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Rashba spin-orbit coupling (SOC) described by odd powers of k terms in semiconductor quantum wells
(QWs) plays a critical role in spintronics and quantum computing. It was believed that the Rashba SOC in
two-dimensional hole gases (2DHGs) is a k-cubic term as the lowest order, in sharp contrast to its electron
counterpart in which the leading term is a k-linear term. Our recent work [Phys. Rev. B 103, 085309 (2021)]
uncovered the emergence of k-linear Rashba SOC in 2DHGs arising from their direct dipolar coupling to the
external electric field in the presence of heavy-hole-light-hole (HH-LH) mixing. Here, we explore the upper and
lower bounds of this k-linear Rashba SOC for 2DHGs in Ge/Si QWs by varying the growth orientations. By
performing atomistic pseudopotential method calculations associated with symmetry analysis, we demonstrate
that the upper bound of the k-linear Rashba SOC of 2DHGs is in the [110]-oriented QWs, and the lower bound
is the vanishment of the k-linear Rashba term, giving rise to purely k-cubic Rashba SOC, in the [111]-oriented
QWs with an even number of the well monolayers (MLs). The varying of the well MLs from even to odd can
also change the symmetry of QWs and thus produce different types of SOC. In the odd-ML [001]-oriented QWs,
we observe a strong Dresselhaus SOC, which is, however, absent leaving behind the k-linear Rashba SOC alone
in the even-ML [001]-oriented QWs. We further illustrate that the k-linear Rashba SOC in [001]-oriented QWs
and odd-ML [111]-oriented QWs completely arises from the local interface induced HH-LH mixing, whereas
in other orientations it is dominated by the QW global symmetry allowed intrinsic HH-LH mixing, which is
due to the orientation-dependent breaking of the axial symmetry but is irrelevant to the local interface. We
prove that the strongest intrinsic HH-LH mixing appears in the [110] orientation by doing the transformation
of the Luttinger-Kohn Hamiltonian, explaining why the upper bound of the k-linear Rashba SOC occurred in
the [110]-oriented QWs. Subsequently, we illustrate clearly the strong correlation between the HH-LH mixing
and the k-linear Rashba SOC. The k-linear Rashba SOC occurring in odd-ML [001]-oriented QWs but purely
k-cubic Rashba SOC in even-ML [111]-oriented QWs provides direct evidence for the hypothesis that the
HH-LH mixing observed in [001]-oriented, e.g. GaAs/AlAs, QWs arises from the local interface symmetry
C2v despite it is the nominal prohibition by the QW global symmetry D2d , considering the HH-LH mixing
is forbidden by the global symmetry of both QWs and is allowed by the former rather than the latter local
interfaces. Our findings clarify the physical mechanism underlying the orientation dependence of the Rashba
SOC and provide design rules to realize k-linear or purely k-cubic Rashba SOC in 2D hole systems.
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I. INTRODUCTION

The relativistic spin-orbit interaction couples the electron
spin to its orbital motion in solids lacking spatial inversion
symmetry due to electrons moving in an asymmetric electric
field encountering an effective magnetic field in their frame of
motion that couples to the electron’s spin magnetic moment
[1–3]. There are two types of spin-orbit coupling (SOC) ef-
fects. One originates from bulk-inversion asymmetry (BIA)
induced asymmetric crystal field, known as the Dresselhaus
effect [1]. Another type arises from the potential-asymmetry
induced by electric field associated with structural-inversion
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asymmetry (SIA) in heterostructures, known as the Rashba
effect [2]. It has now been extended to bulk crystals due
to intrinsic dipole fields [4,5]. The Dresselhaus and Rashba
SOC effects enable a wide variety of fascinating phenomena
and have inspired a vast number of innovative concepts far
beyond semiconductors, rendering them to play a crucial role
in diverse fields of condensed matter physics [6].

In contrast to the Dresselhaus SOC, the Rashba SOC is
more compelling due to its electrical tunability. It renders low-
dimensional semiconductors becoming platforms promising
for an increasing number of physical effects and device ap-
plications, such as spin Hall effect [7–9], spin galvanic effect
[10–12], spin transistors [13,14], and spin qubits [15–17].
In these physical effects and potential applications, long
spin lifetimes are crucial. Regarding holes having a much
longer spin lifetime than electrons due to the suppression of
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the contact hyperfine interaction between the nuclear spins
and carrier spins [15,16,18,19], a large fraction of research
attention has recently been shifted towards hole systems
[15,16,18,19]. Unlike group III-V semiconductors, group IV
Ge and Si contain only less than 5% of atomic nuclei with
nonzero spins, which can be further engineered by isotopic
purification [20–22] into (almost) nuclear-spin-free materi-
als, and thus can obtain the longest spin lifetimes among all
semiconductors [23,24]. Furthermore, Ge has the highest hole
mobility among all known semiconductors and is compatible
with mature Si Complementary-Metal-Oxide-Semiconductor
(CMOS) technology. Moreover, Ge possesses a much stronger
SOC than Si because strong spin-orbit interaction is an in-
herent relativistic effect of heavy atoms. All these factors
jointly facilitate the replacement of Si by Ge towards scalable
quantum computing. Specifically, Veldhorst and his cowork-
ers have very recently implemented fast single-qubit [18],
two-qubit [25], and four-qubit logic operations [26] using
hole spins confined in planar Ge quantum dots (QDs) formed
by top-gated Ge/SiGe quantum wells (QWs) [27], where the
achieved fast qubit manipulation gives the credit to the strong
SOC [25,28,29].

Although the expected strong SOC renders Ge planar hole
QDs central to the quest for electrical spin qubit manipulation
enabling fast, low-power, and scalable quantum computation
[25,30], the underlying microscopic physics remains unclear.
In the material platform of 2D Ge/SiGe QWs, holes are
exclusively located in heavy-hole (HH) subbands since the
light-hole (LH) subbands are lifted by the strong quantum
confinement effect, resulting in a large HH-LH splitting with
a magnitude of about 100 meV [30]. The ground HH subband
in semiconductor QWs was commonly believed to have van-
ishing k-linear terms and instead k-cubic terms as the lowest
order in their Rashba SOC Hamiltonian [31–35]. It is in sharp
contrast to the electron counterpart that possesses a k-linear
Rashba SOC. The k-linear term, if present, tends to over-
whelm all higher-order terms in the SOC Hamiltonian because
the orbital motion of the free charge carriers is in a small-k
range (kF � 1). The expectation of 2D holes has a stronger
SOC than 2D electrons is thus questionable [25]. This puzzle
has now been resolved by our recent discovery of finite k-
linear Rashba SOC in two-dimensional hole gases (2DHGs).
It was found to be originating from a direct dipolar coupling
of HH subbands to the external electric field in the presence of
HH-LH mixing [32]. We found that the strength of the k-linear
Rashba SOC depends highly on the growth direction of QWs.
In [001]-oriented Ge/Si QWs, the k-linear Rashba parameter
αR is less than 5 meV Å in a modest range of applied electric
field (<100 kV/cm). Whereas, in [110]-oriented QWs, αR can
exceed 90 meV Å [32]. The quest for strong Rashba SOC to
achieve scalable quantum computing [25,30] stimulates us to
find the strongest k-linear Rashba SOC of 2DHGs reachable
in Ge/Si QWs by varying the growth direction.

On the other hand, the previously believed purely k-cubic
Rashba SOC in 2DHGs has already inspired the exploration of
their unique benefits to spintronics [33,36,37]. The cubic term
has striking differences from the linear term in the effective
magnetic field and the resulting spin-momentum locking-
induced spin texture [38]. It has become an interesting subject
and the search of k-cubic Rashba SOC has even been extended

to SrTiO3 surface [38,39], SrTiO3-based oxide heterostruc-
tures [40], surfaces [41], quantum point contacts [42], as well
as to the discovery of new classes of bulk materials [43]. How-
ever, the emergence of finite k-linear Rashba SOC excludes
semiconductor 2DHGs to be platforms for Rashba physics
based on purely k-cubic Rashba SOC. The mature Si micro-
electronic technology facilities us to seek also purely k-cubic
SOC in 2DHGs by varying growth directions of Ge/Si QWs.

In this work, we theoretically investigate the dependence
of the Rashba SOC of 2DHGs in Ge/Si QWs on crystal
orientations by using the atomistic semi-empirical pseudopo-
tential method (SEPM) [44–46]. We find the upper bound
of the linear Rashba SOC in the [110]-oriented Ge/Si QWs
and purely k-cubic Rashba SOC in the [111]-oriented Ge/Si
QWs with an even number of the well monolayers (MLs).
We further conduct the symmetry analysis and point out
that the absence of k-linear Rashba SOC in even-ML [111]-
oriented QWs results from the prohibition of HH-LH mixing
as enforced by the symmetry of both global crystal and lo-
cal interface. The relatively weak linear Rashba SOC in the
[001]-oriented QWs and odd-ML [111]-oriented QWs arises
from the local-interface-induced HH-LH mixing. By doing
the transformation of the Luttinger-Kohn (LK) Hamiltonian,
we illustrate that the strongest linear Rashba SOC occurring in
the [110]-oriented QWs among different growth directions is
due to their strongest intrinsic HH-LH mixing induced by the
QW confinement, which is dominant over the local interface
for HH-LH mixing. Here we stress that all results of Rashba
SOC are obtained from the SEPM calculations, although the
assessment of the HH-LH coupling strength is based on the
transformation of the bulk LK Hamiltonian.

The rest of this paper is organized as follows. Section II
introduces briefly the computational methods of SEPM for
calculating the band structure of Ge/Si QWs and atom-
istic valence force field (VFF) for atom position relaxation.
From the calculated band structure we obtain the spin split-
ting and then Rashba parameters of their 2DHGs. Results
are shown in Sec. III. Section III A shows the electronic
structures of Ge/Si QWs; Sec. III B shows the k-linear and k-
cubic Rashba SOC of 2DHGs for QWs with different growth
directions; Secs. III C and III D show the field- and well width-
dependency of the k-linear and k-cubic Rashba parameters,
respectively. Section IV presents the discussion of the results.
Section IV A conducts the symmetry analysis of the zone-
center HH-LH mixing, revealing the prohibition of HH-LH
mixing in even-ML [111]-oriented QWs; Sec. IV B intro-
duces the interface-inversion-asymmetry induced Dresselhaus
SOC in odd-ML [001]-oriented QWs; Sec. IV C illustrates
the local interface induced HH-LH mixing in [001]-oriented
and odd-ML [111]-oriented QWs; Sec. IV D introduces the
transformation of the LK Hamiltonian to assess the orientation
dependence of the QW global symmetry allowed intrinsic
HH-LH mixing and exhibits the strong correlation between
HH-LH mixing and linear Rashba SOC in 2DHGs. Section V
summarizes this work.

II. COMPUTATIONAL METHODS

The SEPM calculation uses a supercell approach with the
periodic boundary conditions in which the supercell contains
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one Ge/Si QW consisting of 1 × 1 × (m + n) atomic layers
(m and n are Ge and Si thicknesses in the unit of ML) and the
periodic boundary conditions are applied both in the Ge/Si
QW growth direction and the two other in-plane directions.
Note that we use Si instead of SiGe alloy to construct the
QW barrier in order to eliminate interference with the possible
Dresselhaus SOC stemming from the alloy induced BIA. The
Si barrier is thick enough to confine holes in the Ge well.
We adopt the atomistic VFF approach, which has been widely
applied to semiconductor nanostructures [47–54], to minimize
the strain energy in Ge/Si QWs due to a 4.2% lattice mis-
match between bulk Si and Ge (the lattice constants of bulk Si
and Ge are 5.43 and 5.65 Å, respectively). All investigated
Ge/Si QWs in this work show a 1.3%–1.4% compressive
strain in the Ge well and a 2.7%–2.8% tensile strain in the
Si barrier. Once obtaining the relaxed atom positions after
performing the VFF calculation, we use the atomistic SEPM
accompanied with a plane-wave basis set and folded-spectrum
diagonalization [44] to obtain the electronic structure of Ge/Si
QWs. This set of computational methods has been extensively
utilized to study electronic and optical properties of semi-
conductor superstructures, including QWs, quantum wires,
and quantum dots [31,51–53,55–59]. The crystal potential of
Ge/Si QWs is a sum of the screened atomic potentials over
all Si and Ge atoms within the supercell. The screened Si
and Ge atomic potentials include a local part and a nonlocal
spin-orbit interaction part and were obtained by fitting to
reproduce experimental transition energies, effective masses,
spin-orbit splittings, and deformation potentials of the bulk
semiconductors to remove the “LDA” error in both band gap
and effective masses [45,46]. We use an energy cutoff of 8.2
Ry to construct a much smaller plane-wave basis set than
first-principles approaches [45,46].

III. RESULTS

A. Electronic structures of Ge/Si QWs

The Ge/Si QWs belong to type-II QWs, where the elec-
trons are confined in Si layers and the holes are confined
in Ge layers because the valence band maximum (VBM) of
bulk Ge is 520 meV higher than that of bulk Si and thus the
conduction band minimum (CBM) is also 380 meV higher
since the band gap of the bulk Si and Ge are 1.12 and 0.74 eV,
respectively [47]. We illustrate in Fig. 1 such a type-II band
alignment by taking the [001]-oriented (Ge)40/(Si)20 QW as
an example. The VFF-relaxed QW structure has an in-plane
lattice constant of 5.58 Å, resulting in a 1.4% compressive
strain in the Ge layers and a 2.7% tensile strain in the Si
layers. Those strains modify the band offsets of the VBM
and CBM to 0.30 and 0.15 eV, respectively, yielding a QW
band gap of 0.85 eV [Figs. 1(c) and 1(d)]. Figures 1(a) and
1(b) shows that the band-edge states of the top three valence
bands, including HH1, HH2, and LH1, are indeed confined
in the Ge layers, whereas that of the first conduction band
CB1 is confined in the Si layers. In the absence of the external
electric field [i.e., Ez = 0 shown in Figs. 1(a) and 1(c)], their
wave-function distributions are inversion-symmetric and the
band alignment is flat. Upon application of an external electric
field [say Ez = 100 kV/cm as shown in Figs. 1(b) and 1(d)],
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FIG. 1. [(a) and (b)] Normalized wave functions of HH and LH
states and [(c) and (d)] band offsets of the conduction band minimum
(CBM) and the valence band maximum (VBM) in [001]-oriented
(Ge)40/(Si)20 QWs. The external electric field is absent in (a), (c) and
present in (b) and (d) with the strength of 100 kV/cm. Here L and
d denote the width of the well and the whole QW, respectively. The
black dashed line denotes the interface.

the inversion symmetry of their wave-function distributions is
broken with the hole states and electron states shifting towards
opposite directions within a supercell and the band alignment
produces a slope. We note that the wave-function distributions
at the interface are nonzero [the black dashed line in Figs. 1(a)
and 1(b)] due to the finite band offsets [Figs. 1(c) and 1(d)], no
matter the external electric field is applied or not. This reflects
the importance of the interface effect in QWs, which cannot
be ignored in terms of the HH-LH mixing and the Rashba spin
splitting, as we will introduce in the rest part of this paper.

B. Linear or cubic Rashba spin splitting in Ge/Si QWs

We first examine the spin splitting of the first valence
band (VB1) of [001]-, [110]-, [111]-, [112]-, [113]-, and
[114]-oriented Ge/Si QWs having an even number of MLs
in both well and barrier thickness. In the absence of an ex-
ternal electric field, the VB1 shows no spin splitting for all
these QWs. Upon application of an external electric field
perpendicular to the confinement plane of the QWs, the spin
degeneracy of energy subbands, including VB1, is lifted for
wave vector k away from the zone-center � point, giving
rise to the SIA-induced Rashba spin splitting. Figure 2(a)
shows the calculated spin splitting �Ess of the VB1 for [110]-,
[111]-, [112]-, [113]-, [114]- and [001]-oriented Ge/Si QWs
under an electric field of 100 kV/cm. Here, we use almost
the same Ge well thickness of around 80 Å for different
growth directions: 40, 48, 40, 48, 32, and 40 MLs for [110]-,
[111]-, [112]-, [113]-, [114]-, and [001]-oriented QWs regard-
ing their different interlayer distances. We see that the spin
splittings of [110]-, [112]-, [113]-, [114]-, and [001]-oriented
QWs exhibit a nice k-linear dispersion within the sampled
kx range (also within the sampled ky range, see Appendix A
for anisotropic spin splittings). However, the spin splitting
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FIG. 2. (a) Spin splitting of Ge/Si QWs grown in the [110],
[111], [112], [113], [114], and [001] crystalline directions with an
even number of Ge (monolayers) MLs. (b) Enlarged view on spin
splitting of [111]- and [001]-oriented QWs. The kx directions for
different oriented QWs are shown in Table II. The external electric
field with a strength of 100 kV/cm is applied perpendicularly. The
Ge well thicknesses of [110]-, [111]-, [112]-, [113]-, [114]- and
[001]-oriented QWs are 40, 48, 40, 48, 32 and 40 MLs, respectively,
and the Si barrier thicknesses are as half as the Ge well thicknesses.

of the [111]-oriented QW possesses a nearly pure k-cubic
dispersion [see Fig. 2(b)]. Since the diamond structure of both
bulk Si and Ge owns an inversion center, the BIA-induced
Dresselhaus effect is expected to be absent, which is indeed
confirmed by our atomistic calculations, in these Ge/Si QWs.
Thus the observed spin splitting is exclusively due to the
SIA-induced Rashba effect [60]. Such spin splitting �Ess of
the VB1 can be formulated as an expansion in powers of
the wave vector k with only odd terms retained, as required
by the time-reversal symmetry. The dominant contributions
to �Ess approaching the �̄ point are generally described by
the two lowest-order terms: �Ess = 2αRk + γRk3, where αR

and γR indicate the k-linear and k-cubic Rashba parameters,
respectively. By fitting the spin splitting �Ess, we obtain
αR = 81.4, 0, 49.4, 32.9, 14.8, and 2.5 meV Å for [110]-,
[111]-, [112]-, [113]-, [114]- and [001]-oriented QWs, re-
spectively. Since αR = 0 in [111]-oriented QWs, we are also
interested in the cubic Rashba SOC with obtained parameter
γR = 2.4 × 104 meV Å3. For [11n] crystalline orientations
except n = 1, one can see that the k-linear Rashba parameter
αR decreases with the increase of index n.

C. Electric-field and well-width dependence
of linear Rashba SOC

Figure 3(a) shows that the k-linear Rashba SOC can be ef-
fectively tuned by the external electric field for [110]-, [112]-,
[113]-, [114]-, and [001]-oriented QWs. One can see that, the
k-linear Rashba parameters αR get larger in a nearly linear
relationship for all these QWs as increasing the applied elec-
tric field. Particularly, such a linear relationship is perfect in
[114]- and [001]-oriented QWs with a relatively weak k-linear
Rashba SOC. As increasing the k-linear Rashba SOC from
[114]-oriented QW to [113]-, [112]- through [110]-oriented
QWs, the sub-linear scaling feature becomes more prominent.
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and (b) well width of even MLs under an electric field of 100 kV/cm.

In the [110]-oriented QW with a strongest k-linear Rashba
SOC, the sublinear scale is so strong that αR tends to saturate
at a larger electric field. This increased sub-linearity indicates
the direct Rashba effect and reflects the increasing quantum
confinement Stark effect [32,55], which is induced by the
external electric field with the same strength.

Fixing the applied external electric field to 100 kV/cm,
we further study the strength of the Rashba SOC by vary-
ing the Ge well thickness for investigated QWs. Figure 3(b)
exhibits that the k-linear Rashba parameters αR grow as the
well becomes wider for all QWs possessing the k-linear spin
splitting. Such a well-width dependence is a fingerprint of the
newly discovered direct Rashba SOC [31,32,61]. According
to the theory of conventional Rashba SOC, there is a k-linear
term stemming from the k · p coupling between the bonding
and anti-bonding atomic p orbitals (the latter gives rise to
the first excited conduction band) [62]. However, this k-linear
term is usually neglected for its less than 1% contribution to
the total spin splitting and thus the k-cubic term was believed
to be the lowest order of the Rashba SOC in semiconductor
2DHGs [28,29,33,34,62,63]. Additionally, the conventional
bulk k-cubic Rashba SOC term will also give rise to a k-linear
Rashba term in QWs as a result of the quantization of wave
vector in the QW growth direction: αR ∼ γR〈k̂2

z 〉. Because of
the substitution of the wave vector operator k̂z ∼ π/L, the
linear Rashba parameter αR should be inversely proportional
to the well width, which is opposite to the observed well-width
dependence of αR [shown in Fig. 3(b)]. Indeed, such k-linear
Rashba SOC was also found to be negligibly small [61].
Subsequently, the emerging k-linear spin splitting obtained
here should originate from a direct dipolar coupling of HH
subbands to the external electric field in the presence of HH-
LH mixing at zone-center [32] and is thus called the direct
Rashba effect [32,35,55,61,64]. To gain insight into the atom-
istic calculations predicted well width and field dependence
of linear Rashba parameters, here, we present the formula
of Rashba parameter of the direct Rashba SOC based on the
model Hamiltonian following the work of Kloeffel et al. [61]
In QWs, the highest or second highest valence subband is the
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first or second HH-like valence subband (HH1 or HH2) with
“+” or ‘‘−” denoting different spin components, which rep-
resent dominant spin-up or spin-down HH components with
a little mixing of opposite-spin LH components. The energy
separation between the two “+” and ‘‘−” spin components
for each orbital states is termed as the spin splitting, which
is caused by the SOC otherwise vanishing in the absence
of external magnetic field. The quantity �0 is the energy
separation between HH1 and HH2 subbands at the �̄ point and
the parmeter γ3 is the Luttinger parameter of bulk Ge. A direct
dipolar coupling term 〈HH1±|(−eEzz)|HH2±〉 = eEzU0 finite
with the coupling constant U0 = (a1a2 + b1b2)16L/(9π2) is
related to the HH-LH mixing with a1 (a2) and b1 (b2) being the
superposition parameters of the HH components and LH com-
ponents in the zone-center (�̄ point) states of the ground (first
excited) HH subbands [32]. The coupling parameter C0 =
(a1b2 − a2b1)8

√
3h̄2/(3m0L) reflects the strength of HH-LH

mixing, which would be zero if the HH1 and HH2 have no
opposite-spin LH components. In terms of the direct Rashba
SOC theory, for [001]-oriented QWs we obtain a k-linear
Rashba parameter αR as following [32]:

α
[001]
R = 2eγ3C0U0Ez√

�2
0 + 4e2U 2

0 E2
z

. (1)

It is straightforward to learn that the direct Rashba SOC
originates from the external electric field Ez couples directly
to the spins if and only if the HH-LH mixing is allowed.
Since the energy separation �0 decreases with the increasing
well width, it is straightforward to learn that k-linear Rashba
parameter αR of the direct Rashba SOC is larger for a wider
well.

D. Electric-field and well-width dependence
of cubic Rashba SOC

In [111]-oriented QWs, the k-linear Rashba SOC is fully
absent with a purely k-cubic spin splitting in energy sub-
bands. It indicates the absence of direct Rashba effect in
[111]-oriented QWs. Thus this k-cubic Rashba SOC is a
conventional Rashba effect produced by the second-order per-
turbation and has an inverse proportion to the square of the
band gap. Figure 4(a) shows that the k-cubic Rashba param-
eter γR in even-ML [111]-oriented QWs has a linear scale
as applied electric field Ez, satisfying the theoretical predic-
tion of linear-in-field behavior in k-cubic Rashba parameters
[34]. The k-cubic Rashba parameter γR can be enhanced to
40 eV Å3 at Ez = 200 kV/cm. Under a fixed electric field
Ez = 100 kV/cm, Fig. 4(b) shows that γR increases linearly
against the well width when L < 48 ML, and then tends to
saturate to a steady value as further increasing the well width.
It is well known that when the well width becomes larger,
the quantum confinement effect will be reduced, making the
band gap decrease and gradually saturate, consistent with the
blue line shown in Fig. 4(b). Because the k-cubic Rashba
parameters γR is reversely proportional to the square of the
band gap (∝ 1/E2

g ) [34], γR will increase till saturation. Inter-
estingly, we find that this purely cubic Rashba spin splitting is
anisotropic in the ky direction, but has the same dependence

 0

 10

 20

 30

 40

 0  50  100  150  200

(a)

C
ub

ic
 p

ar
am

et
er

 
R
 (

eV
Å

3
)

Electric field (kV/cm)

 0

 10

 20

 30

 0  20  40  60  80
 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5
(b)

B
an

d 
ga

p 
(e

V
)

Well width (ML)

R
as

hb
a 

pa
ra

m
et

er
 

R
 (

eV
Å

3
)

FIG. 4. Rashba parameters of Ge/Si QWs grown in [111] crys-
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well width (48 ML) and (b) well width of even MLs under an electric
field of 100 kV/cm.

in both the electric field and the well width (see Appendix A
for details).

IV. DISCUSSION

We have demonstrated that the k-linear Rashba SOC of
2DHGs in [110]-, [112]-, [113]-, [114]-, and [001]-oriented
QWs is a direct Rashba SOC with its Rashba parameter
αR being proportional to the strength of zone-center HH-LH
mixing. The strongest Rashba SOC (largest αR) occurring
in the [110]-oriented QWs among investigated growth ori-
entations indicates that the [110]-oriented QWs possess the
largest zone-center HH-LH mixing. Meanwhile, the absence
of linear spin splitting in the [111]-oriented QWs indicates
that the HH-LH mixing is forbidden therein. To understand
the orientation-dependent linear or cubic Rashba SOC, one
should figure out two essential questions on HH-LH mixing:
(i) How does the symmetry govern the presence or absence
of the zone-center HH-LH mixing in QWs? (ii) If HH-LH
mixing is allowed, what is the factor regulating their strength
in QWs? We will address the first question in Secs. IV A
and IV B, and the second question in Secs. IV C and IV D,
respectively.

A. Symmetry analysis of zone-center HH-LH mixing

Bulk Si and Ge possess an Oh point group, in which
the HH and LH bands at the � point belong to the four-
dimensional �+

8 representation [65] and thus are degenerate
(including spin). In Ge/Si QWs, the crystal system reduces
from bulk Oh to a lower-symmetric point group in which
the zone-center HH and LH states will certainly transform
according to different irreducible representations from bulk
�+

8 . The confinement potential of the QWs deviating from
bulk crystals may mix bulk HH and LH states if and only if
they belong to the same representation. This is because the
perturbation crystal potential from the bulk crystals cannot
couple two states with different irreducible representations
due to the symmetry of the crystal potential in the ground
state belonging to the �1 representation. In the [001]-oriented
GaAs/AlAs QWs with a D2d point group, the irreducible
representations of the zone-center HH and LH states reduce
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TABLE I. Double point groups of the Ge/Si QWs in combination of the counterparts of the local interface with corresponding irreducible
representations of HH and LH states for different growth directions [34,65–69]. Here we adopt the Koster notations for the irreducible
representations of point groups.

[001] [110] [111]

QW orientations odd even odd even odd even

Global point groups of QWs D2d D2h D2h D2h C3v D3d

HH �6 �5 �5 �5 �6 �4, �5

LH �7 �5 �5 �5 �6 �8

Point groups of the local interface C2v C2v C2v C2v C3v C3v

HH �5 �5 �5 �5 �6 �4, �5

LH �5 �5 �5 �5 �6 �6

from �8 in bulk Zinc-blende Td point group to �6 and �7 of the
D2d point group, respectively. Thus the HH-LH mixing is for-
bidden by symmetry. However, there is both experimental and
theoretical evidence showing the finite zone-center HH-LH
mixing in the [001]-oriented GaAs/AlAs QWs. It was argued
that such HH-LH mixing is induced by the C2v local interface
although it was forbidden by the D2d global symmetry of
the QW [34,67,68]. The local interface in the [001]-oriented
GaAs/AlAs QWs has a C2v symmetry due to the lack of
microscopic translational symmetry since the atoms at the two
sides of the interface belong to different elements [34,67,68].
In the C2v point group, the HH and LH belong to the same
�5 irreducible representation and thus are allowed to couple.
Indeed, we observe the HH-LH mixing induced linear Rashba
SOC in [001]-oriented GaAs/AlAs QWs (see Appendix B
for details). We therefore have to examine both the global
point groups of the QWs and point groups of their local
interface. Table I summaries the corresponding irreducible
representations of HH and LH states in [001]-, [110]-, and
[111]-oriented Ge/Si QWs [34,65–69].

Because of the point-group symmetry differences between
an odd and even number of MLs in Gen/Sim, besides the
even-ML QWs discussed above, we also include the symme-
try of odd-ML QWs in Table I. One can see from Table I
that the global symmetry of the [001]-oriented Ge/Si QWs
is a D2h point group when both Ge and Si layers have an
even number of MLs, or a D2d point group when both Ge
and Si layers have an odd number of MLs [68,70]. It is in
sharp contrast to [001]-oriented GaAs/AlAs QWs where the
QW point group is always D2d as varying the layer thickness
[71]. The local symmetry of interfaces in both even- and odd-
ML [001]-oriented QWs is a C2v point group. Therefore the
odd-ML [001]-oriented Ge/Si QWs have the same feature of
zone-center HH-LH mixing as in both even-ML and odd-ML
group III-V QWs: the zone-center HH-LH mixing is forbid-
den by the QW global D2d point group but allowed by the
local interface with C2v symmetry under which both HH and
LH states transform according to the same �5 representation
and thus the HH-LH mixing is allowed by symmetry [67].
However, this situation is changed in even-ML Ge/Si QWs.
Table I shows that, in both D2h and C2v point groups, both the
zone-center HH and LH states transform according to the �5

representation. Therefore, in even-ML [001]-oriented Ge/Si
QWs the zone-center HH-LH mixing is allowed by QW global
symmetry and interface local C2v symmetry in which both
QW confinement potential and local interface potential could

induce HH-LH mixing. Figure 5 shows that both odd-ML and
even-ML [001]-oriented Ge/Si QWs have k-linear Rashba
spin splitting but the odd-ML QW is much smaller than the
even-ML one, which implies that the QW global symmetry
allowed HH-LH mixing remarkably enhances the k-linear
Rashba SOC in the even-ML QW. We should note that two
interfaces in the odd-ML Ge/Si QWs break the inversion sym-
metry, introducing the interface-inversion-asymmetry (IIA)
induced Dresselhaus spin splitting [70] which has been sub-
tracted from that shown in Fig. 5 to obtain the Rashba spin
splitting. We will discuss it in Sec. IV B in detail.

In both even-ML and odd-ML [110]-oriented Ge/Si QWs,
the point group of the QW global crystal is D2h and the
interface has a local C2v point group, as given in Table I.
Same as in even-ML [001]-oriented Ge/Si QWs, both the QW
global D2h symmetry and interface local C2v symmetry allow
the zone-center HH-LH mixing since both HH and LH states
transform according to the same �5. Therefore the QW con-
finement potential and interface local potential could induce
HH-LH mixing in [110]-oriented Ge/Si QWs. Our atomistic
calculations also show that [110]-oriented (Ge)40/Si20 (even-
ML) and (Ge)39/(Si)21 (odd-ML) QWs under an electric field
of 100 kV/cm have very similar linear Rashba spin splitting
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FIG. 5. Rashba spin splitting of [001]-oriented Ge/Si QWs with
an odd and even number of the well MLs. The external electric field
with a strength of 100 kV/cm is applied perpendicularly. The Ge
well thicknesses of the odd and even number of MLs are 39 and 40,
and the Si barrier thicknesses are 21 and 20 MLs, repectively.
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with a strength of 100 kV/cm is applied perpendicularly. The Ge
well thicknesses of the odd and even number of MLs are 47 and 48,
and the Si barrier thicknesses are 25 and 24 MLs, repectively.

with linear Rashba parameter of αR = 81.4 and 81.1 meV Å,
respectively.

In the [111]-oriented QWs, the QW global symmetry is
D3d for even-ML case and is C3v for odd-ML case. The
local symmetry of interface is C3v in both cases. In the
even-ML [111]-oriented QWs, the two spin components of
the zone-center HH state transform according to �4 and �5

representations, respectively, and the LH state belongs to the
�8 representation in QW global D3d point group. Meanwhile,
in the interface local C3v point group, the HH states belong
to �4 and �5 representations (for two spin components), and
the LH states belong to the �6 representation [69]. Therefore,
in even-ML [111]-oriented Ge/Si QWs, the HH-LH mixing
is forbidden both by QW global symmetry and interface local
symmetry, leading to the absence of direct Rashba SOC and
leaving alone the conventional Rashba SOC. It thus explains
why we have purely k-cubic Rashba spin splitting in the even-
ML [111]-oriented QWs, as shown in Fig. 2(b). Interestingly,
in the odd-ML [111]-oriented Ge/Si QWs, the representations
of both zone-center HH and LH states reduce to the same
�6 representation in C3v point group and thus the HH-LH
mixing is allowed by both QW global symmetry and interface
local symmetry. Hence, both QW confinement potential and
interface local potential might induce HH-LH mixing and thus
k-linear direct Rashba SOC. Figure 6 exhibits that the odd-
ML [111]-oriented Ge/Si QWs have a linear spin splitting
in striking contrast to the purely k-cubic spin splitting in the
even-ML case.

B. Interface-inversion-asymmetry induced Dresselhaus SOC

Although both bulk Si and Ge are in diamond crystal
structure with an inversion center, the inversion symmetry is
broken due to the interfaces in the odd-ML [001]-oriented
Ge/Si QWs, which possess a noncentrosymmetric point
group D2d . Hence, as shown in Fig. 7, the [001]-oriented
(Ge)39/(Si)21 QW has a spin splitting even without an external
electric field. Because the inversion asymmetry in the absence
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FIG. 7. Spin splitting of odd-ML [001]-oriented (Ge)39/(Si)21

QWs along kx direction with (the black solid line) or without an
external electric field of 100 kV/cm (the black dashed line).

of an external electric field arises from the atom arrangement
on the interfaces, the zero-field spin splitting is termed as
the IIA induced Dresselhaus effect [34,68,70]. The zero-field
Dresselhaus spin splitting exhibits a linear function against the
wave vector k with the linear Dresselhaus parameter βD fitted
to be 6.0 meV Å.

Upon application of an external electric field, the electric-
field-induced direct Rashba effect will also contribute to the
spin splitting. Figure 7 shows that a 100 kV/cm electric field
enhances the spin splitting and increases the k-linear param-
eter to 6.2 meV Å. The difference in the spin splitting of the
two above cases with and without external electric field illus-
trates the existence of the k-linear Rashba SOC in odd-ML
[001]-oriented QWs (the brown line in Fig. 5), although the
linear Rashba parameter in the Rashba-Dresselhaus coupled
system cannot be simply extracted by the slope of the Rashba
spin splitting due to the different dependence on the direction
of wave vectors of these two SOC types [72]. This k-linear
Rashba SOC in odd-ML [001]-oriented QWs results com-
pletely from the interface local C2v symmetry induced HH-LH
mixing, which is nominally forbidden by the QW global D2d

symmetry.

C. Local interface induced HH-LH mixing

Having illuminated the presence or absence of the zone-
center HH-LH mixing being governed by the local interface
symmetry rather than QW global symmetry, we next pro-
ceed to address the second question of which factor regulates
mainly the strength of HH-LH mixing in QWs with respect
to growth directions. According to the symmetry analysis, we
can separate the contributions to the HH-LH mixing into two
types of sources. The first one arises from the breaking of
the axial symmetry [34] and is irrelevant to both the local
interface and external electric field, depending only on the
QW growth direction. This type of HH-LH mixing is allowed
by the global symmetry of QWs and thus usually exists in low
symmetry QWs [34]. Here we call this type of HH-LH mixing
as intrinsic HH-LH mixing. The second type of HH-LH mix-
ing is induced by the local interface, as suggested firstly by
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Ivchenko et al. [67] to explain the observed HH-LH mixing in
group III-V semiconductor [001]-oriented QWs in which the
HH-LH mixing is forbidden by QW global symmetry. The
interface-induced HH-LH mixing has no direct connection to
the QW confinement potential, and hence is expected to be
weak compared with the intrinsic HH-LH mixing (if allowed
by symmetry) because the wave functions of band-edge states
localize inside the QW with only a tiny component on the
interface as illustrated in Figs. 1(a) and 1(b). Thus the k-
linear Rashba SOC in the [001]-oriented QW (Fig. 5) and
the odd-ML [111]-oriented QW (the purple line in Fig. 6)
is completely correlated with the interface-induced HH-LH
mixing, whereas that of [110]-oriented QW arises both from
the intrinsic and interface-induced HH-LH mixing. There, the
fact that the linear Rashba parameter αR is one order of magni-
tude larger in [110]-oriented QWs than that in [001]-oriented
QWs might confirm that the interface-induced HH-LH mixing
is negligible [34] compared to the intrinsic HH-LH mixing.

It is worthy to note that the argument that the interface
local symmetry alone could induce HH-LH mixing even if
the QW global symmetry forbids it remains lacking direct
theoretical proof [34,67,68]. Here, the absence of the k-linear
Rashba SOC in even-ML [111]-oriented Ge/Si QWs (the red
line in Figs. 2 and 6) in combination with the finite k-linear
Rashba SOC occurring in odd-ML [001]-oriented Ge/Si QWs
(the brown line in Fig. 5) and [001]-oriented GaAs/AlAs
QWs (the red line in Fig. 11) provides direct proof for this
hypothesis. Specifically, we have demonstrated that the linear
direct Rashba SOC is proportional to the strength of the HH-
LH mixing and that the purely cubic Rashba spin splitting
in the even-ML [111]-oriented QWs is due to the absence
of the direct Rashba SOC. We thus learn that the HH-LH
mixing occurs in the odd-ML [001]-oriented QWs but lacks
in the even-ML [111]-oriented QWs. In the former case, the
HH-LH mixing is forbidden by the QW D2d global symmetry
but allowed by the local C2v interface symmetry. Whereas,
in the latter case both the QW D3d global symmetry and
the local C3v interface symmetry forbid the HH-LH mixing.
Consequently, only the local interface symmetry can tell the
absence or presence of HH-LH mixing (hence linear Rashba
spin splitting) in even-ML [111]-oriented QWs and odd-ML
[001]-oriented QWs, respectively. Besides the linear Rashba
SOC, the local interface symmetry in QWs can also be utilized
to address other physics related to the HH-LH mixing, such
as effective mass [73], resonant tunneling [74], and optical
excitation [75,76].

D. Assess the QW confinement potential induced intrinsic
HH-LH mixing

From symmetry analysis we learn that in [110]-oriented
QWs and even-ML [001]-oriented QWs, both QW global

symmetry and local interface symmetry allow the HH-LH
mixing, but the former has the strongest linear Rashba SOC
with one order of magnitude larger in linear Rashba parameter
αR than the latter. It manifests that the confinement potential
induced intrinsic HH-LH mixing must be very sensitive to the
varying QW growth direction. The intrinsic HH-LH mixing, if
present, can be assessed from the off-diagonal matrix terms in
the LK Hamiltonian, which describes valence bands of semi-
conductors with hole spins taken into consideration. Because
the LK Hamiltonian describes the bulk system, we should
quantize one direction (say the z direction) to represent the
quantum confinement effect. The quantization of the z direc-
tion is accompanied by the symmetry reduction from bulk to
QW systems. The symmetry of bulk crystal (Oh group) con-
tains all the axial, cubic, and tetrahedral rotation symmetry,
whereas the QW symmetry (continuous group D∞h) possesses
only the axial rotation symmetry [34]. For QWs with different
orientations, we transform the bulk LK Hamiltonian to make
sure its z direction is along the growth direction of the QW and
quantize the wave vector along the z direction (i.e., the growth
direction) to obtain the QW Hamiltonian. One should note that
this transformation of the LK Hamiltonian associated with the
quantization of the z direction remains uninvolved with any
information from the interface effect, which can be described
by the interface Hamiltonian Hint proportional to δ(z − zi ) (zi

denotes the location of the interface) [34,67]. The form of
the interface Hamiltonian Hint , associated with the envelope
functions, depends on the boundary conditions [62,67,77].
Once the boundary condition is given, the symmetry of the
total Hamiltonian Htot = HLK + Hint will reduce from D∞h to
concrete point groups D2d , D2h and D3d [34], as shown in
Table I. Hence, the total Hamiltonian satisfies the symmetry
requirements of different QW orientations.

In the cartesian coordinate system with x′ ‖[100],
y′ ‖[010], z′ ‖[001], the bulk LK Hamiltonian [78] is written
as

HLK = h̄2

2m0

[(
γ1 + 5

2
γ2

)(
k2

x′ + k2
y′ + k2

z′
)

− 2γ2
(
k2

x′J2
x′ + k2

y′J2
y′ + k2

z′J2
z‘

)
− 4γ3({kx′ , ky′ }{Jx′, Jy′ } + {ky′ , kz′ }{Jy′ , Jz′ }

+ {kz′ , kx′ }{Jz′ , Jx′ })

]
, (2)

where γ1, γ2 and γ3 are the Luttinger parameters, h̄ the re-
duced Plank constant, m0 the bare electron mass, ki (i =
x′, y′, z′) the wave vectors, Ji (i = x′, y′, z′) the hole effective
spin operators, and {Â, B̂} = ÂB̂+B̂Â

2 . To transform the coordi-
nate system, we use the rotation operator R̂(α, β, γ ) defined
as

R̂(α, β, γ ) =
⎛
⎝cos α cos β cos γ − sin α sin γ − cos α cos β sin γ − sin α cos γ cos α sin β

sin α cos β cos γ + cos α sin γ − sin α cos β sin γ + cos α cos γ sin α sin β

− sin β cos γ sin β sin γ cos β

⎞
⎠, (3)

where α (0 � α � 2π ), β (0 � β � π ) and γ (0 � γ � 2π )
are the Euler angles denoting the rotation angles in order of

the z′, y′, and z′ axes respectively, as shown in Fig. 8(a). We
need three steps to transform the initial coordinate system into
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FIG. 8. (a) The schematic diagram of the coordinate system transformation of a QW, including three steps: rotation around the z axis with
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QW orientations, where the z direction is determined by the Euler angles α and β. (c) The intrinsic HH-LH mixing with α = π/4 as a function
of the β angle, i.e., along with the [mmn] crystalline direction, which is marked as a dashed line in (b).

the final coordinate system: (i) rotation around the z axis with
α angle (0 � α � 2π ); (ii) rotation around the y axis with β

angle (0 � β � π ); and (iii) rotation around the z axis with
γ angle (0 � γ � 2π ). The relation between these two basis
vectors can be written as

(êx, êy, êz ) = R̂(α, β, γ )(êx′ , êy′ , êz′ ). (4)

By doing this transformation, we can obtain the trans-
formed LK Hamiltonian in the form of the Euler angles α,
β, and γ . To obtain the QW Hamiltonian, we quantize the z
direction (the confinement direction) of this Hamiltonian by

substituting 〈k̂z〉 = π/L, assuming an infinitely deep rectan-
gular well, where L denotes the well width. The transformed
LK Hamiltonian is quite complicated, but we can simplify it
according to our interests. Because we are only interested in
the intrinsic HH-LH mixing at �̄ point, we set kx = ky = 0
in this Hamiltonian. The states | 3

2 ,± 3
2 〉 and | 3

2 ,± 1
2 〉 repre-

sent the HH and LH states, respectively, where the plus and
minus signs are two different “spin blocks.” In the basis of
|J2, Jz〉 = {| 3

2 , 3
2 〉, | 3

2 ,− 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉}, the Hamiltonian

matrix elements are

(HLK )11 = π2h̄2[32γ1 − 31γ2 − 33γ3 − 3(γ2 − γ3)(4 cos 2β + 7 cos 4β + 8 cos 4α sin4 β )]

64m0L2
,

(HLK )12 = 0,

(HLK )13 =
√

3π2h̄2(γ2 − γ3)eiγ sin β[(9 − cos 4α) cos β + (7 + cos 4α) cos 3β − 4i sin 4α sin2 β]

16m0L2
,

(HLK )14 = −
√

3π2h̄2(γ2 − γ3)e2iγ sin2 β[5 + 7 cos 2β + cos 4α(3 + cos 2β ) + 4i cos β sin 4α]

16m0L2
. (5)

Because only the HH-LH mixing of two different spin blocks
(| 3

2 , 3
2 〉 and | 3

2 ,− 1
2 〉) contributes to the k-linear Rashba SOC

[32,35,61,64], the matrix element H14 is proportional to the
HH-LH mixing. Considering other couplings related to the
state | 3

2 , 3
2 〉 and ruling out the influence of the well width, we

simply renormalize the intrinsic HH-LH mixing in the form
of

C[mnl]
in = |(HLK )14|√

(HLK )2
11 + (HLK )2

12 + (HLK )2
13 + (HLK )2

14

. (6)
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TABLE II. Euler angles and directions of the wave vector basis for different oriented QWs.

QW Orientation [110] [111] [112] [113] [114] [001]
kx direction [001] [11̄0] [11̄0] [121̄] [11̄0] [100]
ky direction [11̄0] [112̄] [111̄] [7̄41] [221̄] [010]
α π

4
π

4
π

4
π

4
π

4 0

β π

2 arccos(
√

3
3 ) arccos(

√
6

3 ) arccos( 3
√

11
11 ) arccos( 2

√
2

3 ) 0

γ π 3
2 π 3

2 π arctan(
√

11
11 ) 3

2 π 0

We note that the coordinate transformation [Eq. (2)–(6)]
brings in the Euler angles α, β, and γ for process description.
The first two steps with α and β angle involved already deter-
mine the finally transformed z axis, and the last step related
to γ angle only determines the x and y axes in the x-y plane.
Hence the intrinsic HH-LH mixing is irrelevant to the γ angle.
The intrinsic HH-LH mixing determined by QW orientations
can be expressed as a function of the Euler angles α and β

as shown in Fig. 8(b), where the correspondence between the
Euler angles and QW orientations are listed in Table II.

Figure 8 shows that the intrinsic HH-LH mixing remains
zero in [001]-oriented QWs (β = 0) but is maximal in [110]-
oriented QWs (α = π/4, β = π/2) with the value of

C[110]
in =

√
3

2

∣∣∣∣ γ2 − γ3

γ1 − 2γ2

∣∣∣∣. (7)

The zero intrinsic HH-LH mixing in [001]-oriented QWs
implies that the symmetry-allowed HH-LH mixing com-
pletely originates from the local interface, despite the intrinsic
HH-LH mixing in [110]-oriented QWs possesses the largest
intrinsic HH-LH mixing due to its largest degree of the
breaking of axial symmetry. Besides, the intrinsic HH-LH
mixing in [111]-oriented QWs (α = π/4, β = arccos

√
3/3)

remains zero, consistent with the vanishing k-linear Rashba
spin splitting in even-ML [111]-oriented QWs forbidden by
the local interface symmetry. The emerging k-linear Rashba
spin splitting in odd-ML [111]-oriented QWs allowed by
the local interface symmetry completely arises from the
local-interface-induced HH-LH mixing rather than the intrin-
sic HH-LH mixing, same as the case of the [001]-oriented
QWs. Along with the [mmn] crystalline orientations shown in
Fig. 8(c) [denoted as the dashed line in Fig. 8(b)], the intrinsic
HH-LH mixing drops from [110] (maximum) to [111] crys-
talline orientation (minimum, no mixing), rises from [111]
to [112] crystalline orientation approximately, and decreases
from [112] to [001] crystalline orientation (minimum, no mix-
ing). We note that the intrinsic HH-LH mixing at a finite wave
vector will differ from that at the �̄ point (see Appendix C
for details). Hence we should still focus on the zone-center
HH-LH mixing. Figure 8(c) shows a perfect consistency of
the orientation dependence, including the upper bound in the
[110] orientation and the lower bound in the [111] orientation.
This consistency further confirms the intrinsic HH-LH mixing
as the dominant factor regulating the relative strength relation
of the k-linear Rashba parameters.

V. SUMMARY

In summary, we systematically investigate the orientation-
dependent k-linear Rashba SOC of 2DHGs in QWs. We find
the upper bound in the [110] orientation and the lower bound
with the vanishing k-linear term accompanied by the purely
k-cubic term in the [111] orientation with an even number
of the well MLs. We illustrate that the variation of the well
MLs from even to odd will also change the QW symmetry and
thus the SOC types, such as producing a strong Dresselhaus
SOC in the odd-ML [001]-oriented QWs, which is absent in
the even-ML [001]-oriented QWs, leaving behind a k-linear
Rashba SOC alone. Moreover, we show the tunability of the
electric field and well width for both k-linear and k-cubic
Rashba SOC. We analyze the presence or absence of the
zone-center HH-LH mixing from the perspective of global and
local interface symmetry, where the local interface symmetry
governs the presence or absence of the k-linear Rashba SOC
and the global symmetry of the QW contributes to the en-
hancement of the k-linear Rashba SOC. We illustrate that the
intrinsic HH-LH mixing regulates the whole HH-LH mixing
in low-symmetry orientations and the local-interface-induced
HH-LH mixing is negligible in the presence of the intrin-
sic counterpart unless the k-linear Rashba SOC completely
arises from the interface-induced HH-LH mixing for [001]-
oriented and odd-ML [111]-oriented QWs. We directly prove
the postulation of symmetry lowering of the local interface
by observing the purely k-cubic Rashba SOC in the even-ML
[111]-oriented QWs in combination with the k-linear Rashba
SOC in the odd-ML [001]-oriented QWs. Furthermore, by
doing the Hamiltonian transformation, we reveal the intrinsic
HH-LH mixing regulating the relative strength relation of the
k-linear Rashba SOC in different QW orientations. These
findings reveal the physical mechanism underlying orientation
dependence of the Rashba SOC in 2DHGs of QWs and pro-
vide strategic design principles to realize the linear or purely
cubic Rashba SOC in 2D hole systems.
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APPENDIX A: ANISOTROPY OF THE RASHBA SOC
FOR QWS WITH DIFFERENT ORIENTATIONS

In the main text, we compare the Rashba spin splittings
and Rashba parameters along the kx directions for QWs
with different orientations (Figs. 2–4). In this Appendix, we
also show the dependence of the Rashba spin splittings and
Rashba parameters along the ky directions for these QWs in
Figs. 9 and 10. Again, we observe the k-linear Rashba spin
splittings in [110]-, [112]-, [113]-, [114]-, and [001]-oriented
QWs in Fig. 9(a) and the purely k-cubic Rashba spin splitting
in [111]-oriented QWs in Fig. 9(b) along the ky directions.
By comparing the Rashba SOC in kx and ky directions for
different oriented QWs, we find that the k-linear Rashba SOC
is isotropic in [001]-oriented QWs but anisotropic in [110]-,
[112]-, [113]-, and [114]-oriented QWs, and the purely
k-cubic Rashba spin splitting is anisotropic in [111]-oriented
QWs where the Rashba spin splitting in the ky direction is
about five times as small as that in the kx direction. These
characteristics of isotropy and anisotropy in Rashba spin
splittings are consistent with Winkler’s predictions [34] that
the isotropy arises from the axial symmetry in [001]-oriented
QWs and the anisotropy originates from the breaking of the
axial symmetry in QWs grown in low-symmetric growth
directions such as the [110] direction. Moreover, we find
that (i) the relative size of the k-linear Rashba spin splittings
and Rashba parameters in the ky directions for different
oriented QWs is the same as those in the kx direction. (ii) The
difference in the k-linear Rashba spin splittings and Rashba
parameters between the kx and ky directions for different
oriented QWs is the largest for the [110] orientation and
becomes smaller in the [112], [113], and [114] directions.
These results reflect that the relative size of k-linear Rashba
SOC in QWs with different orientations is determined by the
HH-LH mixing as discussed in the main text.
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FIG. 9. Spin splitting of Ge/Si QWs along the ky directions
grown in the [110], [111], [112], [113], [114], and [001] crystalline
directions with an even number of Ge MLs. (b) Enlarged view on
spin splitting of [111]- and [001]-oriented QWs. The external electric
field with a strength of 100 kV/cm is applied perpendicularly. The
ky directions for different oriented QWs are shown in Table II. The
Ge well thicknesses of [110]-, [111]-, [112]-, [113]-, [114]-, and
[001]-oriented quantum wells are 40, 48, 40, 48, 32, and 40 MLs,
respectively, and the Si barrier thickness are as half as the Ge well
thicknesses.

 0

 30

 60

 90

 120

 0  50  100  150  200

(a)

Electric field (kV/cm)

 0

 30

 60

 90

 120

 0  20  40  60  80

(b)

Well width (ML)

 0

 2.5

 5.0

 7.5

 10.0

 0  50  100  150  200

(c)

Electric field (kV/cm)

 0

 2.5

 5.0

 7.5

 10.0

 0  20  40  60  80

(d)

Well width (ML)

L
in

ea
r 

pa
ra

. 
R
 (

m
eV

Å
)

C
ub

ic
 p

ar
a.

 
R
 (

m
eV

Å
)

[110]−QWs

[112]−QWs

[113]−QWs
[114]−QWs

[001]−QWs

[110]−QWs

[112]−QWs

[113]−QWs

[114]−QWs
[001]−QWs

[111]−QWs
[111]−QWs
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tions as a function of [(a) and (c)] electric field with fixed well
width (40, 40, 48, 32, 40 MLs), and [(b) and (d)] well width of even
MLs under an electric field of 100 kV/cm. The Rashba parameters
of Ge/Si QWs grown in the [110], [112], [113], [114], and [001]
crystalline directions are in (a), (b), and those grown in the [111]
direction are in (b) and (d).

APPENDIX B: LINEAR RASHBA SOC IN [001]-ORIENTED
GAAS/ALAS QWS

The [001]-oriented GaAs/AlAs QWs have the same sym-
metry with odd-ML [001]-oriented Ge/Si QWs, where the
global and local interface symmetry are D2d and C2v , respec-
tively. Since the global QW symmetry D2d has no inversion
operation, one expects a Dresselhaus SOC. The local interface
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external electric field of 100 kV/cm (the black dashed line). The red
solid line denotes the extracted Rashba spin splitting.
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symmetry C2v allows the zone-center HH-LH mixing nom-
inally forbidden by the global QW symmetry D2d , giving
rise to a k-linear Rashba SOC. Figure 11 shows the k-linear
Rashba and Dresselhaus spin splitting. When no external elec-
tric field is applied, there appears a k-linear Dresselhaus spin
splitting (the black dashed line in Fig. 11) with the linear
Dresselhaus parameter of 35.0 meV Å. When an external
electric field of 100 kV/cm is applied, we also observe a
k-linear spin splitting (the black solid line in Fig. 11) with the
linear total SOC parameter of 77.7 meV Å. We then obtain
the spin splitting exclusively induced by the Rashba SOC,
which also exhibits a linear-in-k scaling (the red solid line
in Fig. 11). The SOC type and behavior in [001]-oriented
GaAs/AlAs QWs are indeed the same as that in odd-ML
[001]-oriented Ge/Si QWs (Figs. 5 and 7), consistent with the
same symmetry requirement.

APPENDIX C: INTRINSIC HH-LH MIXING
AT A FINITE WAVE VECTOR IN QWS
WITH DIFFERENT ORIENTATIONS

The intrinsic HH-LH mixing at a finite wave vector for
QWs with different orientations is shown in Fig. 12, based
on the transformation of the LK Hamiltonian [Eq. (2) in the
main text], which we find quite different from that at the �̄

point (see also Fig. 8 in the main text). Compared to the
intrinsic HH-LH mixing at the � point, we observe that (i) the
[110]-, [112]-, [113]-, and [114]-oriented QWs have a smaller
HH-LH mixing; (ii) the intrinsic HH-LH mixing in [001]- and
[111]-oriented becomes nonzero; (iii) the [110] orientation
is not the direction with the largest HH-LH mixing. These
results illustrate that the HH-LH mixing will differ in a finite
wave vector.
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