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Defects are crucial in determining the overall physical properties of semiconductors. Generally, the charge-
state transition level εα(q/q’), one of the key physical quantities that determines the dopability of defects
in semiconductors, is temperature dependent. However, little is known about the temperature dependence of
εα(q/q’) and, as a result, almost all existing defect theories in semiconductors are built on a temperature-
independent approximation. In this paper, by deriving the basic formulas for temperature-dependent εα(q/q’), we
have established two fundamental rules for the temperature dependence of εα(q/q’) in semiconductors. Based on
these rules, surprisingly, it is found that the temperature dependencies of εα(q/q’) for different defects are rather
diverse: it can become shallower, deeper, or stay unchanged. This defect-specific behavior is mainly determined
by the synergistic or opposing effects between free-energy corrections (determined by the local volume change
around the defect during a charge-state transition) and band-edge changes (which differ for different semicon-
ductors). These basic formulas and rules, confirmed by a large number of state-of-the-art temperature-dependent
defect calculations in GaN, may potentially be widely adopted as guidelines for understanding or optimizing
doping behaviors in semiconductors at finite temperatures.
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I. INTRODUCTION

Intrinsic defects and external impurities (generally denoted
as defects hereafter) play a critical role in determining the
physical properties of solids, e.g., from solar cells [1–3] to
solid-state lighting [4,5] to topological phase control [6–8]
and to quantum computing [9–11]. The defect formation
energies H f (α,q) for defect α at charge state q that deter-
mine the defect concentrations and the charge-state transition
levels εα(q/q’) that correspond to the thermal ionization en-
ergies are two of the most important physical quantities for
all the defects in semiconductors [12–14]. Generally, both
H f (α,q) and εα(q/q’) are temperature dependent. Differing
from the straightforward temperature dependence of H f (α,q)
[12,13,15–17], little is known about how temperature changes
affect εα(q/q’) in semiconductors due to the lack of basic
formulas and fundamental rules. As a result, almost all defect
theories in semiconductors are built on static first-principles
calculations excluding temperature effects [12–14].

The challenge to unravel the temperature dependence of
εα(q/q’) in theory is twofold. Fundamentally, the standard
formulas for εα(q/q’) calculations are incomplete and do
not capture the εα(q/q’) of defects under finite tempera-
tures. Practically, the computations of temperature-induced
vibrational properties of defects in semiconductors are rather
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expensive. Because of its unparalleled complexity, the temper-
ature dependence of εα(q/q’) in semiconductors has remained
unanswered for decades, i.e., we do not have any available
rules to predict or understand the dopability of semiconduc-
tors at finite or changing temperatures.

Differing from narrow band gap (NBG) semiconductors
(e.g., Si and GaAs) that usually operate under ambient en-
vironments at room temperature, wide band gap (WBG)
semiconductors (e.g., GaN and SiC) can operate under
harsh environments with high working temperatures [18–22].
Therefore, WBG semiconductors are an ideal platform for
unique applications in aerospace, nuclear power, and earth’s
mantle investigations that require changing operation temper-
atures from extremely low to extremely high (0∼1000 K)
[18–26]. This highlights the need to understand the evolution
with temperature of defect properties in WBG semiconduc-
tors, especially of εα(q/q’), which may be critical to improve
the reliability of WBG semiconductor devices in various
environments.

In this paper, by deriving the basic formulas of
temperature-dependent εα(q/q’), we have established two
fundamental rules for the temperature dependence of absolute
and relative εα(q/q’) in semiconductors, respectively. Based
on these rules, it is found that regardless of the initial εα(q/q’)
levels at 0 K, surprisingly, the temperature-dependent behav-
iors of εα(q/q’) for different defects in different types of
semiconductors are rather diverse, i.e., it can become shal-
lower, deeper, or even stay unchanged, mainly determined by
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the synergistic or opposing effects between free-energy cor-
rections and band-edge changes. Importantly, we discover that
the electronic and vibrational contributions to free-energy cor-
rections are both fundamentally determined by a key physical
quantity δVq→q′ , the local volume change around the defect
during the charge-state transition. Interestingly, the δVq→q′

values are mainly determined by the competing effect between
the local electron occupation (LEO) changes and the strength
of the local lattice relaxation (LLR) around the defects. Using
the state-of-art first-principles-based temperature-dependent
approaches with the capacity of both high accuracy and high
efficiency [27], these proposed basic formulas and funda-
mental rules have been thoroughly verified based on a large
number of defect calculations in GaN.

II. RESULTS AND DISCUSSION

A. Basic formulas

Without the inclusion of temperature effects, the εα(q/q’)
of defect α between the charge states q and q’ is given as

εα (q/q′)w.o.T = E (α, q′) − E (α, q)

q − q′ − εVBM(host ), (1)

where E(α,q) [E(α,q’)] is the total energy of a supercell with
defect α in charge state q [q’] and εVBM(host) is the valence
band maximum (VBM) of the host [12–14]. With the inclu-
sion of temperature effects, E(α,q) [E(α,q’)] in Eq. (1) is
replaced by the corresponding free energy F(α,q) [F(α,q’)].
After some manipulations (see Appendix A), it can be
written as

εα (q/q′)[V, T ] = εα (q/q′)w.o.T + �F el[V, T ] + �F ph[V, T ]

q − q′

− �εVBM(host)[V, T ]. (2)

On the right-hand side of Eq. (2), the second term represents
the corrections from the free-energy differences between the
q and q’ configurations induced by the electronic (�Fel) and
vibrational (�Fph) contributions, while the third term repre-
sents the correction on the VBM energy position driven by
thermal expansion and electron-phonon coupling (�εVBM =
�εth

VBM + �ε
ph
VBM). While the temperature should affect both

the band edges and formation energies [εα(q/q’)] at the same
time, as shown in Eq. (2), at the impurity limit as modeled, it
is rigorous to consider the temperature effect on free-energy
differences and band-edge changes separately. Specifically,
the band-edge shift is calculated based on the evaluation of
electron-phonon coupling and thermal expansion, whereas the
correction of formation energies (including �Fel and �Fel)
comes from the Gibbs free energy. The coupling of these
corrections at the impurity limit is negligible. In addition,
for magnetic defects, the magnetic contributions to formation
enthalpy and entropy should also be included.

In practice, the temperature dependence of εα(q/q’) can be
understood without and with the inclusion of �εVBM [28], cor-
responding to the absolute and relative evolutions of εα(q/q’),
respectively. Here, relative means relative to the VBM(T) at
a given temperature T, while absolute refers to an absolute
energy scale [reference to vacuum or VBM(T = 0)]. While the
temperature dependence of the absolute εα(q/q’) [εa

α(q/q’)]

is solely determined by the free-energy corrections, that of
the relative εα(q/q’) [εr

α(q/q’)] is determined by both the
free-energy corrections and the band-edge changes. Although
εα(q/q’) is independent of the direction of charge-state tran-
sitions, to simplify our discussion, in the following we focus
on the ionization process, i.e., |q’| > |q|. This assumption does
not change the rules we developed.

Under the quasiharmonic approximation (QHA), Fel can
be written as Fel = Eth+Eel-TSel [13,29,30], where the first,
second, and third terms are the energy corrections induced
by thermal expansion, electron-occupation change, and elec-
tronic entropy, respectively. Generally, the contributions from
Eel and Sel to Fel are negligible under reasonable tempera-
tures in semiconductors [12,31] (also see more explanation in
Appendix A). Therefore, we focus on the Eth term in Fel.
Without an external pressure, V = ϕV T V0+ V 0, where ϕV is
the mean volumetric thermal expansion coefficient (usually,
ϕV > 0) and V0 is the equilibrium volume at 0 K. Ignoring
high order terms (see Appendix B), �Eth can be expressed as

�E th = −2γ0 ϕV T V0(host) δVq→q′ . (3)

Here, γ0 is the elastic constant and δVq→q′ is defined as the lo-
cal volume change during the ionization of defect α from q to
q’. It can be approximately estimated by δVq→q′ = V0(α,q’)-
V0(α,q), where V0(α,q’) and V0(α,q) are the volumes of the
fully optimized supercells with defect α under q and q’ charge
states, respectively.

Moving to Fph, it can be expressed as Fph =∑
i[

1
2 h̄ωi+kBT ln{1-exp(- h̄ωi

kBT )}] under the QHA [32], where
h̄, ωi, and kB are the reduced Planck’s constant, phonon
eigenfrequency, and Boltzmann constant, respectively.
Consequently, under a first-order approximation (see
Appendix C), �Fph can be written as

�F ph = �F zp + �F̃ ph =
∑

i

1

2
h̄�ωi +

∑
i

kBT
�ωi

ωi(α, q)
,

(4)
where �ωi= ωi(α,q’)-ωi(α,q) is the ith phonon eigenfre-
quency difference for defect α during the ionization from q
to q’. �Fzp is the contribution of zero-point vibrations and the
�F̃ ph is the pure temperature-dependent part.

B. Fundamental rules

First, we consider the role of �Fel (dominated by �Eth)
on εα(q/q’). In a common semiconductor, rising temperature
leads to volume expansion (ϕV > 0). During the ionization of
an acceptor from q to q’, the δVq→q′ of the defect may expand
due to the increased electron occupation, giving rise to a pos-
itive δVq→q′ . Oppositely, for a donor, the δVq→q′ may shrink
due to the reduced electron occupation during the ionization,
giving rise to a negative δVq→q′ . According to Eq. (3), �Eth

is negative and decreases with increasing temperature for an
acceptor, shallowing εα(q/q’); �Eth is positive and increases
with increasing temperature for a donor, deepening εα(q/q’).

Second, we consider the role of �Fph on εα(q/q’). Accord-
ing to Eq. (4), the sign of �Fph is mostly determined by �ωi.
The phonon frequencies can be approximately understood
using a one-dimensional harmonic oscillator model with ω ∼√

k
m , where k is the force constant for the system, capturing
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FIG. 1. Fundamental rules for temperature-dependence of εα(q/q’). Schematic illustration of the effects of temperature on εα(q/q’) levels
in (a) type-I and (b) type-II semiconductors, in which |δVq→q′ | is discovered to play a critical role. For convenience of plotting, we assume that
donors (or acceptors) have similar εα(q/q’) at 0 K [note that �εα(q/q’) is independent of the initial εα(q/q’) at 0 K]. See text for more details.

the strength of atomic bonds. During the ionization of both
acceptor and donor, the bond strength around the defect could
be enhanced because the number of electrons on the chemical
bonds are closer to the host chemical bonds. Therefore, �ωi

is positive for both donors and acceptors. Consequently, �Fph

is positive and increases with rising temperature, deepening
εα(q/q’) for both donors and acceptors. Moreover, it is ex-
pected that δVq→q′ and m̄ (defined as the average atomic mass
of the defect and its nearest-neighbor atoms) may be key
factors in determining the exact value of �Fph. Specifically,
a larger δVq→q′ indicates a larger bonding strength change
around the defect during the charge-state transition, leading
to the larger �ωi (and hence larger �Fph); the larger the m̄,
the smaller the �Fzp.

Based on the above understanding of �Fel and �Fph, we
can propose two fundamental rules for the temperature depen-
dence of εa

α(q/q’) and εr
α(q/q’), respectively. For donors, both

�Fel and �Fph can downshift the εa
α(q/q’) levels toward lower

energy values, and the downshift grows with temperature.
Meanwhile, as shown in Fig. 1, the larger the |δVq→q′ | of a
donor, the larger the �Eth and �Fph and, consequently the
larger the downshift of εa

α(q/q’). For acceptors, the (negative)
�Fel and (positive) �Fph have a canceling effect, because they
cause the εa

α(q/q’) level to shift in opposite directions. Com-
paring Eqs. (3) and (4), it is expected that the changes of |�Eth|
could be more significant than those of |�F̃ ph| for the variable
|δVq→q′ |. Accordingly, as shown in Fig. 1, for an acceptor with
small |δVq→q′ |, |�F̃ ph| > |�Eth|, which may upshift εa

α(q/q’)
in energy; for an acceptor with large |δVq→q′ |, |�F̃ ph| < |�Eth|,
which may downshift εa

α(q/q’) in energy. Therefore, we can
propose rule I on the changes of εa

α(q/q’) [�εa
α(q/q’)] in

semiconductors at different temperatures. Rule I(a) for
donors: The higher the temperature, the larger the �εa

α(q/q’)
toward deeper levels; the larger the |δVq→q′ |, the larger the
�εa

α(q/q’) toward deeper levels. Rule I(b) for acceptors: For
the acceptors with large |δVq→q′ |, the higher the temperature,
the larger the �εa

α(q/q’) toward shallower levels; the larger
the |δVq→q′ |, the larger the �εa

α(q/q’) toward shallower levels;
for acceptors with small |δVq→q′ |, the higher the temperature,
the larger the �εa

α(q/q’) toward deeper levels; the smaller the
|δVq→q′ |, the larger the �εa

α(q/q’) toward deeper levels.
After having established the role of the free-energy

corrections, we next consider the changes in the band
edge. Generally, for most conventional semiconductors, there
are two typical types of temperature-dependent band edge
changes, as demonstrated in Fig. 1. In many conventional
semiconductors, e.g., GaN [33,34] and GaAs [35], the CBM
energy positions usually downshift, while the VBM energy
positions upshift as temperature increases, e.g., �εCBM < 0
and �εVBM > 0, denoted as type-I semiconductors [Fig. 1(a)].
Type-II semiconductors [Fig. 1(b)], e.g., CsPbI3 [36] and
MAPbI3 [37,38], are opposite to the type-I cases, e.g., �εCBM

> 0 and �εVBM<0. Combining Rule I and specific band-edge
changes, we arrive at rule II on the temperature depen-
dence of εr

α(q/q’) in semiconductors. Rule II(a) for donors:
The εr

α(q/q’) in type-I semiconductors can become shal-
lower, deeper, or stay unchanged under different temperatures
[Fig. 1(a)], depending on the different strengths of the op-
posing effect between �εa

α(q/q’) and �εCBM; the εr
α(q/q’) in

type-II semiconductors will always become deeper (Fig. 1(b)),
due to the synergistic effect between �εa

α(q/q’) and �εCBM.
Rule II(b) for acceptors: The εr

α(q/q’) with small |δVq→q′ | in
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FIG. 2. Electronic contribution to the temperature dependence of εα(q/q’) in GaN. (a) �Fel (dashed lines) and �Eth (symbols) as a function
of temperature for different defects in GaN. (b) Relationship between δVq→q′ and �Eth for different defects at 800 K. Up inset and bottom
inset are partial charge densities for neutral VN and BeGa, respectively. Black-dashed line in the bottom inset shows the broken bond between
Be and its neighboring N.

type-I semiconductors and the εr
α(q/q’) with large |δVq→q′ | in

type-II semiconductors can become either shallower, deeper,
or stay unchanged as a function of temperature, originating
from the opposing effect between �εa

α(q/q’) and �εVBM; the
εr
α(q/q’) with large |δVq→q′ | in type-I semiconductors and

the εr
α(q/q’) with small |δVq→q′ | in type-II semiconductors

will always become shallower and deeper, respectively, due
to the synergistic effect between �εa

α(q/q’) and �εVBM, as
shown in Fig. 1. In addition, we emphasize that for some
unconventional band-edge changes different from type-I and
type-II cases, similar analysis can be made to reach the exact
rules.

C. Verification in GaN

Taking GaN as a prototype example, we have systemati-
cally studied the effects of temperature on εα(q/q’) for ten
different defects (see Appendix D for computational details).
The donorlike defects include N vacancy (VN ), substitutional
SiGa, GeGa, and ON , while the acceptorlike defects include
MgGa, ZnGa, BeGa, CaGa, CdGa, and CN [39,40]. Many of them
are commonly observed in GaN [39,40].

First, we test the relationship between �Fel and δVq→q′

in GaN. As shown in Fig. 2(a), the calculated �Fel and
�Eth for these defects are almost identical, except for
SiGa and ON between 0 and +1 charge-state transitions at
T > 800 K, confirming that the contributions of Eel and
Sel to Fel are usually small in semiconductors [12,31]. De-
viations at high temperatures partially originate from the
shallow-level-induced electron-occupation changes. Eth can
be directly evaluated using first-principles calculations under
hydrostatic-stress conditions [41,42], adopting the experimen-
tal ϕV [43]. As shown in Fig. 2(a), the calculated �Eth of these
defects increase almost linearly as temperature increases.
Interestingly, the calculated δVq→q′ are all positive for the
acceptors during ionization, resulting in the negative �Eth;

the calculated δVq→q′ are all negative for the donors during
ionization, resulting in the positive �Eth. Taking 800 K as a
typical temperature, as shown in Fig. 2(b), we have plotted
the relationship between �Eth and δVq→q′ for these defects,
which exhibits an almost linear dependence, confirming our
expectation from Eq. (3). A similar linear dependence be-
havior with different slopes is observed at other temperatures
(Fig. S1 [44]).

It is interesting to understand the origin of the diverse
δVq→q′ values for different defects. Overall, we discover that
while δVq→q′ is mainly determined by the change of LEO, the
LLR can effectively compensate the LEO-induced |δVq→q′ |;
the larger the LLR, the smaller the |δVq→q′ |. For example, as
shown in Fig. 2(b), all donors have a similar δV0→+1 ∼−12

Å
3

except VN . The δVq→q′ of VN are q/q’ dependent, e.g.,

δV0→+1 ∼−6 Å
3

and δV+1→+3 ∼−1 Å
3
. Meanwhile, all the

acceptors have similar δV0→−1 ∼+6 Å
3

expect MgGa (∼+4.8

Å
3
) and BeGa (∼+2.3 Å

3
). Overall, δVq→q′ is mainly de-

termined by the change of LEO around the defect, i.e., the
increased LEO always significantly increases the local volume
around a defect [28], leading to a positive δVq→q′ , and the de-
creased LEO always significantly decreases the local volume
around a defect [28], leading to a negative δVq→q′ . Further-
more, the δVq→q′ value also depends on the strength of LLR
around the defect. For example, for SiGa, there is a negligible
LLR during the ionization (Fig. S2 [44]), therefore, the large

δV0→+1 ∼−12 Å
3

is mainly induced by the decreased LEO
around SiGa. The cases of GeGa and ON are similar to that of
SiGa, resulting in similar δV0→+1 values. For VN , due to the
broken ionic bonds around VN , the extra electrons from the
dangling bonds (DBs) are strongly localized around VN [up
inset, Fig. 2(b)]. During the ionization from 0 to +1, the DB
electrons could be partially compensated, which consequently
reduces electron screening and enhances Coulomb repulsion
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FIG. 3. Vibrational contribution to the temperature dependence of εα(q/q’) in GaN. (a) �Fph as a function of temperature for different
defects in GaN. (b) Relationship between �F̃ ph, |δVq→q′ | and m̄, which can be described by a general polynomial formula. At 800 K, a1=0.15,
a2=0.0017, b1 = −0.0263, b2 = 0.0006, c = −0.0019, and d = 0.4311.

between the neighboring Ga+3 ions around VN . As a result,
the large LLR effect around VN (Fig. S3 [44]) effectively
expands the local volume and partially compensates the ini-
tial local volume shrinkage induced by the decreased LEO.
Therefore, the δV0→+1 of VN is significantly smaller than that
of SiGa. In a similar way, the δV+1→+3 of VN can be further

reduced from −6 to −1 Å
3
, due to the further enhanced LLR

effect (Fig. S3 [44]).
Similar to SiGa, a negligible LLR also exists in acceptors

such as ZnGa, CN , CaGa, and CdGa (Fig. S4 [44]). As a result,

the increased LEO gives rise to a large δV0→−1 ∼+6 Å
3

for these acceptors. However, for BeGa, the smaller atomic
size of Be compared to Ga induces one broken ionic bond
around BeGa along the c direction, resulting in a DB hole
on the broken N bond [bottom inset, Fig. 2(b)] [45]. During
the ionization, the DB hole is fully compensated, resulting
in a strongly enhanced Coulomb attraction that restores the
Be–N bond along the c direction and shrinks the local volume
around BeGa (Fig. S5 [44]). This large local volume shrinkage
induced by the LLR effect largely compensates the initial lo-
cal volume expansion induced by the increased LEO. Hence,

compared to CdGa, the δV0→−1 of BeGa is reduced to +2.3 Å
3
.

The strength of LLR in MgGa (Fig. S6 [44]) is between BeGa

and CdGa, resulting in an intermediate δV0→−1 value between
that of BeGa and CdGa. Therefore, as shown in Fig. 2(b),
we conclude that the variable δVq→q′ in different defects are
mainly determined by the competing effect between LEO and
LLR.

Second, we explore the relationship between �Fph and
δVq→q′ in GaN. As shown in Fig. 3(a), the �Fph of both
donors and acceptors are positive and increase with increasing
temperature. Indeed, Fph includes two parts, i.e., �Fph = �Fzp

+ �F̃ ph. �Fzp is the contribution of zero-point vibrations
and mainly influenced by m̄, the larger the m̄, the smaller the
�Fzp whereas �F̃ ph determines the temperature dependence
of �Fph and we expect that |δVq→q′ | and m̄ are the two main
factors in determining �F̃ ph. Indeed, the �F̃ ph values of all

the defects at different temperatures can be well fitted by a
simple but unified formula given as

�F̃ ph = kBT (a1|δVq→q′ | + a2|δVq→q′ |2

+ b1m̄ + b2m̄2 + c|δVq→q′ |m̄ + d ). (5)

Figure 3(b) shows the case of T = 800 K. Similar behaviors
are observed at other temperatures but with different parame-
ter values (Fig. S7 [44]). Overall, it is found that the |δVq→q′ |
term is the dominant factor for �F̃ ph, and a larger |δVq→q′ |
usually gives a larger �F̃ ph. For example, the larger �F̃ ph of
SiGa compared to CdGa (116 versus 44 meV) is mainly due

to its larger |δVq→q′ | (∼12 versus ∼6 Å
3
). For defects with

similar |δVq→q′ | values, m̄ becomes important in determining
�F̃ ph, and a smaller m̄ gives a larger �F̃ ph. For example, com-
paring CaGa, ZnGa, and CdGa, which have a similar |δVq→q′ |

∼ 6 Å
3
, CaGa with smaller m̄ (19.2) than ZnGa (24.2) and

CdGa (33.6) has larger �F̃ ph (80 meV) compared to ZnGa

(47 meV) and CdGa (44 meV). We notice that the calculated
�F̃ ph value for CN at 600 K also agrees with a previous study
[46]. We would like to emphasize that although the fitting
parameters may vary if more different defects in GaN are
included or if the host is changed to another material, the
general formula expressed in Eq. (5) should be valid because
it is expected that δVq→q′ of defects play a dominated role
in determining the �F̃ ph. Moreover, as shown in Fig. 3(a),
it is interesting to see the competing effects from m̄ (mainly
affects �Fzp) and δVq→q′ (mainly determines �F̃ ph) that can
make the realigning of �Fph of different defects at different
temperatures. For example, at lower temperatures, BeGa has
a higher �Fph than MgGa due to smaller m̄; while at higher
temperatures, the increased �F̃ ph makes MgGa have higher
�Fph instead due to its larger δVq→q′ . Similar analysis are also
valid for the cases of VN (+1/+3) and ON (0/+1).

Combining the results of �Fel [Fig. 2(a)] and �Fph

[Fig. 3(a)], we arrive at the temperature-dependent εα(q/q’)
of defects in GaN. GaN is a type-I semiconductor [33],
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FIG. 4. Temperature dependence of εα(q/q’) in GaN. εa
α(q/q’) levels of several typical (a) donors and (b) acceptors in GaN as a function

of temperature. Calculated temperature-dependent CBM and VBM changes are also plotted in (a) and (b), respectively. (c) and (d) are
corresponding �εr

α(q/q’) for (a) and (b), respectively. Gray arrow indicates the trend of the sizes of |δVq→q′ |.

whose |�εCBM| [Fig. 4(a)] is noticeably larger than |�εVBM|
[Fig. 4(b)] at a given temperature, due to the different band-
edge orbital characters [33,47]. Importantly, the calculated
band gap of GaN as a function of temperature agrees well with
the experimental measurements [34], confirming the reliabil-
ity of our computational methods (Fig. S8 [44]).

As shown in Fig. 4(a), three typical donors, i.e., VN , SiGa,
and ON , are selected to demonstrate the temperature depen-
dence of εα(q/q’) for donors, to verify our proposed rules I(a)
and II(a). Interestingly, these donors exhibit quite different
temperature-dependent behaviors. Without the consideration
of �εVBM, the εa

α(q/q’) of all the donors become deeper as
the temperature increases, i.e., the higher the temperature, the
deeper the εa

α(q/q’). Surprisingly, the εa
α(0/+1) of SiGa and

VN , which have similar shallow levels at T = 0 K (with the
inclusion of �Fzp contribution), exhibit dramatically different
temperature dependencies, i.e., the change of �εa

α(0/+1) in
SiGa (−0.44 eV) in the range 0 < T < 1000 K is much
larger than that in VN (−0.28 eV), due to the significantly
larger |δV0→+1| in SiGa [Fig. 2(b)]. Interestingly, although the
εa
α(0/+1) of ON is much deeper than that of SiGa at 0 K,

they exhibit almost the same trend of �εa
α(0/+1) under dif-

ferent temperatures due to their similar |δV0→+1| (the slight
difference at high temperatures is caused by their different
m̄). Unexpectedly, the �εa

α(q/q’) of one defect can also ex-
hibit totally different behaviors under different charge-state
transitions. For example, �εa

α(0/+1) and �εa
α(+1/+3) for

VN are dramatically different because of their largely different
|δVq→q′ | [Fig. 2(b)]. The above observations, along with other
calculated donors (Fig. S9a [44]), confirm the proposed rule
I(a) on the relationship between |δVq→q′ | and �εa

α(q/q’) for
donors at different temperatures.

Combining εa
α(q/q’) with the calculated CBM bowing of

GaN, we obtain the εr
α(q/q’) of donors. Interestingly, as ex-

hibited in Fig. 4(c), εr
α(q/q’) can become either shallower

[εr
α(q/q’) > 0], deeper [εr

α(q/q’) < 0], or even unchanged
[εr

α(q/q’)∼0] for different donors in different temperature
regions. For examples, for SiGa and ON , �εr

α(0/+1) ≈ 0
in the range 0 < T < 500 K, due to the largest oppos-
ing effect between |�εCBM| and |�εa

α(0/+1)| [|�εCBM| ≈
|�εa

α(0/+1)|]; for T > 500 K, |�εCBM| < |�εa
α(0/+1)| gives

rise to �εr
α(0/+1) < 0, e.g., �εr

α(0/+1) of SiGa is −0.04 eV
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at T = 1000 K. For VN , |�εCBM| > |�εa
α(0/+1)| in the range

0 < T < 1000 K, resulting in �εr
α(q/q’) > 0. Among all the

�εr
α(q/q’), the largest value occurs in the �εr

α(+1/+3) of VN

(0.33 eV at T = 1000 K), due to the smallest opposing effect
between |�εCBM| and |�εa

α(+1/+3)|. The above observations,
along with other calculated donors (Fig. S9a [44]), confirm
our proposed rule II(a) that the �εr

α(q/q’) of donors in type-I
semiconductors is determined by the relative magnitude and
sign of �εa

α(q/q’) and �εCBM.
In Fig. 4(b), four typical acceptors, i.e., ZnGa, MgGa, BeGa,

and CdGa, are selected to demonstrate the temperature depen-
dence of εα(q/q’) for acceptors, to verify our proposed rules
I(b) and II(b). Holding large |δV0→−1|, the εa

α(0/−1) of CdGa

and ZnGa always becomes shallower [i.e., εa
α(0/−1) < 0] as

temperature increases. Interestingly, regardless of the signif-
icantly different εa

α(0/−1) values at 0 K for CdGa and ZnGa,
their �εa

α(0/−1) exhibit similar temperature dependences,
mostly due to their similar |δV0→−1| [Fig. 2(b)]. Again, their
slightly different �εa

α(0/−1) at high temperatures could be
due to their different m̄. Surprisingly, although the CdGa and
BeGa have close εa

α(0/−1) values at 0 K, their �εa
α(0/−1)

exhibit different (even opposite) temperature dependencies
due to their significantly different |δV0→−1| ]Fig. 2(b)]; with
small |δV0→−1|, the εa

α(0/−1) of BeGa becomes even deeper
when T > 400 K, swapping the relative positions of CdGa and
BeGa at T = 0 K and T = 1000 K. Since the |δV0→−1| of MgGa

is in between CdGa and BeGa, the �εa
α(0/−1) of MgGa is ∼ 0

in the range 300 < T < 700 K. These observations, along with
other calculated acceptors (Fig. S9b [44]), confirm rule I(b) on
the �εa

α(q/q’) of acceptors, especially the critical role played
by |δVq→q′ |. We emphasize that the values of |�εa

α(q/q’)| for
acceptors are usually much smaller than those for donors,
due to the large canceling effect between �Fel and �Fph for
acceptors.

Combining εa
α(q/q’) with the calculated VBM bowing of

GaN, we can obtain the εr
α(q/q’) of acceptors. Overall, as

shown in Fig. 4(d), the εr
α(0/−1) of all acceptors in GaN

becomes shallower [i.e., �εr
α(0/−1) < 0]. For CdGa and ZnGa,

the synergistic effect between �εa
α(0/−1) and �εVBM results

in a large value of �εr
α(0/−1), e.g., �εr

α(0/−1) =−0.15 eV at
T = 1000 K. For MgGa with �εa

α(0/−1) ∼ 0, its �εr
α(0/−1)

closely follows the trend of �εVBM. For BeGa, the oppos-
ing effect between �εa

α(0/−1) and �εVBM leads to a small
�εr

α(0/−1). The above observations, along with other cal-
culated acceptors (Fig. S9b [44]), confirm our proposed rule
II(b) that the εr

α(q/q’) of acceptors in type-I semiconductors,
depending on the size of |δVq→q′ |, can exhibit either synergis-
tic or opposing effects between εa

α(q/q’) and �εVBM.

III. OUTLOOK AND CONCLUSION

We emphasize that although the overall sizes of |�εα(q/q’)|
are not huge in GaN (generally <0.4 eV), we expect that
the temperature effect, obeying the same rules as we have
developed, could be much more noticeable in many other sys-
tems, e.g., superhard semiconductors (e.g., diamond, in which
defects play a key role for realizing quantum bits) or organic-
inorganic hybrid perovskites (e.g., MAPbI3, in which defects
play a key role for limiting their solar efficiencies), in which
the phonon vibrations or band-edge changes are much more

significant than those in GaN. Since the carrier concentrations
and defect-mediated nonradiative carrier recombinations in
semiconductors are very sensitive to the positions of εα(q/q’)
inside the band gap that are temperature dependent, our theory
may also be applied to reexamine or explain many existing
puzzles on the disagreements between experimental measure-
ments and static first-principles calculations in the future.

In conclusion, we have derived the basic formulas and
consequently established two fundamental rules for the
temperature dependence of εα(q/q’) for both donors and
acceptors in semiconductors, a question that has remained
unanswered for decades. As we demonstrated in GaN, the
temperature-driven changes of εα(q/q’) for different de-
fects can be rather diverse, i.e., they can become shallower,
deeper, or stay unchanged. The ultimate behavior is mainly
determined by the synergistic or opposing effects between
free-energy corrections and band-edge changes. In particular,
we discover a previously ignored physical quantity, δVq→q′ ,
that plays an unexpectedly central role in determining the
temperature evolution of εα(q/q’). Generally, these basic for-
mulas and fundamental rules may potentially be applied to
design novel semiconductor devices operated under high or
varying temperatures.
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APPENDIX A: DERIVATION OF εα(q/q′) AT FINITE
TEMPERATURE

Without the inclusion of temperature effects, the formation
energy of a defect α in charge state q is defined as [12–14]

�Hf (α, q) = E (α, q) − E (host) +
∑

niE (i)

+
∑

niμi + qεVBM(host) + qEF . (A1)

E(α,q) is the total energy of the supercell with defect α in
charge state q whereas E(host) is the total energy of perfect
host without defect or impurity. E(i) is the energy of the
elemental constituent i at its elemental monomeric phases and
μi is its chemical potential refer to E(i). ni is the number of
atoms exchanged with the external environment during the
formation of defects for element i, and the charge state q is
the number of electrons transferred from the supercell to the
reservoirs. εVBM(host) is the VBM of the host material and EF

is the Fermi energy referring to εVBM(host).
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The εα(q/q’) is the Fermi level at which the charge state q
has the same formation energy with q’:

εα (q/q′)w.o.T = E (α, q′) − E (α, q)

q − q′ − εVBM(host). (A2)

With the inclusion of temperature effects, the �H f (α,q)
in Eq. (A1) is replaced by the Gibbs free energy �G f (α,q),
and the E(α,q) [E(α,q’)] is replaced by free energy F(α,q)
[F(α,q’)],

�G f (α, q)[P, T ] = F (α, q)[V, T ] − F (host)[Vhost, T ]

+ (V − Vhost )P +
∑

niF (i)[Vi, T ]

+
∑

niμi[P, T ] + qεVBM(host)[Vhost, T ]

+ qEF [V, T ], (A3)

where P and T are the pressure and temperature, respectively.
V and Vhost are the volumes of the system with defects and the
host system under pressure P, respectively. In our case of no
external pressure (P = 0), Eq. (A3) can be written as

�G f (α, q)[P, T ] = F (α, q)[V, T ] − F (host)[V, T ]

+
∑

niF (i)[Vi, T ]

+
∑

niμi[P, T ] + qεVBM(host)[V, T ]

+ qEF [V, T ]. (A4)

Accordingly, with the inclusion of temperature effects,
εα(q/q’) is given by

εα (q/q′)[V, T ] = F (α, q′)[V, T ] − F (α, q)[V, T ]

q − q′

− εVBM(host)[V, T ]. (A5)

The free energy F can be expanded around the equilibrium
position as

F ({RI}) = F0 + 1

2

∑
k,l

ukul

[
∂2F

∂Rk∂Rl

]
{R0

I }
+ O(u3), (A6)

where RI are the atomic coordinates of atom I, and R0
I are the

equilibrium position. uk , defined as Rk-R0
k , are the atomic dis-

placements of atom k from the equilibrium positions. The first
and second terms are the electron and phonon free energies,
respectively. Accordingly, F0 includes two parts, E (the total
energy of the system without the consideration of temperature
effects) and Fel (the corrections of the free energy induced by
the electron contribution). Ignoring high order terms, we have

F [V, T ] = E + F el[V, T ] + F ph[V, T ], (A7)

where Fph is the correction of the free energy induced by the
phonon vibration.

Under the QHA, Fel can be written as [13,29,30]

F el[V, T ] = E th[V, T ] + E el[V, T ] − T S el[V, T ]. (A8)

Here, Eth is purely the internal energies of the expanded lattice
at finite temperature. The latter two terms come from the
Fermi-Dirac distribution of the electronic eigenstates at finite
temperature, which slightly affect the occupations of each

eigenstate. Accordingly, Eel is the energy correction of eigen-
value summation induced by temperature dependence of the
occupation of KS energy levels from Fermi-Dirac distribution
and Sel is the entropy induced by the disorder of the partial
occupation. For metal, because the density of states (DOS)
is nonzero at the Fermi level, the temperature dependence
of the occupation of eigenstates can be significant and the
contributions from Eel and Sel are important. On the contrary,
for semiconductors (especially WBG semiconductors), the
temperature dependence of the occupation of eigenstates is
negligible and so are the contributions from Eel and Sel, as also
verified in our calculations [Fig. 2(a)]. Therefore, we focus on
the Eth term in Fel.

Under the QHA, Fph can be written as [32]

F ph =
∑

i

[
1

2
h̄ωi + kBT ln

{
1 − exp

(
− h̄ωi

kBT

)}]
, (A9)

where h̄, ωi, and kB are the reduced Planck’s constant, phonon
eigenfrequency, and Boltzmann constant, respectively.

Combining Eq. (A6) to Eq. (A9), we can obtain the
εα(q/q’) of defects under different temperatures:

εα (q/q′)[V, T ] = εα (q/q′)w.o.T +�F el[V, T ]+�F ph[V, T ]

q − q′

− �εVBM(host )[V, T ]. (A10)

The second term of Eq. (A10) represents the correction on
the free-energy differences between the q and q’ config-
urations induced by the electronic (�Fel) and vibrational
(�Fph) contributions. The third term of Eq. (A10) repre-
sents the correction on the VBM energy position induced by
thermal expansion and electron-phonon coupling (�εVBM =
�εth

VBM + �ε
ph
VBM).

Without consideration of the external pressure, volume
expansion induced by rising temperature can be described by
the thermal expansion coefficient. From the definition of the
mean volumetric thermal expansion coefficient, we can obtain
that T and V are correlated by [48]

V = ϕV T V0 + V0, (A11)

where ϕV is the mean volumetric thermal expansion coeffi-
cient and V0 is the equilibrium volume of the system at 0 K.
Thus, in the case of no external pressure, we can keep T as
the only variable in our formula, and the εα(q/q’) at a finite
temperature becomes

εα (q/q′)[T ] = εα (q/q′)w.o.T + �F el[T ] + �F ph[T ]

q − q′

− �εVBM(host)[T ]. (A12)

At a given temperature, �Fel(�Eth) and �εth
VBM can

be directly calculated via first-principles calculations under
hydrostatic-stress conditions [41,42] (it is noted that the lat-
tice constant after thermal expansion is determined by the
experiment thermal expansion coefficients of GaN [43]), �Fph

can be determined through Eq. (A9) and the calculations
of phonon eigenfrequencies for charge states q and q’. Fi-
nally, �ε

ph
VBM can be calculated using the finite displacement

approach based on thermal lines [49,50]. Unlike the con-
ventional finite-displacement approach that evaluates each
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phonon separately and sum over all phonons, this stochastic
approach considers all phonon modes at the same time, and
the electron-phonon interaction can be calculated accurately
and efficiently.

APPENDIX B: DERIVATION OF �Eth

Under the QHA, the thermal expansion induced energy
correction Eth can be treated as arising from strain [41,42].
Therefore, the corrections on the total energy differences be-
tween the system with and without defect α induced by the
thermal expansion can be written as [28]

E th(α, q)[V ] − E th(host)[V ]

= −2γ0 �Vq[V − V0(host)] + �γ [V − V0(host)]2. (B1)

γ 0 is the elastic constant of the host and �γ is the change
of γ0 induced by a defect α in charge state q. �Vq =
V0(α,q) − V0(host) is the volume change induced by the
defect α at 0 K, in which V0(host) and V0(α,q) are the
equilibrium volume of the system without and with defect
at 0 K.

We assume that in a large system, a single defect cannot
strongly influence the elastic constant, i.e., �γ = 0 as a first-
order approximation, and �Eth between the two charge states
q and q’ with the same defect α is

�E th(α, q/q′)[V ] = E th(α, q′)[V ] − E th(α, q)[V ]

= −2γ0 [V − V0(host)] δVq→q′ , (B2)

where δVq→q′ = V0(α,q’)−V0(α,q) is the volume change
induced by defect α at 0 K when the charge-state changes
from q to q’. Combining Eq. (A11), we have

�E th = −2γ0 [V − V0(host)] δVq→q′

= −2γ0 ϕV T V0(host) δVq→q′ . (B3)

APPENDIX C: DERIVATION OF �Fph

The phonon contribution to the free energy, Fph, can be
described by Eq. (A9). Considering the first-order approxi-
mation of the Taylor expansion ex = 1+x+x2/2!+x3/3!+...,
we have

F ph[T ] =
∑

i

[
1

2
h̄ωi + kBT ln

(
h̄ωi

kBT

)]
. (C1)

The �Fph between the two charge states q and q’ with the
same defect α is given by [two states with the same defect
have the same number of phonon (i)]

�F ph(α, q/q′)[T ]

= F ph(α, q′)[T ] − F ph(α, q)[T ]

=
∑

i

[
1

2
h̄ωi(α, q′) + kBT ln

(
h̄ωi(α, q′)

kBT

)]

−
∑

i

[
1

2
h̄ωi(α, q) + kBT ln

(
h̄ωi(α, q)

kBT

)]

=
∑

i

{
1

2
h̄[ωi(α, q′) − ωi(α, q)] + kBT ln

[
ωi(α, q′)
ωi(α, q)

]}
.

(C2)

Defining �ωi = ωi(α,q’)-ωi(α,q) and considering the
first-order approximation of the Taylor expansion ln(1+x)=x-
x2/2+x3/3-..., we have

�F ph(α, q/q′)[T ]

=
∑

i

{
1

2
h̄�ωi + kBT ln

[
1 + �ωi

ωi(α, q)

]}

=
∑

i

[
1

2
h̄�ωi + kBT

�ωi

ωi(α, q)

]
. (C3)

APPENDIX D: COMPUTATIONAL METHODS

1. Parameters of DFT calculations

Within the framework of density functional theory, the
first-principles calculations are performed using the VI-
ENNA AB INITIO SIMULATION PACKAGE [51–54]. The projector
augmented wave method [55] has been employed to de-
scribe the ion-electron interaction, and the atomic coordinates
have been relaxed until the atomic forces are less than
0.01 eV/Å. The Heyd-Scuseria-Ernzerhof (HSE06) hybrid
functional [56] with the Hartree-Fock exchange parameter
α = 0.31 is adopted. The optimized lattice constants (a =
3.20 Å and c = 5.20 Å) and the calculated band gap (3.49 eV)
of GaN are in good agreement with the experimental values
[57,58]. A 96-atom supercell is selected and the spin polar-
ization is considered for all the defects. A 520 eV plane-wave
basis cutoff, a 
-centered 2 ×2 × 2 Monkhorst-Pack k mesh,
and a 10−5 eV convergence criteria for the total energy are
used in our calculations.

For the convergence tests of the phonon calculations, tak-
ing BeGa as an example, the �Fph of BeGa with different
parameters are calculated. To reduce the computational cost,
the Perdew-Burke-Ernzerhof functional [59] is adopted for
the tests. A plane-wave basis cutoff of 520 eV, a 
-centered
Monkhorst-Pack k mesh of 2 × 2× 2 (for a 96 atoms super-
cell), and a convergence criterion of 10−7 eV for the total
energy of the electronic self-consistent iterations are selected
for the phonon-related calculations. See the test results in
Fig. S10 [44]. Moreover, the good agreement of band gap
between calculations and experiments, as shown in Fig. S8
[44], demonstrates that �εph is also well converged under
these parameters.

2. Supercell size and shape

The convergence tests of the supercell size and shape are
also done to make sure the finite-size error can be largely
avoided. Different supercell sizes from 72 to 128 atoms and
within hexagonal or orthorhombic cells are tested. �Fph of
these defects have been converged with a negligible error for
supercells larger than 96 atoms, regardless of the shape, in
agreement with previous calculations [46]. Thus, we selected
the 96-atom orthorhombic supercell.
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3. Lattice constants in phonon-related calculations

Strictly speaking, GaN crystal expands as temperature
increases, so the calculations of phonon modes at finite tem-
perature should be performed based on the expanded GaN
lattice. Nonetheless, we find that using the lattice constant de-
cided at 0 K only introduces negligible errors for the phonon
modes and �Fph, shown as the following test.

Figure S11 [44] shows the DOS of ωi (DOSphω) for BeGa

using the lattice parameters at 0 K and 800 K, respectively.
In both Be0

Ga and Be−1
Ga cases, the DOS of lower frequency

states (below the dash line) are almost the same for different
temperatures, whereas the higher frequency states (above the
dash line) slightly downshift in DOSphω as the lattice expands
from 0 K to 800 K. This suggests the impact of thermal
expansion on �Fph can be neglected because of the same
behavior of DOS with different charge states. Our calculation
shows that �Fph has only 2 meV error when lattice thermal
expansion is not considered at 800 K for BeGa in GaN. Ac-
cording to these tests, we choose the lattice constants of 0 K
and neglect the thermal expansion during our phonon-related
calculations.
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