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Extended-range order in tetrahedral amorphous semiconductors: The case of amorphous silicon
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This paper reports the presence of extended-range ordering in the atomic pair-correlation function of amor-
phous silicon (a-Si) using ultralarge atomistic models obtained from Monte Carlo and molecular-dynamics
simulations. The extended-range order manifests itself in the form of radial oscillations on the length scale
of 20–40 Å, which is examined by directly analyzing the radial distribution of atoms in distant coordination
shells and comparing the same with those from a class of partially ordered networks of Si atoms and disordered
configurations of crystalline silicon from an information-theoretic point of view. The effect of the oscillations
on the first sharp diffraction peak (FSDP) in the structure factor is addressed by obtaining a semianalytical
expression for the static structure factor of a-Si, and calculating an estimate of the error of the intensity of
the FSDP associated with the truncation of radial information from distant shells. The results indicate that the
extended-range oscillations do not have any noticeable effects on the position and intensity of the FSDP, which
is primarily determined by the medium-range atomic correlations of up to a length of 20 Å in amorphous silicon.
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I. INTRODUCTION

The structure of amorphous silicon (a-Si) is well repre-
sented by the continuous random network (CRN) model of
Zachariasen [1]. The CRN model of a-Si suggests that each
atom is bonded to four neighboring Si atoms, which form an
approximate tetrahedral atomic arrangement in the amorphous
environment. The network is topologically distinct from its
crystalline counterpart (c-Si) owing to the presence of five-
member and seven-member rings. In addition, a considerable
number of hexagonal rings and a few higher-member rings are
also present in the amorphous network. The pair-correlation
function (PCF) of a-Si obtained from CRN models indicates
that radial correlations typically extend up to a distance of
15 Å. Although the actual structure of laboratory-grown sam-
ples of a-Si may differ from this simple CRN picture, except
for a few properties, the CRN model provides an overall good
description of structural, electronic, and vibrational properties
of a-Si that mostly rely on the short-range order (≈5 Å) and,
to a lesser extent, the medium-range order (≈5–20 Å) of the
network.

Although the structure of a-Si has been extensively studied
by using computer-generated models on the radial length scale
of 10–15 Å, there exist only a few studies [2–5] that discuss
the network structure of a-Si on the medium-range length
scale of 20 Å and beyond. This is partly due to the fact
that structural and electronic properties of a-Si are generally
found to be not particularly dependent on the medium-range
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structure beyond 15 Å and in part to the computational com-
plexity of conducting quantum-mechanical calculations, using
density-functional theory (DFT), for large models. However,
this observation does not necessarily imply that no medium-
range structure exists in a-Si [6]. In this paper, we address
this aspect of the problem by studying the network structure
of a-Si using atomistic models of sizes 21 952 and 400 000
atoms. In particular, we examine two important aspects of
the medium- and extended-range structures of a-Si that have
been reported in the literature. The first problem involves the
presence of weak but noticeable radial oscillations in the PCF
at distances of 20–40 Å. This was first reported by Uhlherr
and Elliott [7] and it was given the name extended-range
oscillations in the PCF of a-Si. The second issue is directly
related to the first and it concerns the effect of the medium-
range order beyond 15 Å, and possibly the extended-range
order, on the first sharp diffraction peak (FSDP) of a-Si. The
latter corresponds to the first peak of the static structure factor
[8], S(Q), at Q = 1.99 Å−1 in a-Si. In the following, we use
the term medium-range order (MRO) to imply ordering on
the length scale of 5–20 Å, whereas the term extended-range
order (ERO) indicates structural ordering beyond 20 Å, in-
cluding extended-range oscillations.

The role of MRO in amorphous networks has been stud-
ied extensively in an effort to understand structure-property
relationships in network-forming glasses, for example, ox-
ides [9–13] and chalcogenides [14–18]. The MRO in these
systems typically manifests itself as the FSDP, and the posi-
tion, width, and intensity of the FSDP characterize the length
scale associated with the MRO. The results from numerous
experimental [11,19–24] and computational studies [2,25–30]
indicate that the MRO and ERO in glassy systems can extend
up to a distance of 30 Å and that it can play an important role
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in determining a number of material properties of network-
forming glasses. By contrast, results for tetrahedrally bonded
elemental amorphous semiconductors, such as a-Si and a-Ge,
are few and far between. Uhlherr and Elliott [7] studied the
presence of extended-range oscillations in a-Si by analyzing
experimental neutron-diffraction data of Fortner and Lannin
[31] and the pair-correlation data obtained from atomistic
models of size 13 824 atoms. [32] The authors concluded, via
the Fourier inversion of the structure factor in the vicinity
of the FSDP region, that the radial oscillations can extend
to at least 35 Å and that it arises from the propagation of
second-neighbor radial atomic correlations. Recently, Roorda
et al. [33] reported the presence of ERO in amorphous Si/Ge
using x-ray diffraction measurements at high resolution. The
PCF obtained in their study from the Fourier transform of
diffraction data shows the presence of ERO beyond 20 Å
in both a-Si and a-Ge samples. The authors also noted that
the (spatial) periodicity and decay length of the MRO and/or
ERO increase upon thermal annealing. In view of these ob-
servations, the main task of the present study is to examine
the presence of the ERO in large realistic models of a-Si
by a direct analysis of the pair-correlation function and their
partial counterparts associated with distant coordination shells
of amorphous silicon.

The rest of the paper is arranged as follows. In Sec. II,
we have provided a description of the computational methods
employed here to generate atomistic models of a-Si and a set
of partially ordered networks of Si atoms. This is followed
by results and discussion in Sec. III. The origin of the ERO
is addressed from a real-space point of view of the network
structure of amorphous silicon. The relation between the ERO
and structure of the FSDP is also examined in this section by
constructing a semiempirical expression for the structure fac-
tor of a-Si in the Gaussian approximation. This is followed by
conclusions of our work in Sec. IV.

II. COMPUTATIONAL METHOD

The present study involves the use of three different sets
of models. The first set consists of a-Si models obtained from
using the Wooten-Winer-Weaire (WWW) [34,35] algorithm.
The second set comprises a-Si models produced from large-
scale molecular-dynamics (MD) simulations. The third set
includes three different types of partially ordered networks
of Si atoms, denoted by M1, M2, and M3. These networks
are not realistic models of a-Si; they have varying degrees of
radial ordering in the respective PCF up to a radial length
of 6 Å. In order for the ERO to manifest in the PCF of
a-Si at radial distances of 20–40 Å, it is necessary for the
models to be sufficiently large, consisting of a few tens to
several tens of thousands of atoms. To this end, the sizes of
the models were chosen to be 21 952 atoms and 400 000
atoms, which suffice to establish an unambiguous presence
of the ERO in the PCF. In this study, we generated a set of
three independent M1/M2/M3 and WWW models and three
MD models for the purpose of configurational averaging of
data.

The MD models were produced by initially placing
400 000 Si atoms randomly in a cubic simulation cell of
length 202.4 Å, so that no two atoms could be at a distance

of less than 2 Å. The mass density of the models corresponds
to 2.26 g cm−3, which is close to the experimental value
[36,37] of the a-Si density, 2.25–2.28 g cm−3, depending
upon the method of preparation and experimental conditions.
The modified Stillinger-Weber potential [38,39] was used to
calculate the total energy and forces and the velocity-Verlet
algorithm was employed to integrate the equations of mo-
tion in canonical ensembles. The initial temperature was set
at 1800 K and the system was equilibrated for 20 ps at
1800 K. The temperature was then gradually decreased, by
using a chain of Nosé-Hoover thermostats [40,41], from 1800
to 300 K at an average cooling rate of 5 × 1012 K/s. The
final structures from the MD simulations were further sub-
jected to geometry optimization using the limited-memory
Broyden-Fletcher-Goldfrab-Shanno (BFGS) algorithm, as de-
scribed by Atta-Fynn and Biswas [42]. Atomic configurations
were collected during the course of simulations once the con-
figurations satisfied a set of convergence properties, involving
a minimum value of the width of the bond-angle distribution
and the number of four-fold-coordinated atoms in the net-
work.

The second set of models was produced by using the
WWW method. Here, we employed the modified version of
the algorithm, developed by Barkema and Mousseau [35]. The
method essentially consists of the following steps:

(1) Generate a random configuration and construct a
neighbor list of atoms using an appropriate cutoff value,
such that the network is tetravalent as far as the list is
concerned.

(2) Employ the WWW bond-switching algorithm [34,35]
to produce a new configuration and accept or reject the con-
figuration upon local relaxation of the network via the Monte
Carlo method. The bond-switching procedure largely main-
tains the tetravalent character of the atomic network during
simulations, and local relaxations were performed by using
the nearest-neighbor-based Keating potential [43].

(3) Relax the resulting configuration from step 2 at a regu-
lar but infrequent interval to include the structural information
from beyond the first shell of neighbors, by using a general-
ization of Weber’s adiabatic bond-charge model [44].

For a description of the method, see Ref. [35]. In this study,
we have employed three independent 21 952-atom WWW
models for obtaining configurationally averaged values of
structural properties. The atomic coordinates of the WWW
models are provided as Supplemental Material [45].

In addition to the WWW and MD models of a-Si, we have
also generated a set of disordered networks, M1–M3, of Si
atoms. As stated earlier, these models are partially ordered
and they can be classified by the degree of radial correlations
present in the respective PCF. Specifically, M1 models are
highly disordered and have very little or no radial correlations
in the PCF. By contrast, M2 models are characterized by the
presence of a well-defined first peak and radial correlations up
to 3 Å. Likewise, M3 models exhibit radial correlations up to
6 Å with a pristine first peak and a part of the second peak,
with a well-defined gap between the peaks. The M2 and M3
models were generated by adding one atom at a time in the
simulation cell so that the addition of each atom satisfied a set
of geometric constraints in order to produce radial correlations
up to a length of 4 Å and 6 Å, respectively. The sizes of the

115203-2



EXTENDED-RANGE ORDER IN TETRAHEDRAL AMORPHOUS … PHYSICAL REVIEW B 105, 115203 (2022)

WWW and M1/M2/M3 models were chosen to be 21 952
atoms, with a cubic supercell of linear size 77.03 Å.

Apart from the WWW, MD, and M1–M3 models, we have
also employed a number of disordered amorphous silicon
(da-Si) and disordered crystalline silicon (dc-Si) configura-
tions in this study. These configurations were produced by
including structural disorder in pristine a-Si and diamond c-Si
structures via random displacements of atoms, using ri,α →
ri,α + σ pi,α , from their original positions. Here, ri,α is the αth
component (α = x/y/z) of the atomic position at site i, σ is
the maximum value of the atomic displacement in angstroms,
and pi,α is a random number, which is uniformly distributed
between −1 and +1. The values of σ were chosen from 0.2
to 1.2 Å, which correspond to a distortion of the Si–Si bond
length by 8–51% from its average or ideal value of 2.36 Å in
a-Si or c-Si. It may be noted that a value of σ of the order of
0.3 Å satisfies the Lindemann criterion of melting, producing
liquidlike structures of a-Si and c-Si. Thus, the dc-Si configu-
rations with σ � 0.3 Å are considerably disordered compared
to their counterparts with σ � 0.3 Å.

Given a distribution of atoms in a disordered network, the
structure factor can be obtained from the Fourier transform
of the reduced PCF, G(r). Assuming that the distribution
of atoms in the network is homogeneous and isotropic, the
structure factor, S(Q), is given by

S(Q) = 1 + 4πn0

Q

∫ ∞

0
r[g(r) − 1] sin(Qr) dr

≈ 1 + 1

Q

∫ Rc

0
G(r) sin(Qr) dr, (1)

where g(r) is the conventional PCF, G(r) = 4πn0 r [g(r) − 1]
is known as the reduced PCF, and n0 is the average number
density of the system. For finite-size models, the upper limit of
the integral can be replaced by Rc = L/2 by using the periodic
boundary conditions, provided g(r) → 1 as r → Rc. We see
later that this condition is amply satisfied by models for which
Rc is of the order of 20 Å.

III. RESULTS AND DISCUSSION

A. Extended-range oscillations in the PCF of a-Si

We begin by establishing the unambiguous presence of
radial oscillations in the PCF of a-Si at a distance of 20–40 Å.
Since the calculation of the PCF beyond 20 Å requires suffi-
ciently large models of a-Si, we first examine the large MD
models, consisting of 400 000 atoms. Thereafter, we proceed
to determine the origin of these oscillations by analyzing the
three-dimensional network structure of these 400 000-atom
models and a set of 21 952-atom models obtained from the
WWW method. The results from these models will be com-
pared with the same from the partially ordered networks,
M1–M3, having varying degrees of radial ordering up to a
distance of 6 Å. The PCFs of the partially ordered networks,
from M1 to M3, are shown in Fig. 1, along with the results
from the 21 952-atom WWW models of a-Si. It is evident
from the plots that the M2 and M3 models show radial cor-
relations of up to 4 and 6 Å, respectively. The M1 models,
on the other hand, exhibit small radial correlations up to
3 Å, which mostly originate from the imposed constraint of a
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FIG. 1. The pair-correlation functions of three partially ordered
models (M1–M3) of Si atoms, showing radial correlations up to a
length of 6 Å. The results for a-Si (WWW models) are shown for
comparison with that for the M3 model. The size of the models
corresponds to 21 952 atoms and the PCF data were averaged over
three independent configurations for each model.

minimum separation distance of 2 Å between any two atoms
in the network.

Figure 2 shows the reduced PCF obtained from the MD
models of a-Si, which consist of 400 000 atoms. The data pre-
sented here correspond to the configurational-averaged values
of G(r) from three independent configurations. The inset in
Fig. 2 shows the presence of distinct radial oscillations at a
distance beyond 20 Å, extending at least up to 40 Å. Similar
oscillations have been also observed in the reduced PCF of
21 952-atom WWW models, but in a somewhat weaker form.
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FIG. 2. The reduced pair-correlation function, G(r), of a-Si, ob-
tained from a configurational averaging of three large MD models of
size 400 000 atoms. The inset shows the presence of radial oscilla-
tions up to 40 Å, which are known as the extended-range oscillations
in a-Si.
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FIG. 3. The reduced PCFs of the 400 000-atom MD models and
21 952-atom WWW models showing the presence of considerable
extended-range oscillations in larger MD models. For clarity, the
radial distances are scaled by the corresponding first peak of the PCF,
i.e., R = r/r0, where r0 = 2.37 Å.

This is apparent in Fig. 3, where we have plotted the config-
urationally averaged reduced PCFs for the 400 000-atom MD
models and 21 952-atom WWW models. For comparison, the
radial distances (r) in Fig. 3 are scaled by the corresponding
position of the first peak (r0) by introducing a scaled variable
R = r/r0. The inset in Fig. 3 clearly shows the presence of
considerable oscillations in larger 400 000-atom MD models
compared to their WWW counterpart in the region of R from
6 to 14, which translates into a distance of 14 to 33 Å for
r0 ≈ 2.37 Å. The observed differences can be partly attributed
to the size and statistics and in part to the nature of sim-
ulations. In general, MD models are considered to be more
representative of annealed samples of a-Si, which are slightly
more ordered than their as-deposited counterpart.

Table I presents some characteristic structural properties of
the MD and WWW models. Since the presence of too many
structural defects can affect the local density of the networks,
and the radial correlations between atoms, it is necessary for
the models to exhibit properties that are compliant with ex-

TABLE I. Structural properties of three WWW models (W1–
W3) and three MD models (MD1–MD3). The average bond length
(〈r〉), average bond angle (〈θ〉), and the root-mean-square width of
bond angles (�θ ) are expressed in Å and degrees, respectively. Cn

indicates the number of n-fold-coordinated atoms (in percent).

Model Bond angle Atomic coordination Bond length

Type Size (N ) 〈θ〉 �θ C2 C3 C4 C5 〈r〉
W1 21 952 109.21 10.04 0.00 0.00 99.86 0.14 2.36
W2 21 952 109.23 9.83 0.00 0.00 99.9 0.1 2.36
W3 21 952 109.22 9.87 0.00 0.00 99.88 0.12 2.36
MD1 400 000 109.23 9.26 0.02 1.28 97.59 1.11 2.38
MD2 400 000 109.23 9.31 0.03 1.29 97.52 1.16 2.38
MD3 400 000 109.23 9.34 0.02 1.26 97.57 1.15 2.38

perimental observations. The presence of only a few dangling
bonds (up to 1.3%) and floating bonds (up to 1.2%), as well as
a small value of the root-mean-square width, �θ , about 9–10◦,
of the bond-angle distribution, confirms that the structural
properties of these models are indeed consistent with actual
samples of a-Si.

To further characterize the models, one often computes
the electronic density of states (EDOS). The EDOS in a-Si
is found to be very sensitive to the presence of coordina-
tion defects, especially three-fold-coordinated Si atoms or
dangling bonds. The presence of an electronic gap largely
depends on these defects, and the size of the gap is known
to be related to the density of such defects and the degree
of disorder in bond-length and bond-angle distributions. We
have therefore calculated the EDOS of 21 952-atom WWW
models and 400 000-atom MD models. Since the diagonaliza-
tion of the Hamiltonian matrix (H) of such large a-Si models
is highly nontrivial, we had to resort to (a) the tight-binding
approximation of the Hamiltonian; and (b) employing the re-
cursion method of Haydock, Heine, and Kelly (HHK) [46,47]
to obtain the EDOS. In the recursion approach of HHK, one
calculates the projected density of states nα (E ), associated
with a basis function |α〉 (involving a site and an orbital), by
writing

nα (E ) =
∑

k

|〈α|ψk〉|2δ(E − Ek ). (2)

Here, Ek and ψk are the energy eigenvalues and eigenvectors
of H , respectively. Using a representation of the δ function and
writing z = E + ıε, where ε → 0+, it can be shown that the
projected EDOS can be expressed in terms of the singular part
of the diagonal element of the resolvent of H or the Green’s
operator Ĝ(z) = (zÎ − Ĥ )−1. This yields [48]

nα (E ) = − 1

π
lim

ε→0+
Im Gαα (E + ıε). (3)

The local EDOS obtained from using Eq. (3) is averaged over
multiple sites to calculate the total EDOS. For 400 000-atom
MD models, the problem is particularly difficult due to the
handling and storage of large matrices and the computational
cost associated with the calculation for all sites. In practice,
a few clusters of several hundred atoms are found to suf-
fice for configurational averaging. Using a fast matrix-vector
multiplication scheme and a compressed representation of the
sparse H matrix, one can implement an order-N algorithm
for the calculation of the local EDOS in the tight-binding
approximation. The results obtained from these calculations
are shown in Fig. 4. The presence of a clean gap, rather than
a pseudogap, in the EDOS further establishes the quality of
the models. The approach can be adapted to calculate the
vibrational density of states in the harmonic approximation,
provided that an efficient scheme to obtain electronic forces
for the construction of the dynamical matrix (DM) of a-Si is
available. A simple order-N approach to construct the DM can
be found in Ref. [49].

B. Origin of extended-range oscillations in a-Si

The first step toward understanding the ERO in a-Si fol-
lows from an analysis of the reduced PCF of disordered
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FIG. 4. The electronic density of states (EDOS) of 21 952-atom
WWW and 400 000-atom MD models obtained from the tight-
binding approximation. The presence of an electronic band gap is
clearly visible in the plots.

crystalline silicon (dc-Si) structures. The inclusion of posi-
tional disorder washes out the sharp δ functions in the PCF
of diamond c-Si and leads to a series of broadened peaks for
the resulting dc-Si structures. A comparison of the reduced
PCF of a-Si with those from dc-Si, for σ = 1.0 and 1.2
Å, in Fig. 5 reveals that a-Si exhibits small but noticeable
oscillations at large distances of up to at least 30 Å. Despite
the fine structure of G(r) in dc-Si, it is apparent that the
positions of the peaks in a-Si approximately coincide with
those in dc-Si. This observation leads to the possibility that
the ERO in a-Si could originate from the presence of weak
radial-shell structures on the nanometer length scale, as in the
case of dc-Si. This point is examined at length in the following
paragraphs.

15 20 25 30
r (Å)

-0.4

-0.2

0

0.2

0.4

G
(r

)

a-Si (400,000)
dc-Si (������� Å)
dc-Si (������� Å)

FIG. 5. The presence of radial oscillations in MD models of a-Si
(blue) of size 400 000 atoms and two dc-Si structures of size 405 224
atoms from 15 to 30 Å. The positions of the radial peaks of a-Si
approximately correspond to those of dc-Si, indicating the possible
presence of weak extended-range ordering in a-Si beyond 15 Å.

FIG. 6. A schematic representation showing the first two coordi-
nation shells of a central atom (blue) in a two-dimensional disordered
network. The atoms in the first shell (green) and the second shell
(yellow) can be reached from the central atom in one step and two
steps, respectively.

Assuming that radial-shell structures exist in the partially
ordered environment of a-Si at large distances, one may
express the total PCF, g(r), as a linear combination of the same
for each coordination shell, gn(r). Thus, g(r) = ∑

n gn(r),
where gn(r) = 〈g(r = |rn − Ri|)〉i. Here, r is the distance
between a central atom at Ri and its neighbors in the nth
coordination shell at rn, and the symbol 〈 〉i stands for the aver-
age over all atoms and independent configurations. Since, for
an arbitrary (highly) disordered network, distant radial shells
may not exist or be well defined—depending on the degree of
radial disorder—it is more appropriate to define the nth coor-
dination or topological shell as one that consists of nth-nearest
neighbors of the central atom at Ri. This is schematically il-
lustrated in Fig. 6 by showing the first-shell neighbors (green)
and the second-shell neighbors (yellow) of the central atom
(blue). The key point here is that the nth neighbors of a central
atom are those that can be reached (from the center) by a min-
imum of n distinct and irreversible steps, irrespective of the
presence of well-defined radial shells. Thus, the coordination
shells defined above depend on the topology or connectivity
of the atomic network, and the three-dimensional shape of
the shells may not be necessarily spherical. We see later that
this can lead to a highly asymmetrical radial distribution of
atoms within the coordination shells of partially disordered
networks. Figure 7 shows the shell PCFs, gn(r), obtained for
the first six coordination shells, along with g(r) for a 21 952-
atom WWW model of a-Si. It is apparent that the shell PCFs,
for n = 1 to n = 6, can be represented by a bell-shaped curve
in a-Si, with the exception of g3(r) for which a bimodal dis-
tribution is observed. The latter is consistent with the earlier
study by Uhlherr and Elliott [7], who attributed the bimodal
shape of g3(r) to the end-to-end radial distances of a set of
four neighboring atoms or quartets associated with dihedral
angles in a-Si.

Having expressed the total PCF in terms of gn(r), we now
examine the oscillations in the PCF by studying individual
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FIG. 7. The shell pair-correlation function, gn(r), for the nth
coordination shell of a 21 952-atom WWW model of a-Si. The total
g(r) (dashed black), which is given by the sum of all shell PCFs, is
also shown in the plot.

gn(r)s, which reflect the characteristic properties of the radial
distributions of atoms in nth shells. In particular, the width
of gn(r) is indicative of the strength of the radial (dis)order
in the nth shell. A small value of the width corresponds to a
highly ordered state of atoms within the shell as far as radial
ordering is concerned, and vice versa. This assertion can be
verified by computing gn(r) for a number of partially ordered
networks of silicon. Figure 8 shows the results for the 13th co-
ordination shell, g13(r) as a representative example, obtained
from 21 952-atom models, of a-Si, dc-Si, and M2. As stated
earlier in Sec. II, the latter model (M2) is characterized by the
presence of a well-defined first-coordination shell, whereas
the dc-Si structures are produced by using a value of σ in
the range from 0.3 to 1.0 Å. It is apparent that a small value
of σ (for example, σ = 0.3 Å) produces well-defined multiple
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FIG. 8. The shell pair-correlation functions, g13(r), obtained
from 21 952-atom WWW models of a-Si (red), dc-Si (blue, purple,
and cyan), and partially ordered configurations M2 (green) of Si
atoms. The disordered crystalline structures were generated from the
diamond c-Si structure, using σ = 0.3, 0.8, and 1.0 Å.
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FIG. 9. The variation of the Fisher-Pearson coefficient of skew-
ness, s, for the distribution g13(r; σ ) with σ for a number of dc-Si
models (blue). The coefficients for the M2 model (green) and a-Si
(red), for σ = 0, are shown in the plot for comparison.

peaks in g13(r) for dc-Si models. However, as the value of σ

increases and goes beyond 0.6 Å, the peaks in g13(r) coalesce
to form a unimodal distribution. This is unsurprising due to
the presence of strong residual crystalline order in the dc-Si
networks for σ � 0.6 Å. By contrast, the width of g13(r) for
a-Si is found to be considerably smaller than its M2 coun-
terpart, which shows a more radially disordered distribution
of atoms within the same shell in M2. This observation is
found to be true not only for g13(r) but also for all gn(r)s. The
high asymmetry of g13(r) for the M2 and dc-Si models can
be readily attributed to the connectivity of the atoms in these
models. Since the position of an atom in a given coordination
shell is determined by the number of steps or hops from the
central atom, there exist a few atoms in the shell that are radi-
ally close to the central atom but are not reachable (from the
central atom) via a small number of steps or hops, due to the
low connectivity of the atoms in the networks for increasing
values of σ . This is reflected in the left tail of the distribution
(see Fig. 8), which leads to a negative value of the skewness
for the radial distribution of atoms in the shell. This can be
verified by computing the Fisher-Pearson (FP) coefficient of
skewness [50], s, for g13(r), for different σ values. In general,
the FP coefficient of skewness is given by the standardized
third central moment of a distribution, and a negative value
of the coefficient signifies a skewed distribution toward the
left, and vice versa. The variation of s with σ for a number of
dc-Si models is shown in Fig. 9, along with the correspond-
ing value of the coefficient for the M2 and a-Si model for
comparison.

Figure 10 shows the full width at half maximum (FWHM)
of the shell PCFs, gn(r), for different shells, from n = 1 to
n = 20, for a class of partially ordered models (M1–M3), a-Si,
and dc-Si models of size 21 952 atoms. Since dc-Si models
tend to exhibit the presence of multiple peaks in gn(r) for
σ � 0.6 Å, the FWHM for the dc-Si models (with multiple
peaks) in Fig. 10 is calculated by fitting each individual peak
with a Gaussian distribution and averaging over the resulting
FWHM values for all major peaks in the distribution. The
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FIG. 10. The full width at half maximum (FWHM) for a set
of partially ordered configurations (M1–M3), a-Si, and four dc-Si
structures of size 21 952 atoms. The dc-Si structure (with σ = 0.2 Å)
is the most ordered configuration, whereas M1 is the least ordered
configuration, by construction.

FWHM values (in Fig. 10) suggest that the M1 models are
highly disordered, whereas the dc-Si structures with σ = 0.2
Å are the least disordered configurations. This observation is
indeed true by construction. For σ = 0.2–0.5 Å, a significant
radial ordering exists in the dc-Si structures that leads to a
small value of the width in Fig. 10. The rest of the models,
from M2 and M3 to a-Si, exhibit an increasingly more ordered
state of radially distributed atoms in the shells. It is apparent
that, as more radial ordering is incorporated in a model (for
example, M2 and M3), the corresponding FWHM value of
gn(r) begins to decrease for a given shell. Conversely, the
inclusion of (additional) structural disorder increases the cor-
responding FWHM value of gn(r) in a model. This can be seen
from Fig. 11, where the addition of positional disorder, via

0 5 10 15 20 25 30 35
Peak position (Å)

0

2

4

6

8

10

F
W

H
M

 (
Å

)

d-M1 (�������	 Å)
M1
d-M3 (�������	 Å)
M3
da-Si ( ������	 Å)
a-Si

FIG. 11. The effect of the addition of positional disorder on the
FWHM of the shell PCFs in M1, M3, and a-Si. The FWHM values
of the unperturbed models are also shown for comparison.
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FIG. 12. The effect of the addition of positional disorder, with
σ = 0.5 Å, on the radial oscillations in a 400 000-atom MD model of
a-Si between 20 and 40 Å. The results for the corresponding pristine
a-Si model (green) are also shown for comparison.

random displacements of atoms in M1, M3, and a-Si, resulted
in an increase of the FWHM values of gn(r). This observation
also applies to the total PCF of a-Si. Figure 12 shows that
the amplitude of the radial oscillations reduces in the region
of 20–40 Å with the addition of positional disorder in a-Si.
It may be noted that the FWHM values for the M1 models,
which are highly disordered by construction, are practically
unaffected in Fig. 11 in the presence of additional disorder
with σ values of the order of 0.3 Å. Thus, the width (or the
average width for a multimodal case) of gn(r) can be taken as
a measure of the radial order or disorder in partially ordered
networks, including a-Si and dc-Si structures.

C. Shannon information as a measure
of extended-range ordering

The assertion that the width of the shell pair-correlation
function, gn(r), can provide a measure of the disorder in
the radial distribution of atoms in the nth coordination shell
of a disordered network is not particularly surprising and it
directly follows from the Shannon measure of information
(SMI) [51]. By normalizing the shell PCF, gn(r), one can
readily construct a discrete probability measure, pi

n, to define
the SMI as follows:

S
[
pi

n

] = −k
∑

i

pi
n ln pi

n. (4)

In Eq. (4), the value of 0 ln(0) is defined to be 0, k is a
constant, and pi

n is given by

pi
n = gn(ri)∑

i gn(ri)
.

The SMI can be understood as providing a measure of the
degree of uncertainty or the lack of radial ordering in the
distribution of atoms in the coordination shells. The multi-
plicative constant k in Eq. (4) can be taken as unity without
any loss of generality. The results for the SMI obtained from
M1, M2, M3, and a-Si models are shown in Fig. 13 for the first
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FIG. 13. The Shannon measure of information (SMI), associated
with a discrete probability measure pn, obtained from the shell pair-
correlation functions, gn(r), for M1–M3, a-Si, and diamond c-Si. For
disordered and amorphous Si networks, the results were averaged
over three independent configurations for each shell.

20 coordination shells. The corresponding results for diamond
c-Si are also shown in the plot for comparison. As one may
expect, the SMI values for different shells behave in a similar
manner as that of the FWHM (of the shell PCFs) with respect
to the peak position in Fig. 10. Once again, the largest values
of the SMI correspond to the highly disordered M1 models,
whereas a-Si exhibits the smallest values of the SMI for each
shell among M1, M2, M3, and a-Si. It is noteworthy that,
unlike the case of disordered and amorphous Si networks,
the SMI values associated with the coordination shells in the
diamond c-Si structure, which is perfectly ordered, increase
considerably with the increasing shell number in a global
sense. This observation can be attributed to the presence of
multiple peaks in the higher-order coordination shells. Since
the (shell) PCFs for a crystalline structure consist of a series
of δ functions, the presence of an increasing number of peaks
in the distant shells leads to more uncertainty in the radial
distribution of the atoms in these shells. This is reflected in the
larger value of the SMI for the distant shells. Thus, the SMI
can be loosely interpreted as a global measure of ordering or
disordering in the distribution, which is most appropriate for
describing the degree of order or disorder associated with uni-
modal distributions. However, for multimodal distributions,
such as the dc-Si structures with σ � 0.5 Å, one requires a
suitable local measure of information, for example, the Fisher
information [52], in order to quantify the degree of disorder or
uncertainty associated with the radial distribution of the atoms
in the coordination shells. These issues will be addressed
elsewhere from an information-theoretic point of view in a
future communication.

The origin of the extended-range oscillations in a-Si can
now be interpreted in light of the results from Figs. 7–13.
Since the full PCF can be expressed in terms of its par-
tial components, any structural aspects of g(r), such as the
extended-range oscillations, can also be represented by a
suitable set of gn(r), associated with the length scale of the
oscillations. Figures 10 and 13 essentially suggest that, as the

degree of radial ordering in the full PCF increases from M1
to M3, the corresponding width and the Shannon information
associated with gn(r) steadily decrease. Thus, the inclusion
of radial information of up to a distance of 4 Å in M2 and
about 6 Å in M3 suffices to result in a reduction of the width
of gn(r) associated with the distant coordination shells. Since
a-Si is characterized by the presence of strong radial ordering
at least up to a length of 20 Å in the full PCF, it is unsurprising
that a small value of the width of gn(r) of a-Si is reflective of
the radial ordering in the distant shells on the length scale of
20–40 Å. By contrast, the dc-Si models with σ = 0.2–0.5 Å
show significant radial ordering as far as the widths of var-
ious gn(r)s are concerned. Thus, the ERO in a-Si can be
understood as the resultant density fluctuations, originating
from highly ordered radial distributions of atoms in the first
few coordination or radial shells, which propagate and decay
radially as the (density) fluctuations travel through the distant
shells. A comparison of the results from the M2, M3, and a-Si
models in Fig. 10 appears to suggest that the characteristic
local radial ordering of up to 6 Å forces the atoms in distant
shells to organize in such a way that small radial oscillations
are built up on the length scale of up to 40 Å, when the model
is sufficiently large. The presence of these small but distinct
radial oscillations in the full PCF is indicative of the existence
of weak extended-range radial ordering in a-Si up to a length
of 40 Å, as far as the size of the a-Si models studied in this
work are concerned.

D. Decay of radial correlations, autocorrelation coefficient,
and comparison with experimental diffraction data

The presence of radial atomic correlations beyond 20 Å can
be further evidenced by computing the autocorrelation coef-
ficient(s) of G(r). Assuming that M observations, y1, y2, ...,
yM , form a time series, where yi = G(ri), the autocovariance
coefficient [53], ck , between the observations that are k steps
apart is given by

ck = 1

M

M−k∑
i=1

(yi − ȳ)(yi+k − ȳ), k = 1, . . . , n, n < M. (5)

The autocorrelation coefficient, γk , is then expressed as γk =
ck/c0, where c0 is the variance and ȳ is the mean value of
the set {yi}. Figure 14 shows a plot of γk versus rk . Here,
the set {yi} is constructed by choosing a segment of G(r)
from r1 = 15 Å to rn = 45 Å and expressing k in terms of
rk = r1 + k�r, where �r is the distance between two con-
secutive observations of G(r). It is apparent from the plot that,
given the set of G(r) values from 15 to 45 Å, �r = 0.05 Å,
n = 600, and M = 900, the radial correlations decay in an
oscillatory manner and become almost negligible after 35 Å.
The root-mean-square (RMS) fluctuations of γk , obtained
from the configurational averaging of the results from three
independent MD models of size 400 000 atoms, are also
shown in Fig. 14. Since the RMS values of the fluctuations
are almost of the order of γk for r � 40 Å, the radial cor-
relations in this region may not be significant, even though
the presence of small residual correlations can be seen in this
region.
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FIG. 14. The autocorrelation coefficient, γ (rk ), of a set of G(r)
values from r = 15 Å to r = 45 Å, constructed from 400 000-atom
MD models of a-Si, showing the presence of radial correlations up
to 45 Å. The root-mean-square fluctuations are shown as error bars
(blue vertical lines). For visual clarity, the results for the radial region
from 35 to 45 Å are shown in the inset.

We now provide a direct comparison of our results with
those from diffraction measurements by computing the decay
length and the (spatial) period of the ERO at radial distances
beyond 10 Å. High-energy x-ray diffraction measurements on
a-Si samples, by Roorda et al. [33], suggest that the period
of oscillations ranges from 2.77 to 3.03 Å and that the decay
length in annealed samples of a-Si is about 4.23 Å. Figure 15
shows the decay of the amplitudes of radial oscillations in
G(r) for 400 000-atom MD models of a-Si, which can be
roughly considered as the simulated counterpart of annealed
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FIG. 15. The decay of the radial peak heights in G(r) for a-Si
(blue) and dc-Si (red and green) with peak distances. The exponential
fit of the peak positions (dashed blue line) corresponds to the data
for a-Si models of size 400 000 atoms. The decay length for a-Si
corresponds to a value of 4.81 Å. The corresponding peak positions
for dc-Si structures are shown for comparison.

samples of a-Si in experiments. Here, the amplitudes and posi-
tions of the peaks are obtained from Fig. 2. The corresponding
decay for dc-Si networks for σ = 0.7 and 0.8 Å are also
included in the plot for comparison. For visual clarity, the first
three peaks of a-Si are omitted from the plot, by choosing an
appropriate range for the y axis. The values of the period and
the decay length obtained from our calculations compare very
well with the results from experiments. The average period of
oscillations from 400 000-atom MD models, in Fig. 15 (and
Fig. 2), is found to be 3.2 ± 0.065 Å, which is very close
to the experimental value of 3.03 Å, and the corresponding
decay length turns out to be about 4.81 ± 0.012 Å. The latter
is somewhat higher than the experimental value of 4.23 Å,
obtained from the Fourier transform of experimental diffrac-
tion data by Roorda et al. [33]. It is evident from Fig. 15
that the dc-Si models exhibit a rather slow decay, even for
considerably large values of σ from 0.7 to 0.8 Å.

E. Relation between ERO and the first sharp diffraction
peak in a-Si

In this section, we address the question whether the pres-
ence of extended-range oscillations has any bearing on the
position and intensity of the first sharp diffraction peak
(FSDP) in a-Si. Since the origin of the FSDP is strongly
related to the presence of medium-range order (MRO) in
glasses, which can extend up to a radial distance of approx-
imately 20 Å, it is instructive to examine whether the ERO in
a-Si can produce any observable effect on the intensity of the
FSDP near 2.0 Å−1.

The effect of distant radial correlations on the position and
intensity of the FSDP in a-Si can be calculated from using
Eq. (1). However, a direct application of Eq. (1) to very large
models can be problematic for two reasons. First, the presence
of noise in G(r) at large R can introduce errors, depending
on the signal-to-noise ratio in G(r). This makes it difficult to
identify the optimal value of Rc for large models, by varying
the upper limit of the integral in Eq. (1). Second, for large
values of R, the integrand can be highly oscillatory and con-
ventional integration techniques may not suffice to accurately
compute S(Q0) in the presence of a noisy G(r). To ameliorate
these issues, we address the problem by expressing G(r) in
terms of suitable distance-dependent radial basis functions,
and calculate the resulting integral analytically to obtain a
closed expression for S(Q). Noting that the oscillations are
particularly pronounced in G(r), it is useful to write G(r) as a
linear combination of Gaussian functions,

G(r) =
m∑

i=1

aie
−bi (r−ci )2

, (6)

in an effort to obtain an analytical expression for S(Q) in
terms of the Gaussian parameters. The parameters ai, bi,
and ci determine the approximate peak and/or trough height,
width, and the (radial) position of the ith peak and/or trough,
respectively, and can be obtained either via a nonlinear fit
of Eq. (6) to experimental or simulated reduced PCF data,
G(r), or by minimizing a suitable cost function with respect
to the set of parameters (ai, bi, ci ). Here, we have taken the
second approach and ensured that bi > 0 for all i. The struc-
ture factor can be expressed in terms of the fitted Gaussian
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FIG. 16. The static structure factor, S(Q), of a 21 952-atom
WWW model of a-Si obtained from the Gaussian approximation
(red line) and from direct numerical calculations (blue circles) using
Eqs. (8) and (7), respectively.

parameters:

S(Q) = 1 +
∫ Rc

0
rG(r)

sin(Qr)

Qr
dr (7)

= 1 + 1

Q

m∑
i=1

ai

√
π

bi
sin(Qci ) exp

[
− Q2

4bi

]
. (8)

In writing Eq. (8), we have denoted, for notational conve-
nience, the set (ai, bi, ci ) as the fitted values of the parameters
and assumed that the center of each Gaussian function, ci, sat-
isfies the condition 0 	 ci 	 Rc so that S(Q) can be written
as a sum of Gaussian integrals (and not error functions) with
the integration limit extending from zero to ∞. This condition
is readily satisfied by choosing an appropriate value of m, such
that Rc � cm, and noting that the first peak of the PCF in a-Si
rapidly decays to zero for r � 2.0 Å. In practical calculations,
a value of Rc of the order of 20 Å is found to be sufficient
for accurate determination of S(Q) using Eq. (7) [see Dahal
et al. [54] and Fig. 16 here]. The structure factor obtained from
Eq. (8) for a 21 952-atom WWW model of a-Si is plotted in
Fig. 16, along with the results from direct numerical calcula-
tions from Eq. (7) for comparison. For clarity, the wavevector
region from 15 to 30 Å−1 is shown separately as an inset in
Fig. 16.

The variation of the intensity of the FSDP and the principal
peak (i.e., the peak at 3.6 Å−1) can be studied, by using
Eq. (8), with respect to the number of Gaussian basis func-
tions m for a given Rc. Writing �S(Q, i) = S(Q, m) − S(Q, i),
where m = 70 for Rc = 30 Å, Fig. 17 shows the convergence
of �S at Q0 = 1.94 Å−1 and Q1 = 3.6 Å−1 for an increasing
number (i) of peaks and/or troughs. Here, Q0 and Q1 cor-
respond to the position of the FSDP and the principal peak,
respectively. It is apparent that both S(Q0, i) and S(Q1, i) con-
verge to the respective limiting value, S(Q, m), very rapidly
as i approaches 30, which corresponds to a radial length of
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FIG. 17. The convergence of the intensity of the FSDP (at Q0)
and the principal peak (at Q1), obtained from Eq. (8), with respect to
the number (i) of Gaussian peaks and/or troughs for a 21 952-atom
WWW model. The radial length associated with the Gaussian peaks
and/or troughs is indicated in angstroms on the secondary x axis
(top).

about 18 Å, as indicated in Fig. 17. The length is indicated
at the top of the plot as a secondary x axis, which reflects the
nonuniform distribution of Gaussian peaks and/or troughs in
the radial region of 0–30 Å. Figure 17 suggests that radial
correlations from the region beyond 20 Å do not really play
any significant role. This observation can be stated more pre-
cisely. The magnitude of the contribution to S(Q) obtained by
including an additional peak or trough beyond m in Eq. (8)
can be written as

|δS(Q, m)| = |S(Q, m + 1) − S(Q, m)|

=
∣∣∣∣ 1

Q

√
πa2

m+1

bm+1
sin(Qcm+1) exp

[
− Q2

4bm+1

]∣∣∣∣
� 1

Q

√
πa2

m+1

bm+1
exp

[
− Q2

4bm+1

]
. (9)

Substituting Q = Q0 = 2 Å−1 in Eq. (9) for the FSDP in a-Si,
one obtains

|δS(Q0, m)| <
am+1√
bm+1

exp

[
− 1

bm+1

]
. (10)

The asymptotic behavior of |δS(Q0, m)| with respect to m
follows from Eq. (10). Since G(r) → 0 as r → Rc for very
large models, the parameter am, which determines the height
of the Gaussian peak, decreases with an increasing value of m,
and |δS(Q0, m)| becomes increasingly smaller as m becomes
a large number. In practice, however, |δS(Q0, m)| fluctuates
between zero and a small value ε due to the presence of nu-
merical noise at large radial distances, which can be reduced
by averaging S(Q) [in Eq. (8)] over many independent sets
of fitted Gaussian parameters. Further, a value of Rc of about
30 Å is found to be sufficient for the calculation of S(Q) from
Eqs. (7) and (8). The results from our calculations suggest that
the average value [55] of ε is typically of the order of 0.025 for
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radial distances between 20 and 30 Å. This roughly translates
into an error of 1.7%, assuming S(Q0) = 1.5 for as-deposited
samples from experiments [8]. Thus, aside from small fluctu-
ations of S(Q0) owing to numerical noise, the extended-range
oscillations in the radial region of 20–30 Å do not seem to play
any observable role in determining the intensity of the FSDP
in a-Si. A similar conclusion was reached in a recent study
[54], where an alternative argument based on the analysis of
the behavior of rG(r) and the sampling of sin(Qr)/Qr within
the radial region from zero to Rc in Eq. (7) was provided by
the authors of the study to support this conclusion.

IV. CONCLUSIONS

The present study addresses the origin of the extended-
range oscillations in a-Si from a real-space point of view.
By analyzing a class of large partially ordered networks of
Si atoms with radial ordering up to a distance of 6 Å in
the PCF, it has been shown that the inclusion of short-range
ordering in the first two coordination shells of the disordered
networks can lead to an increased ordering of the atomic
radial distribution in distant coordination shells. A compar-
ison of these results with those obtained from large a-Si
and disordered crystalline configurations reveals that the shell
pair-correlation functions for the coordination shells of a-Si at
radial distances of 20–30 Å are considerably ordered and that
this radial ordering manifests in the form of weak oscillations
in the total PCF of a-Si, which can be expressed as a sum of
the partial radial distributions from each coordination shell.
By using the full width at half maximum of the peak(s) of the
partial PCFs and the Shannon information as a measure of the

degree of order or disorder, one arrives at the conclusion that
local atomic correlations can considerably affect the distribu-
tion of atoms in a-Si up to a distance of 40 Å.

An analysis of the amplitude of radial oscillations in the
reduced PCF of 400 000-atom MD models of a-Si shows
that the envelope function of the reduced PCF decays almost
exponentially and the resulting decay length (of 4.81 Å) is
found to be close to the experimental value (of 4.23 Å),
estimated from the Fourier transform of the diffraction data
obtained for annealed samples of a-Si. Likewise, the period of
the extended-range oscillations (for MD models) is found to
be about 3.2 Å, which compares well with the corresponding
experimental value of 3.03 Å for annealed samples. The study
also shows that the structure factor of a-Si can be expressed as
a linear combination of a series of Gaussian functions, whose
amplitude is modulated by a sinc function. A convergence
study of the intensity of the FSDP, using the structure factor
obtained from the Gaussian approximation, with respect to
the number of peaks in real space shows that the structure of
the FSDP is primarily determined by the radial correlations
originating from a distance of up to 20 Å in a-Si networks,
which leads to the conclusion that the ERO has no discernible
effects on the FSDP in a-Si.
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