarization as a
function of the incident energy for L = 10a and L = 20a. A
pronounced valley polarization almost reaching ∼85% can
be obtained in nanoribbons with a short stub, for example,
L = 10a, in which the intervalley backscattering results in
significant valley-resolved Fano resonance. Moreover, the di-
rection of valley polarization can be controlled by the incident
energy.
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We also examined the effect of the stub size on the Fano
resonance. When the size of the stub increases, two kinds of
Fano resonances appear on the transmission spectra plateau,
as shown in Fig. 1(c). It can be seen from the reflection coeffi-
cients that one is mainly caused by intravalley backscattering
and the other is induced by intervalley backscattering. The
valley splitting effect of Fano resonance will be suppressed
when the size of the stub increases. The valley-resolved Fano
resonance positions are difficult to distinguish in terms of the
incident energy. In this case, valley polarization is generated
near the Fano resonance energy positions, but the strength of
the valley polarization is reduced, as shown in Fig. 1(d).

In order to offer the most general guides for achieving
the best result of the valley polarization, we can discuss the
location of the dips in the transmission spectra. It depends
on the energy levels in the stubs. An analytical expression
for the spectral intensity was first proposed and later applied
to an Aharonov-Bohm ring with an embedded quantum dot
(QD-AB ring) [3] and T-shaped quantum waveguides [48],

T (ε) ∝ (ε + q)2

ε2 + 1
, (2)

with ε = E−E0
�/2 , where E0 and � are the energy position and

width of the resonance state, respectively. The Fano parameter
q is a measure of the coupling strength between the continuum
state and the resonance state. The Fano parameter q selects
from a symmetric peak (q = ∞) or dip (q = 0), or a dip to the
left (q > 0) or right (q < 0) of a peak. Here, we can set q = 0
and roughly fit the dips in the transmission for the valley-
resolved Fano resonance in Fig. 2(a). There are two kinds
of intervalley scatterings with distinct momentum transfers
[29]. In the first Born approximation, R←

K,−K and R←
−K,K simply

correspond to different Fourier components of the scattering
potential at 2K + 2qF and 2K − 2qF , respectively, where qF

is the Fermi wave vector. Due to the quantum size effect, two
kinds of intervalley scatterings lead to valley-resolved energy
levels in the stub. According to Eq. (2), the valley-resolved
energy levels distinguish the transmission in the two valleys
at the energies of Fano resonance.

Figures 2(a) and 2(b) plot the total transmission, Tsum =
T →

K,K + T →
−K,K + T →

−K,−K + T →
K,−K , as a function of the incident

energy for L = 10a and L = 20a, respectively. In the bulk
energy gap below the bottom of the conduction band, the
total transmission Tsum = 1 is the contribution of the edge
state. For Fano resonance with intervalley backscattering,
such as point D in Fig. 2(a), the quantum interference is
not completely destructive, and one of the valleys is retained
in the total transmission. For point F in Fig. 2(b), Fano
resonance with intravalley backscattering is completely de-
structive quantum interference. It is pointed out that the Fano
resonances are contributed by both intervalley and intraval-
ley backscattering. For some resonance dips, one of them
plays the dominant role. For example, point F in Fig. 2(b)
corresponds to a resonance mainly due to intravalley backscat-
tering, while point D in Fig. 2(a) is a resonance mostly
contributed by intervalley backscattering. We have superim-
posed the relative contributions of intravalley backscattering
and intervalley backscattering on the transmission spectrum
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FIG. 2. Local density of states of MTMD nanoribbons with a
stub. (a) The total transmission and fits (black dotted line) as a
function of the incident energy for L = 10a. Blue and red dots
represent intervalley and intravalley backscattering, respectively, and
the size of the dots represents the contribution to the total trans-
mission. (b) The total transmission for L = 20a. (c)–(d) Profiles of
the local density of states as the incident energies are taken at the
positions marked by the four corresponding green points (points
C, D, E, and F) shown in (a) and (b). Black arrows indicate edge
states in (c) and (e).

to identify the two backscattering processes more easily, as
shown in Figs. 2(a) and 2(b).

In order to understand the localized state distribution in the
stub which causes the valley splitting effect of Fano resonance
in detail, in Figs. 2(c)–(f) we plot the profiles of the local state
density of the system at different electron incident energies
denoted by the four green points in Figs. 2(a) and 2(b). The
edge state at the upper boundary of the nanoribbon will not
be destroyed by the stub at any incident energy shown in
Figs. 2(c)–(f). When the electron incident energy is set in the
transmission plateau region, there are no localized states in
the stub, and the electron is perfectly transmitted through the
continuous states in the nanoribbon, as Fig. 2(c) illustrates. As
can be seen from the profile of the local state density at point
E in Fig. 2(e), when the stub length increases, the continuous
channels in the nanoribbon shift to the stub, but the electron is
still not localized by the stub.

At the intervalley-backscattering Fano resonant energy po-
sitions, such as point D, the electrons are sharply localized
on the left and right boundaries of the stub. The distribution
range of the local states can be compared with the lattice
constant of the MTMDs, so there is a significant intervalley
backscattering effect during electron transmission. It is the
localized states on the armchair boundary of the stub that give
rise to valley-polarized Fano resonance. As shown in Fig. 2(f),
for the incident energy corresponding to the energy position of
Fano resonance mainly induced by intravalley backscattering,
the local state density is highly localized inside the stub region
and forms two isolated islands. In this situation, standing
waves are formed by the interference between the electron

115305-3



MU, WANG, DU, AN, AND LIU PHYSICAL REVIEW B 105, 115305 (2022)

%

%

%

FIG. 3. The effects of different edges and defects on the valley-
resolved Fano resonance. (a) Valley-resolved transmission and
reflection coefficients as functions of the incident energy for a stub
with left and right zigzag edges, with L = 10a and W = 5a. (b) Val-
ley polarization as a function of the incident energy for a stub with
zigzag edges. (c) Valley polarization as a function of the incident
energy for various defect densities ηi in the stub.

waves reflected from the walls of the stub and those in the
nanoribbon.

Figures 3(a) and 3(b) show the Fano resonance and the
resultant valley polarization when the left and right boundaries
of the stub are zigzag edges. It is found that the valley splitting
effect of Fano resonance is suppressed in this case. The reason
is that the intervalley scattering is not significant in the stub
with zigzag edges, so the valley-resolved energy level splitting
is weakened. Therefore the armchair edge of the stub is one
of the important factors in obtaining high valley polarization.
Figure 3(c) shows the valley polarization as a function of the
incident energy for various defect densities ηi in the stub. Al-
though the location of the dips remained the same, the strength
of the dips became weaker. Valley polarization decreases with
the increase in defect density in the stub area.

The sharpness of the valley-polarized Fano resonances is
limited to valley filtering applications, so we also studied the
effect of the number of stubs on the valley-polarized transport
properties. Figure 4(a) shows the calculated valley-conserved
and valley-flip transmission and reflection coefficients for a
two-stub nanoribbon with L = 10a and W = 5a. Each valley-
polarized Fano resonance dip is split into two, which broadens
the range of the incident energy for valley polarization. Each
valley polarization peak of the nanoribbon with one stub be-
comes two peaks now, and the valley polarization maintains a
high intensity in a certain incident energy range, as shown in
Fig. 4(b). If the number of stubs attached to the nanoribbon
continues to increase, the valley-polarized Fano resonance
dips, and the valley polarization peaks split further into more
dips and peaks. Figure 4(c) shows the valley polarization as
a function of the number of stubs when the incident energy
is in the energy range indicated by the double-headed arrows
in Fig. 4(b). Large valley polarization is obtained over a wide
energy range, and remarkably, by just using four stubs, the
valley polarization can already reach ∼60-90% [cf. Fig. 4(c)].

FIG. 4. Valley-polarized transmission through a MTMD
nanoribbon with multiple stubs. (a) Valley-resolved transmission
and reflection coefficients as functions of the incident energy for
two stubs, with L = 10a and W = 5a. (b) The corresponding
valley polarization and the total transmission as functions of the
incident energy. (c) Valley polarization as a function of the number
of stubs for various incident energies in the region indicated by
double-headed arrows in (b).

According to the superlattice transport theory, as long as
the distance between the stubs is not too far and the wave
functions in the adjacent stubs can overlap, a nanoribbon with
multiple stubs will have the properties of miniband transport;
that is, the system will have valley-resolved minibands and
minigaps. Figure 5(a) shows an example of the stub super-
lattice energy bands, with L = 10a and W = 5a, where the
length of the supercell is L + W . In the superlattice, the edge
states still exist perfectly [indicated by the arrows in Fig. 5(a)],
and zone folding does not open the energy gap in the edge
states, because the edge states cannot be reflected by the stubs.
Our calculation finds that the strong intravalley backscattering
shown in Fig. 5(d) leads to a sizable bulk minigap � at the
boundary of the minizone.

Besides the bulk minigap �, there are two valley-resolved
minigaps �+ and �− at the center and boundary of the
minizone, respectively. In the neighborhood of �+ and �−,
multiple intervalley backscatterings by the stubs give rise
to closely spaced Fano resonance dips which will develop
into minigaps in an infinite-period superlattice. Within the
gaps �+ and �−, the minibands are valley polarized. The
Fano resonance with intervalley backscattering makes pos-
sible energy windows for valley-polarized transport in the
superlattice. Figures 5(b) and 5(c) show the valley polarization
and transmission as functions of the incident energy, for a
20-stub superlattice with L = 10a and W = 5a. As the periods
increase, the Fano resonance dips in transmission are further
split into groups of valley-resolved dips. These dips evolve
into continuous valley-resolved minigaps in the limit of a
superlattice. This leads to a pronounced valley polarization
exceeding 90%, with a total transmission Tsum ∼ 2 [Fig. 5(b)].
If the valley polarization is defined by the conductance, the
transmission coefficient should be weighted by the Fermi
distributions of the leads and integrated over energy. The
valley imbalance regarding the carrier densities achieved by
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FIG. 5. Valley filtering performance for the stub superlattice. (a) An example of superlattice miniband dispersion, with L = 10a and
W = 5a. The lines indicated by the arrows are the edge states of the system. In the case of zone folding, intravalley backscattering causes
a bulk minigap � at the boundary of the minizone. The intervalley backscattering gives rise to two valley-resolved gaps �+ and �− at the
center and boundary of the minizone, respectively. The upper of the two bands split by �+ is responsible for the transmission of the −K
valley state, which is colored in red. The lower of the two bands split by �− is responsible for the transmission of the K valley state, which
is colored in green. (b) Valley polarization and transmission as functions of the incident energy. (c) Valley-resolved transmission coefficients.
(d) Valley-resolved reflection coefficients. The number of superlattice periods N = 20 is used in (b)–(d).

the valley filter may be significantly diluted due to the valley-
resolved gaps being narrow and adjacent to each other.

IV. CONCLUSIONS

In summary, we have shown that a remarkable valley fil-
tering can be realized in a MTMD nanoribbon with attached
stubs due to the Fano resonance with the intervalley backscat-
tering. The edge states on the boundaries of the stub and the
bulk localized states in the stubs cause the intervalley- and
intravalley-backscattering Fano resonance, respectively. It is
the intervalley-backscattering Fano resonance that results in a
significant valley polarization. The valley-resolved Fano res-
onance will split when the number of stubs increases, and the
valley-resolved minigaps are formed at the supercell Brillouin
zone boundary and center for the stub superlattice structure.
The transmission has nearly perfect valley polarization in
these gaps with alternating valley polarity. This broadens the
valley-polarized energy region and makes possible control
of the valley filtering functionality by electrostatic control.
Moreover, a valley polarization in a wide energy region can be
generated in nanoribbons with just a few stubs. These results
point to an unexpected but exciting opportunity to build valley
functionality by quantum interference in a MTMD nanostruc-
ture.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 12074096) and Hebei
Province Natural Science Foundation of China (Grant No.
A2021208013).

APPENDIX A: RECURSIVE GREEN’S
FUNCTION TECHNIQUE

In the main text, we used the recursive Green’s function
method, which is very convenient in solving quantum trans-
port. This method is utilized in the calculation of valley pump
of electrons or holes at nonmagnetic disorders [29]. Here, we
derive the recursive Green’s function method. We assume that
for each unit cell with an index i, the equation of motion can
be written as

−(EI − H i )Ci + H i,i−1Ci−1 + H i,i+1Ci+1 = 0, (A1)

where Ci is a vector describing the wave-function coefficients
on all sites and orbits of unit cell i within the three-band
tight-binding model. The matrices H i and H i,i+1 consist of the
unit cell and hopping matrix of the Hamiltonian, respectively.
The equation of motion can be rewritten in transfer matrix
form: (

Ci+1

Ci

)
=

(
H−1

i,i+1(EI − H i ) −H−1
i,i+1H i,i−1

I 0

)

⊗
(

Ci

Ci−1

)
. (A2)

We suppose the solutions of Eq. (A2) to have Bloch sym-
metry, Ci = λCi−1 and Ci+1 = λ2Ci−1. Substituting this into
Eq. (A2) results in an eigenvalue problem,(

H−1
i,i+1(EI − H i ) −H−1

i,i+1H i,i−1

I 0

) (
Ci

Ci−1

)
= λ

(
Ci

Ci−1

)
.

(A3)
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The eigenvalue λ is related to the wave vector k through
λ = exp(ika). The eigenvalues are denoted by λn(±), and
the corresponding eigenvectors are denoted by un(±),
where the right-going and left-going modes are labeled
as (+) and (−). The Bloch velocities are given by the
expression

vn(±) = −2a

h̄
Im[λn(±)u†

n(±)H†
i,i+1un(±)]. (A4)

Define

U (±) = (u1(±) · · · u3Ny (±)) (A5)

and

	(±) =
⎛
⎝λ1(±)

. . .

λ3Ny (±)

⎞
⎠, (A6)

where Ny is the number of metal atoms in the y direction; then
we have

F(±) = U (±)�(±)U−1(±). (A7)

The transmission coefficient for the incident mode m with
velocity vm and outgoing mode n with velocity vn can be
obtained as

tmn =
√

vn

vm
{−U−1(+)GNx+1,0H0,−1

⊗ [F−1(+) − F−1(−)]U (+)}mn, (A8)

and the reflection coefficient for the incident mode m and
outgoing mode n can be obtained as

rmn =
√

vn

vm
(U−1(−){−G0,0H0,−1

⊗ [F−1(+) − F−1(−)] − I}U (+))mn. (A9)

Here, Nx is the number of metal atoms in the x direc-
tion, and the Green’s function matrix block GNx+1,0 and
G0,0 can be found using a set of recursive formulas [46].
Therefore the valley-dependent transmission and reflection
coefficients for the incident valley A and outgoing valley
A′ (A, A′ = K or − K) can be defined as

TA′,A =
∑

m∈{A′}, n∈{A}
|tmn|2 (A10)

and

RA′,A =
∑

m∈{A′}, n∈{A}
|rmn|2, (A11)

respectively.

APPENDIX B: BAND STRUCTURE

In quantum transport theory, there are often multiple modes
in the system involved in transport. For each mode m, its
transmission coefficient

∑
n |tmn|2 in Eq. (A10) is always be-

tween 0 and 1. For transmission of multiple modes, in order to
distinguish the contribution of each mode to the transmission,
the usual practice is to sum the transmission coefficient of
each mode,

∑
m,n |tmn|2, as the transmission coefficient for all

modes. Therefore the transmission here is greater than 1. If

Edge states

-1 0 1

E  (
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)
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.5
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5
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5
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p
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FIG. 6. The band structure of a nanoribbon without stubs. Black
arrows mark valence bands, conduction bands, edge states, and the
band gap. The black dashed line represents the Fermi level, the num-
ber of the subbands passing through the Fermi level is the number of
modes involved in transport, and the “left-going” and “right-going”
directions of the group velocity for the states at Fermi energy are
determined by the slope of the dispersion. The short blue line shows
the tangent line of the dispersion, which is represented by “→” when
the slope is greater than 0 and “←” when the slope is less than 0.
“→” and “←” represent the direction of movement to the left and
right, respectively.

we assume that each mode in the left lead has an incident
electron, the transmission coefficient we calculated divided by
the number of modes will be approximately between 0 and 1.

For monolayer two-dimensional (2D) MoS2, in both the
K and −K valleys, there could be electrons going along all
directions in the 2D plane. Here, we study a monolayer MoS2

nanoribbon. For finite-width nanoribbons, due to quantum
size effects, the two-dimensional band becomes a series of
subbands, as shown in Fig. 6. The band gap indicated by
the double-headed arrow is approximately 1.8 eV, and the
black dashed line represents the Fermi level. The number of
subbands passing through the Fermi level is the number of
modes involved in transport. When the energy E is between
1.9 and 1.92 eV, only the edge state passes through the Fermi
level, which is a single-mode transport. It can be found that in
Fig. 1(b), when E is between 1.9 and 1.92 eV, the transmission
is between 0 and 1; meanwhile, in Fig. 2(a), when E is be-
tween 1.9 and 1.92 eV, the total transmission is between 0 and
1. In Fig. 1(b), the value of T →

−K,−K is greater than 2, indicating
that more than two modes are involved in the transport of the
−K valley.

The band structure in Fig. 5(a) could be understood by
folding the one in Fig. 6 with the effect of the coupling with
the stub. The Brillouin zone folding leads to intersections of
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bands. At the intersection points of bands of propagating right
in the K valley and propagating left in the −K valley, the
intervalley-backscattering R←

K,−K gives rise to the −K-valley-
polarized gap �+. In contrast, the intervalley-backscattering
R←

−K,K results in the K-valley-polarized gap �− at the inter-
section points of bands of propagating right in the −K valley
and propagating left in the K valley.

In the quantum confinement direction, we have no way
to define the group velocity. According to the definition of
group velocity, v = 1

h̄
∂E
∂k , the “left-going” and “right-going”

directions of the group velocity for the states at Fermi energy
are determined by the slope of the dispersion. “→” and “←”
represent the direction of movement to the left and right,
respectively.
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