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We study the ground state properties of the one-dimensional extended Hubbard model at half filling from
the perspective of its particle reduced density matrix. We focus on the reduced density matrix of two fermions
and perform an analysis of its quantum correlations and coherence along the different phases of the model.
Specifically, we study its (i) entanglement entropy, (ii) �1 norm of coherence, (iii) irreducible two-body cumulant
matrix, and (iv) entanglement spectrum. Our results show that these different properties are complementary to
each other depending on the phase of the system, exhibiting peculiar behaviors such as discontinuities and
maximum or minimum values at the quantum phase transitions, thus providing a qualitative view of the phase
diagram of the model. In particular, in the superconducting region, we obtain that the entanglement spectrum
signals a transition from a dominant singlet (SS) to triplet (TS) pairing ordering in the system. Moreover, from
the analysis of the dominant eigenvector in the reduced state, we can relate the SS-TS transition to the spatial
separation between the fermion pairs in the two different pairing orderings. The entanglement gap is also able to
highlight a transition—at a few-body level—in the ground state wave function, not discussed previously in the
literature. While other quantifiers are less sensitive to few-body defects in the wave function, the entanglement
gap can work as a magnifying glass for these, capturing such small fluctuations.
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I. INTRODUCTION

A wide range of condensed matter phases can emerge
when the constituents of the system are brought together
and allowed to interact with each other. Due to the many-
body interactions among its constituents, when the number
of constituents is large, the system condenses into a collec-
tive behavior with specific macroscopic properties [1]. The
most familiar examples include magnetism, arising from the
exchange interaction between local magnetic moments; solids
and liquids, which arise from the electromagnetic forces be-
tween atoms; superconductors or superfluids, arising from the
interaction between fermions or bosons; as well as more un-
conventional ones such as topological phases, emerging from
nonlocal correlations among its constituents [2].

There are different ways to analyze many-body phases.
In conventional phases one can usually rely on the structure
of its local correlations, and corresponding order parameters,
which provide information about the macroscopic properties
of the system. In recent years, different approaches have also
been put forward, relying on interesting connections between
quantum information and condensed matter theories. Much
activity at the border of these fields and many interesting
concepts have been addressed [3]. In particular, quantum
information insights about many-body entanglement have
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proved a powerful tool in order to study and characterize
many-body systems, giving a unique perspective in our un-
derstanding of condensed matter phases [4].

The entanglement between the constituents of the system
is shown to be tightly connected to the characteristics of the
different phases a model can support. When the system is
driven along a quantum phase transition, the entanglement is
expected to show peculiar critical behaviors, allowing for a
qualitative display of the transition and a deeper characteriza-
tion of the many-body wave function [3]. However, quantum
correlations and many-body entanglement of a system can
appear in different forms among its constituents, and usually
it is a very hard task to highlight all of its different intricate
structures as well as a proper quantification.

The usual approach deals with the entanglement between
two partitions of the system, easily quantified by the von
Neumann entropy of the reduced density matrix. More re-
cently it was realized that not only the von Neumann entropy
of the reduced density matrix has important information
about the phase, but also its spectral properties; i.e., the
eigenvalues of the reduced density matrix—usually called
the entanglement spectrum—can host valuable and more de-
tailed information about the phase [5–7]—for example, in
unconventional topological phases whose entanglement spec-
trum becomes degenerate due to the presence of non-Abelian
edge excitations in the system. Apart from bipartite entan-
glement, different quantum correlation quantifiers were also
put forward [3,8–10], including the analysis of multipartite
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entanglement [3,11–15], pairwise concurrences and quantum
discord [8,16–20], particle entanglement [21–29], and co-
herences [10,30], among others [31,32]. In a general form,
these studies proved very fruitful highlighting how different
facets of the correlations shared between the microscopic
constituents can be useful and complementary to each other
for a complete characterization of quantum systems and their
phases of matter. We shall explore one of these facets in this
work, specifically, the particle correlations shared among its
constituents.

In this work, we thus study the one-dimensional extended
Hubbard model (EHM) [33] within the perspective of its
n-particle reduced density matrices (n-particle RDMs). We
focus on the n = 2 case, corresponding to the two-body re-
duced density matrices. We analyze the quantum correlations
and many-body entanglement present in the reduced den-
sity matrices among the different phases of the model and
across its quantum phase transitions. Most studies of the
EHM in the quantum information context have dealt with the
quantum correlations among the modes of the system [34–43].
Here modes can be any defined set of single-particle degrees
of freedom, as, e.g., the spatial localized degrees along the
sites of the chain, or (spatially delocalized) momentum de-
grees of freedom for single particles. It was first observed by
Gu et al. [34] that the entanglement of a single site with the
rest of the chain is sensitive to three main symmetry-broken
phases of the model, namely the charge-density wave (CDW),
spin-density wave (SDW), and phase separation (PS). Further
investigation considering the entanglement of spatial blocks
with � sites and the rest of the chain [35] showed it to be
even more sensitive to other phases, as superconducting and
bond-ordered phases. In a previous work [21], we started our
investigations within this different perspective, i.e., analyzing
the quantum correlation of the particle reduced density ma-
trix. Our results focused on the case of n = 1, showing that
the von Neumann entropy of the 1-particle RDM (usually
called entanglement of particles or fermionic entanglement
[44–65]) is useful for the analysis of the model, capturing
its main phase transitions except for subtle transitions be-
tween different superconducting forms, and the bond-order
wave phase. Therefore, in this work we take a step beyond
the simplest n = 1 case, considering the more general case
with n = 2, which contains further information about the
correlations and properties of the system [66]. We perform
a thorough analysis of the RDM properties using different
many-body quantum correlation tools. Specifically, we ana-
lyze not only its (i) von Neumann entropy, quantifying the
entanglement of these particles with the rest of the system,
but also its (ii) quantum coherence, as a direct manifestation
of the quantum superposition principle in the reduced states,
(iii) entanglement spectrum and entanglement gap, providing
more detailed information of the spectrum structure on the
different phases, and (iv) its 2-body cumulant, which is a gen-
uinely two-body correlation matrix, i.e., cannot be described
from its 1-particle RDM. In a general form, we obtained that
these quantifiers are sensitive to most phases of the model,
showing peculiar behavior at their quantum phase transitions.
Depending on the specific phase or quantum phase transitions
under scrutiny, the analysis of these quantifiers can be com-
plementary, providing different facets of the quantum system

[e.g., different forms of superconductivity in the model are
not easily perceived from quantifiers (i)-(ii)-(iii)—nor from its
simpler 1-particle RDM—while the entanglement spectrum
can discriminate it].

The paper is organized as follows. In Sec. II we intro-
duce the one-dimensional extended Hubbard model, its phase
diagram at half filling, and the numerical techniques based
on matrix product states (MPSs) used in order to obtain the
ground states and correlation functions. In Sec. III we review
the definition of n-particle reduced density matrices and their
properties. In Sec. IV we introduce the quantum correlation
and entanglement quantifiers studied in this work, as well as
the concept of entanglement spectrum and entanglement gap.
In Sec. V we present our results. We first discuss the general
qualitative behavior of the quantifiers in the whole phase
diagram, and then perform a deeper analysis of finite-size
scalings and spectral properties along specific regions in the
model. We conclude in Sec. VI.

II. EXTENDED HUBBARD MODEL

In this section we review the main properties of the one-
dimensional extended Hubbard model. All of our studies are
focused on the half-filling case. The reader familiar with the
model might skip to the next section.

The EHM model is a generalization of the usual Hubbard
model [33,67], encompassing broader interactions between
the fermionic particles, such as an intersite interaction, thus
supporting a richer phase diagram. Precisely, the model is
described as

HEHM = −t
L∑

j=1

∑
σ=↑,↓

(â†
j,σ â j+1,σ + â†

j+1,σ a j,σ )

+U
L∑

j=1

n̂ j↑n̂ j↓ + V
L∑

j=1

n̂ j n̂ j+1, (1)

where L is the lattice size, â†
j,σ and â j,σ are creation and

annihilation operators, respectively, of a fermion with spin
σ =↑,↓ at site j, n̂ j,σ = â†

j,σ a j,σ , n̂ j = n̂ j,↑ + n̂ j,↓. The hop-
ping (tunneling) between neighbor sites is parametrized by t ,
while the on-site and intersite interactions are given by U and
V , respectively. We set t = 1 as defining our energy scale.

Many efforts have been devoted to the investigation of
the phase diagram of the EHM at half filling, with methods
ranging from analytical, perturbative approximations based
on bosonization, as well as numerical ones [68–80]. Despite
the apparent simplicity of the model it is predicted to exhibit
a very rich phase diagram. The model can support several
distinct phases, namely, spin-density wave (SDW), singlet
(SS) and triplet (TS) superconductors, phase separation (PS),
charge-density wave (CDW), and bond-order wave (BOW);
see Fig. 1 for a sketch of the phase diagram.

In the strong-coupling limits, the characterization of its
different phases is intuitive. In the case of strong repulsive
on-site interaction, U > 0, U � V , the fermions avoid double
occupation and due to the hopping an antiferromagnetic or-
dering between neighbor sites is formed, generating a periodic
modulation of spins along the chain, the so-called spin-density
wave (SDW). The presence of such a phase can be captured
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FIG. 1. Schematic picture for the phase diagram of the model,
highlighting its different phases and quantum phase transitions as
discussed in the literature.

by the analysis of the ground state spin correlations 〈σ̂ z
j σ̂

z
� 〉,

where σ z
j = 1

2 (n̂ j↑ − n̂ j↓).
In the opposite case of a strong repulsive intersite inter-

action, V > 0, V � U , particles avoid occupying neighbor
sites, tending in this way to occupy the same sites. A periodic
modulation of charge is now formed, creating a charge-density
wave pattern captured by density-density correlations 〈n̂ j n̂�〉
in the ground state wave function.

In the case of strong attractive interactions (U,V < 0 or
U > 0, V < 0 with |V | � |U |), the particles tend to cluster
together and the ground state becomes inhomogeneous with
different average charge densities in distinct spatial regions.
Such a phase is called phase separation (PS) and can be ob-
served from the analysis of the charge profile along the chain.

In the weak-coupling limit the analysis becomes subtler,
since perturbative arguments might not be accurate and in-
tuition might fail. For small attractive intersite interactions
(V < 0), superconducting phases are expected to appear, char-
acterized by the pairing of fermions which could be observed
from pairing correlations. The fermions can be paired in dif-
ferent forms, with the possibility of singlet or triplet pairings
to occur. One finds predicted [68,69] a singlet supercondutor
(SS) for approximately U � 2V , while a triplet superconduc-
tor (TS) for U � 2V .

The last phase in the model is the controversial bond-
order wave (BOW). For small to intermediate values of
positive U and V , in a narrow strip between CDW and SDW
phases, one finds predicted [69–73,75,76,80] the appearance
of a phase exhibiting alternating strengths for the expec-
tation value of the kinetic energy operator on the bonds,
characterized by the order parameter 〈B̂ j, j+1B̂�,�+1〉, where
B̂m,m+1 = ∑

σ (â†
m,σ am+1,σ + H.c.) is the kinetic energy op-

erator associated with the mth bond. Such a phase should
appear from (i) a continuous CDW-BOW transition, and (ii) a
Berezinskii-Kosterlitz-Thouless (BKT) transition from BOW
to SDW. While from one side the CDW-BOW phase boundary
can be well resolved, described by a standard second-order
phase transition, the BOW-SDW boundary is more difficult to
locate precisely, since it involves a BKT transition. The BKT

transition line remains a challenge to delineate and is still
subject to debate [70–72,75,76].

Numerical methods. In order to obtain numerically the
ground states of the EHM and its particle reduced density
matrices, we use the matrix product state (MPS) ansatz, which
can be a faithful representation of systems in one dimension
with local interactions. This method has established itself as
a leading one for the simulation of one-dimensional systems,
achieving unprecedented precision in the description of static,
dynamic, and thermodynamic properties for these systems,
and quickly becoming the method of choice for numerical
studies. We refer the reader to Ref. [81] for a good review.
The method can be accomplished by mapping the fermionic
model to a spin-half system, i.e., representing the fermionic
operators with a Jordan-Wigner transformation [82] that
preserves the anticommutation relations and thus recovering
the usual tensor product Hilbert space structure needed for
the implementation of MPSs. The variational algorithm to
minimize the energy was performed using density matrix
renormalization group (DMRG), which is standard in such
a task [83]. In our calculations we used 20 sweeps in the
minimization process, which showed enough for an energy
convergence of the order of at least O(10−8) and up to
O(10−16), depending on the region of the phase diagram
and the system size. We also implemented a fast and effi-
cient algorithm to calculate correlators of fourth order, needed
to construct the 2-particle RDMs. The MPS representation
accuracy was controlled by two parameters, χ and D, corre-
sponding to the minimum allowed singular value permitted
and the bond link (size of the virtual dimension of the ma-
trices), respectively. Whereas we use an adaptive algorithm
which increases the bond link as needed, χ ≈ O(10−20) is the
minimum singular value considered and D = 2000. All quan-
tities computed in this article have not significantly changed
for larger bond links (D ∼ 4000), indicating a very good pre-
cision to the calculations [e.g., the entanglement gap, which is
the subtler quantity under study, has changed its value only at
the order of O(10−12) thus validating a good precision]. We
consider open boundary conditions in the model because they
are best suited to the MPS formalism and finite-size scaling
analysis.

III. N-PARTICLE REDUCED DENSITY MATRIX

In this section we review the definition and some properties
of particle reduced density matrices. In a system of N indis-
tinguishable fermions, described by the set of anticommuting
creation (and annihilation) operators {â†

i,σ } ({âi,σ }), where i =
1, . . . , L stands for the site index and σ =↑,↓ for the spin
index, a pure state can always be expanded in the following
form,

|ψ〉 =
L∑

i1...iN =1

∑
σ1...σN =↑,↓

ωi1σ1...iN σ1 a†
i1,σ1

. . . a†
iN ,σN

|vac〉, (2)

where the coefficients ωi1σ1...iN σN are antisymmetric in all in-
dices, satisfy the normalization condition of the state, and
|vac〉 is the vacuum state. We can compute the n-particle
reduced density matrix ρ̂n (1 � n � N − 1) of n fermions per-
forming the partial trace over the rest of the N − n fermions
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as follows,

ρ̂n = Tr(n+1,...,N )(|ψ〉〈ψ |). (3)

The partial trace defines a bipartition n : N − n between n
fermions and the rest of the system. Usually the calculation
of the particle reduced density matrix using the partial trace
described above can be cumbersome. We can, however, obtain
it in a different way, which will become useful for our pur-
poses. Instead of taking the partial trace one can compute all
n-body correlators, which correspond to the matrix elements
of ρ̂n, and in this way reconstruct the reduced state as in
a tomographic process. In other words, the reduced density
matrices of one and two fermions have the following entries:

[ρ̂1](iσi ),( jσ j ) =
(

N

1

)−1

〈ψ |a†
iσi

a jσ j |ψ〉, (4)

[ρ̂2](iσi jσ j ),(kσk�σ� ) =
(

N

2

)−1

〈ψ |a†
iσi

a†
jσ j

akσk a�σ�
|ψ〉, (5)

where
(N

M

)
is the binomial coefficient. One can also obtain the

1-particle reduced density matrix from an integration of the
2-particle reduced density matrix,

[ρ̂1](iσi ),( jσ j ) = N
∑
k,σk

[ρ̂2](iσikσk ),(kσk jσ j ) (6)

with N = 1/2 the normalization constant. In general, an
n-particle RDM can always be obtained from its higher order
(k > n)-particle RDM from a proper integration over its ten-
sor elements. The inverse is obviously not true. It is important
to recall, however, that the elements of higher order (k > n)-
particle RDMs are partially related to the elements of their
lower orders, apart from their cumulants [84]. Specifically, for
the case of the 2-particle RDM, we have that its elements can
be expanded in the following form,(

N

2

)
[ρ̂2](iσi jσ j ),(kσk�σ� ) = N2[ρ̂1](iσi ),( jσ j )[ρ̂1](kσk ),(�σ� )

−N2[ρ̂1](iσi ),(�σ� )[ρ̂1](kσk ),( jσ j ) + [�̂2](iσi jσ j ),(kσk�σ� ), (7)

where �̂2 is the 2nd-order cumulant, corresponding to the
elements of ρ̂2 that cannot be obtained from lower orders ρn<2.
We can see that cumulants are Hermitian matrices.

IV. QUANTUM CORRELATIONS, ENTANGLEMENT,
AND COHERENCE

In this section we review the definition and properties of
the quantum correlations and entanglement quantifiers studied
in the paper.

Quantum correlations. Perhaps the most familiar quantum
information concept which has proved a powerful tool in the
study of quantum correlations in many-body system is the
well known von Neumann entropy. Given a pure state, the von
Neumann entropy of a reduced density matrix has information
about the quantum correlations between the partition and the
rest of the system. In systems of indistinguishable particles, a
partition of the system could be defined in different forms:
(i) a partition between two sets A and B of modes of the
system, performed through partial trace over one of the sets,
or (ii) a partition between the n and N − n particles of the
system, performed through the partial trace of N − n particles

on the state. The first approach provides information about the
quantum correlations between the modes of the system, while
the second one concerns the quantum correlations among
the particles [44–60,85,86]. These two notions of quantum
correlations are complementary, and the use of one or the
other depends on the particular situation under scrutiny. For
example, if one is interested in certain quantum information
protocols a description in terms of modes might be more
appropriate, while correlations in eigenstates of a many-body
Hamiltonian could be more naturally described by its particle
perspective. In this work we deal exclusively with the particle
framework.

We define in this way the quantum correlations between
the set of n and N − n particles in a pure state as

Qn(|ψ〉〈ψ |) = S(ρ̂n), (8)

where S(ρ̂n) = −Tr[ρ̂n ln(ρ̂n)] is the von Neumann entropy
of the n-particle reduced density matrix. It is worth making
a few observations. Since the system is composed of indis-
tinguishable fermions, due to the antisymmetrization of the
wave function, Qn is never null. However, for states described
by a single Slater determinant the quantum correlations have
a minimum given by Qn,min = ln

(N
n

)
, while Qn is larger for

any state which cannot be described by a single Slater de-
terminant. It leads us to the conclusion that the minimum
Qn,min corresponds simply to the exchange correlations due to
the antisymmetrization postulate, the difference Qn − Qn,min

being the significant term.
One can show [58,87] that the von Neumann entropy of

the reduced state, and consequently our quantum correlation
quantifier, is bounded as follows:

ln

(
N

n

)
� Qn(|ψ〉〈ψ |) � ln

(
d

n

)
, (9)

where d is the number of single-particle degrees of freedom in
the system (d = 2L in our system). The minimum is reached
if and only if the pure state |ψ〉 can be described by a single
Slater determinant.

Quantum coherence. In quantum mechanics the coherence
of a state is a direct manifestation of the quantum superposi-
tion principle. Despite its fundamental importance in quantum
theory, only more recently its proper quantification and char-
acterization have been formalized [88], and a few different
measures of quantum coherence were proposed. In this work
we concentrate on the analysis of the �1 norm of coherence,
defined by the integration of the absolute value of the off-
diagonal matrix elements,

C[n]
�1

(ρ̂n) =
∑
i 	= j

|(ρ̂n)i, j |. (10)

We notice that coherence quantifiers are basis dependent.
Entanglement spectrum. The entropy of the reduced

density matrix, as discussed previously, provides useful in-
formation about the correlation among the constituents of the
system. It was realized however that further insights about
the many-body properties of the system can be obtained from
its spectral structures. Specifically, given the reduced density
matrix ρ̂n, it can be diagonalized as ρ̂n = ∑

i e−ξi |i〉〈i|, with
ξi � ξi+1. Writing ρ̂n = e−Ĥn , we see that ξi and |i〉〈i| can
be regarded as eigenvalues and eigenvectors of a fictitious
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FIG. 2. Results for the two-body reduced density matrix in a system at half filling (N = L fermions) along the full phase diagram of the
model. We show in top-left panel the quantum correlations Q2, in top-right panel irreducible two-body correlations D2, in bottom-left panel
coherence C2, and in bottom-right panel the entanglement gap 
2. Except for the bottom-right panel (entanglement gap 
2), we consider a
system with L = 16 sites. In the entanglement gap panel we consider a system with L = 10 sites, and highlight in the inset its behavior for
larger L = 16 sites across the superconducting region. We see that all these quantities capture most of the quantum phase transitions of the
model, e.g., displaying discontinuities at 1st-order transitions and continuous maximum/minimum values at 2nd-order transitions.

n-body Hamiltonian Ĥn. The entanglement spectrum {ξi} is
in this way interpreted as the eigenvalues associated to the
parent Hamiltonian Ĥn. Many efforts have been devoted to
studying the entanglement spectrum in spatial partitions of
ground state wave functions, leading, e.g., to a better under-
standing of bulk-edge properties in topological insulators and
superconductors [5–7].

We study in this article the entanglement spectrum in par-
ticle partitions, a subject much less explored so far [24–26]
(see also [89] for momentum partitions or [28,90] for hybrid
spatial/particle partition approaches), focusing on its entan-
glement gap,


n = ξ2 − ξ1. (11)

and analysis of the dominant eigenvector of the reduced state,
i.e., the one corresponding to the largest eigenvalue.

Cumulant matrix. The cumulant matrix �̂2, as defined
in Eq. (7), contains the two-particle information that cannot
be obtained from the single-particle reduced density matrix
(ρ̂1), or in other words, from single-particle observables. It
describes in this way fundamental two-particle correlations in
ρ̂2, also called irreducible two-particle correlations [91]. We

study the contribution of such correlations from the �1 norm
of the cumulant matrix, defining the n-particle irreducible
correlation as follows,

Dn ≡ ||(�̂n)||1 =
∑

i

|λi|, (12)

with λi the eigenvalues of the cumulant matrix. It is worth
noting that for states described by a single Slater determinant,
cumulants of any order vanish [91], �̂n = 0 for 2 � n � N −
1, thus leading to null particle irreducible correlations.

V. RESULTS

In this section we present our results for the model. In a
general way, we obtained that our quantifiers capture most of
the quantum phase transitions of the model, see Fig. 2, with
the exception of some BOW-related phase transitions. The
quantifiers show peculiar behaviors such as discontinuities
and maximum or minimum values at the quantum phase tran-
sitions. It is interesting to interpret such behaviors based on
the order parameters for the different phases of the model. As
discussed in Sec. II, the different phases are characterized by
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their order parameters Ôi [e.g., charge operator (CDW), spin
operator (SDW), and others] and corresponding correlators
〈ÔiÔ j〉. These correlators correspond to specific elements of
the RDM. On the verge of a second-order phase transition the
correlator’s correlation length, which is an implicit function
of the Hamiltonian gap, tends to diverge. Therefore, these
terms will be dominant in the RDM and a peculiar behavior
of our quantifiers is also expected along these transitions,
corroborating with our numerical results. Although there is an
implicit connection between the order parameter correlators,
the Hamiltonian gap, and our quantifiers, the latter will in gen-
eral correspond to intricate functions of the RDM elements,
and thus does not necessarily imply a clear (linear) connection
among all these properties. In fact we find (as we discuss
in more detail below) that some quantifiers may be more
sensitive to certain transitions than others, thus working in a
complementary form in order to describe the phase diagram
of the model.

In Fig. 2 (top panels), we show the quantum correlations
(Q2) and irreducible correlations (D2) for the phase diagram
of the model. We see that both the quantum correlations of
2 fermions with the rest of the N − 2 particles (Q2) as well
the correlation between the reduced 2 fermions (D2) in the
reduced state behave qualitatively similarly, showing disconti-
nuities at the 1st-order transitions of the model, while they are
continuous reaching minimum values at the 2nd-order phase
transitions.

In Fig. 2 (bottom left), we show the quantum coherence
(C2) in the reduced density matrices. We recall that the
coherence here is computed in the real-space basis. While
at 1st-order transitions it also displays discontinuities, at
the 2nd-order phase transitions it presents maximum values.
Since coherence is a basis-dependent quantity, and we work
at the real-space representation for the reduced density matrix,
at the quantum phase transitions we expect it to be maximum
due to the divergence of the coherence length.

We show in Fig. 2 (bottom right) the entanglement gap
(
2). Even though the eigenvalues of the reduced density
matrix can be gapless, the two “dominant” excitations contain
relevant information of the phase, in the same spirit as the
Penrose-Onsager criterion [92,93]. We see that the entangle-
ment gap displays a similar behavior of maximum/minimum
and discontinuities along the transitions of the model. We
further notice a peculiar behavior of the entanglement gap
within the superconducting phase (see inset panel of Fig. 2),
suggesting a phase transition, or a change of dominant eigen-
value with the gap closing/crossing. We give a more detailed
analysis of this point in Sec. V B, highlighting the presence
of a TS/SS superconducting transition. Moreover, the en-
tanglement gap also displays an anomalous behavior in the
strong-coupling regions U/V ∼ 1 with t � 1, which is not
seen in the other quantifiers or expected from the known
phase diagram of the model (Fig. 1). While for U,V > 0
we see a very abrupt closure of the entanglement gap, in
the opposite case with U,V < 0 there is a less apparent (but
still emergent) minimum in the quantifier. We attribute these
behaviors to the different “defects” (at a few-body level)
that can occur in the corresponding phases, as we discuss in
Sec. V C. Depending on the ratio V/U different types of local

defects prevail in the ground state wave function. The entan-
glement gap, interestingly, is more sensible to such few-body
fluctuations in the wave function as compared to the other
quantifiers. This increased sensitivity may be a consequence
of its definition, based on a restricted (the dominant) set of
eigenvalues/eigenvectors of the RDM. In this way it can work
as a magnifying glass on specific changes over the RDM such
as those caused by few-body fluctuations, differently from
the other quantifiers which are complex functions integrated
over all degrees of freedom of the reduced density matrix.
Since fluctuations at a few-body level are suppressed over the
full degrees of freedom, they become less apparent for such
quantifiers.

We discuss now in more detail the behavior of the quanti-
fiers along specific regions of interest in the phase diagram.

A. U/t = 4

Along the line with fixed U/t = 4 and varying intersite
interactions V/t , the model shows different phase transitions,
namely, PS-SDW, SDW-BOW, and BOW-CDW transitions.
We show in Fig. 3 our quantifiers along this line, for dif-
ferent system sizes. We see the behaviors for the quantifiers
discussed previously. A few aspects are worth noting. The
quantifiers show two discontinuities along the PS phase. This
is due to the existence of different PS phases in this region,
where the fermions tend to cluster in two different structures,
as discussed also in Refs. [35,68].

We perform a finite-size scaling analysis for the interaction
V ∗(L)[...] where the quantifiers are maximum/minimum along
the line, in the region U/t > 0, and compare with expected
results for the critical interaction of the literature. We show
our results in Fig. 3 (bottom panel). We obtain that

V ∗(L → ∞)[Q2]
∼= 2.22,V ∗(L → ∞)[C2]

∼= 2.23,

V ∗(L → ∞)[D2]
∼= 2.02,V ∗(L → ∞)[
2]

∼= 2.24. (13)

It is interesting put these results into perspective with those
obtained in the literature. According to the literature, the best
estimates for the quantum phase transitions in this region cor-
respond to V/t ≈ 2.16 [70,71,73,75,76] for the CDW-BOW
transition, and V/t ≈ 1.88–2.00 [70,71,75,76] or V/t ≈ 2.08
[72] for the BOW-SDW transition. We see in this that while
Q2,C2, and 
2 are close to the expected CDW-BOW transi-
tion point, D2 is closer to the BOW-SDW transition.

B. Superconducting phase

We focus here on the analysis of the superconducting phase
of the model. It is convenient to first discuss a few symmetries
of the model and the two-body reduced density matrix. We
first define the total spin operator �S2 and total spin along the
z axis, respectively, as

�S2 = 1

2
N̂ + 1

4

L∑
i j

(n̂i↑ − n̂↓)(n̂ j↑ − n̂ j↓)

−
∑

i j

â†
i↑â†

j↓ai↓a j↑, (14)

Ŝz = 1

2

∑
i

(n̂i↑ − n̂i↓), (15)
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FIG. 3. Results for the two-body reduced density quantifiers along the line in the phase diagram with U/t = 4 fixed, for varying V/t and
system sizes L, highlight transitions between PS1-PS2-SDW-CDW. We show in top-left panel the quantum correlations Q2, in top-right panel
irreducible correlations D2, in middle-left panel coherence C2, and in middle-right panel entanglement gap 
2. In the bottom panel we show
the finite-size scaling analysis for the interactions V (L)∗[...] where the quantifiers are maximum, or minimums, in the region with U/t > 0. The
fitted lines use a second-order polynomial in 1/L.

with N being the total number operator. It is not hard to
see that the Hamiltonian commutes with the above opera-
tors, thus possessing an su(2) symmetry [94]. It is not direct
that the two-body reduced density matrix should inherit the
symmetries of the Hamiltonian. We notice, however, from its
own definition that terms that do not conserve the total spin
along the z direction are null. Thus the reduced density matrix
inherits at least the symmetry Ŝz.

Interestingly, we observed numerically that the two-body
reduced density has also symmetry �S2, therefore indeed shar-
ing the su(2) Hamiltonian symmetry. We were not able,
however, to demonstrate it analytically; rather we observed
numerically along all phase diagram and for different system

sizes that this property is present. The su(2) symmetry in the
reduced state leads to interesting consequences and avenues of
investigation for the analysis of the state in the superconduct-
ing phase. We first recall that the total spin operator commutes
with Ŝz and split the Hilbert space of the reduced density
matrix into triplet and singlet subspaces with quantum number
(S2, Sz ) given by

t± ≡ (2,±1), t0 ≡ (2, 0), s0 ≡ (0, 0), (16)

where t (s) denotes triplet (singlet) subspace. The dimen-
sion of the antisymmetric subspace of the Hilbert space for
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FIG. 4. Asymptotic limit of the subspaces probabilities as a func-
tion of 1/L. The fitted lines use a second-order polynomial in 1/L.

two particles corresponds to d2 = (2N
2

)
. The fraction of the

dimension for the singlet on such space is given by

ds0

d2
= N (N + 1)

2

(
2N

2

)−1

= N + 1

4N − 2
, (17)

which in the thermodynamic limit N → ∞ reduces to
limN→∞ ds0/d2 = 1/4. Similarly, for triplet subspaces t0, t±
we have

dt0,t±

d2
= N − 1

4N − 2
N→∞−→ 1/4. (18)

All subspaces converge to the same ratio of 1/4 in the ther-
modynamic limit. The symmetries imply a block-diagonal
structure for the reduced state in the above subspaces, and can
be written as

ρ̂2 =
∑

i=s0,t0,t±

pi(Piρ̂2P†
i ) (19)

with Pi the projectors onto the singlet and triplets subspaces,
and pi = Tr(ρ̂2Pi ) the overlap of the reduced density matrix
in its respective subspace. We obtain numerically that the
overlap pi of the reduced density matrix on each subspace is
constant along all the phase diagram of the model, depend-
ing only on the number of sites in the system. Moreover, in
the thermodynamic limit the overlap of all subspaces tends
to the fraction of their dimensions over the antisymmetric
Hilbert space, precisely, pi → di/d2 = 1/4 for N → ∞ with
i = s0, t0, t±; see Fig. 4.

Spectral properties. We study the spectral properties of the
reduced density matrix, taking in consideration the splitting
of singlet and triplet quantum numbers. We show in Fig. 5
the largest eigenvalues of the reduced density matrix in the
superconducting region, for varying system sizes and on-site
interactions. We see that around U/t ∼ −3, with V/t = −0.5,
there is a single dominant eigenvalue, corresponding to the
singlet subspace. Indeed in this region we expect, according to
the literature, the existence of a SS phase. As the on-site inter-
action is decreased (in modulus), triplet eigenvalues become
comparable to the dominant singlet, until at a certain inter-
acting value [U ∗

ss−ts(L,V/t )] the triplet dominant eigenvalue
surpasses the singlet and becomes the largest eigenvalue. In
this region we expect the dominance of a TS phase. The exis-
tence of different superconducting orderings was also studied
in Refs. [68,69,77,78].

FIG. 5. Entanglement spectrum of the reduced density matrix ρ̂2

for a system with L = 18 (L = 24) sites and interactions V/t = −0.5
(V/t = −0.6) for the top (bottom) panel. We show here only the first
100 (8) largest eigenvalues of the spectrum.

In Fig. 6 we show the gap 
2 in the superconducting re-
gion, making clearer the regions with dominance of SS or TS
eigenvalues, as well as their dependence with system size and
interactions. We see that the critical interaction U ∗

ss−ts(L,V/t )
for a change of singlet/triplet dominance increases (in
modulus) for larger system sizes as well as for larger (in
modulus) intersite interaction. A quantitative analysis of the
transition line between the two different superconducting
phases in the thermodynamic limit [U ∗

ss−ts(L,V/t ) for L →
∞] is beyond the scope of this paper. It requires the analysis
of much larger system sizes, which at the moment are numer-
ically too expensive. It is worth remarking that even though
a TS phase “enlarges” in the phase diagram for increasing
system sizes, the existence of two different SS/TS orderings is
still present in the thermodynamic limit. We can simply notice
that in the region of singlet dominance, e.g., for V/t = −0.5
and U/t ∼ −1, the gap 
2 becomes larger as we increase
the system size, showing that the singlet eigenvalue will be
dominant in the thermodynamic limit. A similar trend occurs
in the region of triplet dominance, e.g., for V/t = −0.5 and
U/t ∼ −0.25, where for large enough system sizes we see a
dominance of triplet eigenvalues (L ∼ 18 sites), and further
increasing the system size the gap increases as well, corrobo-
rating the triplet eigenvalue dominance in the thermodynamic
limit.

Dominant eigenvectors. We perform a deeper analysis
of the dominant eigenvalue of the reduced density matrix,
studying its eigenvector structure. In order to understand
how the fermions are ordered within the eigenvector, we
study its coherent superpositions. Specifically, we introduce a
“canonical” basis in real space for the antisymmetric Hilbert
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FIG. 6. Entanglement spectrum gap for the lines V/t = −0.5
(top) and V/t = −0.6 (bottom), for varying system sizes and on-
site interactions. Empty (filled) symbols denotes a dominant singlet
(triplet) eigenvalue. In the case where the triplet is the dominant
eigenvalue we have a threefold degeneracy in the largest eigenval-
ues (ξ1 = ξ2,3) all belonging to triplet subspaces; we show in this
case the gap with the next largest eigenvalue (ξ4), according to the
figure legend.

space of two fermions, in the singlet (|s0
i j〉) and triplet (|t [...]

i j 〉)
subspaces, as follows,

|s0,i j〉 = (â†
i↑â†

j↓ − â†
i↓â†

j↑)√
2

|vac〉, (20)

|t0,i j〉 = (â†
i↑â†

j↓ + â†
i↓â†

j↑)√
2

|vac〉, (21)

|t+(−),i j〉 = â†
i↑(↓)â

†
j↑(↓)|vac〉. (22)

The dominant eigenvector |D〉 can always be decomposed
in such a basis, |D〉 = ∑

i, j ci j |s0(t [0,±] )i j〉, depending on
whether it belongs to the singlet or triplet subspace. We show
in Fig. 7 the coherence profiles for the dominant eigenvector
along the superconducting region. In Fig. 7 (top left) we
show the case where the system belongs to a SS phase, with
interacting values U/t = −3, V/t = −0.6 and the dominant
eigenvector belonging to the singlet subspace. In this case the
coherence profile |ci j |2 shows an almost uniform distribution
along the chain for a fixed distance |i − j| between the sites,
displaying in this way a coherent superposition of fermionic
pairs along all the chain of the system. Moreover, the coher-
ence is maximum for fermion pairs at the same site (i = j);

FIG. 7. Coherence profiles |ci j |2 for the eigenvectors of the re-
duced density matrix. In the top panels we show the coherence profile
for the dominant eigenvector in a system with (top left) L = 18 sites,
V/t = −0.5, U/t = −3.4 and (top right) L = 24 sites, V/t = −0.6,
U/t = −0.2, in the singlet and triplet subspaces, respectively. In the
bottom panels we show the coherences for the dominant eigenvectors
of the (bottom left) singlet and (bottom right) triplet subspaces, in a
system with L = 24, V/t = −0.6 for varying on-site interactions. In
the bottom panels, the coefficients ci j are chosen close to the middle
of the chain to minimize finite-size effects and represent the bulk of
the system (in the thermodynamic limit they will only depend on the
distance |i − j|).

i.e., the fermions prefer a spatially local pairing ordering. In
Fig. 7 (top right), we show now the case where the system
belongs to a TS phase, with interacting values U/t = −0.2,
V/t = −0.6 and the dominant eigenvector belonging to the
triplet subspace. We see a similar profile with, however, a
predominance of triplet pairs between nearest-neighbor sites
(we recall that triplet pairs are forbidden from occupying the
same site, i 	= j).

In Fig. 7 (bottom panels) we show the coherence of the
dominant eigenvectors in the singlet and triplet subspaces,
highlighting their dependence with the distance between the
pairs. Interestingly, we notice that as we move from the
SS phase toward the TS phase, the singlet pairs tend to
spatially move apart from each other, while the triplet pairs
tend to get closer together. This indicates that the dominance
of each pairing phase is related to the distance between the
fermion pairs in the model—spatially closer (and coherent)
pairings prompt a stronger superconducting ordering.

C. U ∼ V : Strong-coupling regime (U,V � t)

Along the line with roughly equal couplings U ∼ V and
in the strong-coupling regime U,V � t the entanglement gap
displays a minimum, indicating in this way a possible phase
transition in the model not yet discussed in the literature. Since
this persists along the strong-coupling regime, one can better
analyze the system within the perturbation theory picture.
Along this approach we observe that there are no macroscopic
changes in the properties of the ground state; rather they
follow at a few-body level (different types of local defects in
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the wave function). Let us analyze the two cases, repulsive
U,V > 0 and attractive U,V < 0, separately.

CaseU,V > 0 (repulsive). In the region with V � U/2 and
considering the infinite-coupling limit t → 0, the ground state
is characterized by macroscopic charge-density-wave config-
urations, such as |2020 . . . 20〉 or |0202 . . . 02〉. However, due
to the open boundary conditions in the chain, these CDW
configurations may present “defects,” such as singly occupied
or empty nearest-neighbor sites. The energetic cost of the
different defects depends on the strength of the couplings V
and U , and in this way one of them may prevail over the
others depending on the ratio V/U . Specifically, the different
CDW ground states and their corresponding defects are shown
below:

(i) U � V � U/2 (singly occupied nearest-neighbor de-
fects). The degenerate ground states and energy are given by

|gs〉� = |CDW[20]〉� ⊗ |11〉 ⊗ |CDW[02]〉L−�−2,

Egs

LU
= 1

2
+ 1

L
(v − 1), (23)

where

|CDW[20]〉� = ⊗�/2
k=1|20

〉
, (24)

|CDW[02]〉� = ⊗�/2
k=1|02

〉
, (25)

with � = 0, 2, 4, . . . , L indicating the sizes of the two pos-
sible charge-density-wave configurations in the degenerate
subspace, v = V/U and Egs the ground state energy.

(ii) V � U (empty nearest-neighbor defects). In this case
the degenerate ground states and energy are given by

|gs〉� = |CDW[20]〉� ⊗ |CDW[02]〉L−�,

Egs

LU
= 1

2
, (26)

with � = 0, 2, . . . , L indicating the defect position, i.e., the
pair of empty (�, � + 1) nearest-neighbor sites.

Therefore, despite that the system is always characterized
by a macroscopic CDW phase for both cases, at a few-body
level the wave function has different properties. Considering
a nonzero small hopping in the system t ∼ ε will not change
significantly this picture, leading only to second-order pertur-
bative corrections to the wave function. We conclude in this
way that the entanglement gap minima observed in Fig. 2
along these couplings are a consequence of the different types
of few-body defects in the ground state wave function. We
also remark that along this line the closure of the entangle-
ment gap follows between singlet eigenvalues (not shown),
a different phenomenology as compared to the triplet-singlet
superconducting phase transition discussed in the previous
section.

Case U,V < 0 (attractive). The analysis of the attractive
case follows similarly to the previous one. The different de-
fects and fluctuations, however, appear in the ground state
from higher order corrections in perturbation theory. There-
fore, despite that the entanglement gap may still be captured
these fluctuations are much weaker, in accordance with

our numerical results, where the minimum observed in the
quantifier is much smoother as compared to the repulsive
case. Specifically, considering the infinite-coupling limit the
degenerate ground states are given by clusters of fully
occupied sites, such as | . . . 022 . . . 220 . . .〉. Perturbative cor-
rections correspond, e.g., to hoppings of single fermions
(|20〉 → |11〉) or doublons (|20〉 → |02〉) at the edges of the
clusters. The prevalence of these two “defects” depends on
the ratio V/U , thus leading to different few-body quantum
fluctuations in the wave function.

VI. CONCLUSIONS

In this work we studied the ground state properties of
the one-dimensional extended Hubbard model, composed of
half-spin fermions, from the perspective of its particle re-
duced density matrices. Focusing on the case of two-fermion
reduced density matrices, we studied different facets of the
quantum correlations and coherence on such states borrowing
tools from quantum information and entanglement theories.
Specifically, we analyzed (i) the entanglement entropy of the
reduced states, corresponding to the entanglement between
2 fermions with the rest of N − 2 fermions in the system,
(ii) the irreducible two-body correlations contained in the
cumulant matrix, (iii) quantum coherences obtained from the
off-diagonal elements of the reduced density matrix elements,
and (iv) the spectral structure and gap of the reduced density
matrix.

In a general form, we obtained that all of the above quan-
tifiers provide a qualitative view of the phase diagram of
the model, showing peculiar behaviors such as discontinu-
ities and maximum or minimum values at the quantum phase
transitions and are complementary to each other for a better
description of the system properties. Interestingly, perform-
ing a finite-size scaling analysis of the quantifiers around
the BOW-related phase transitions, i.e., for a fixed U/t = 4
and varying V/t for different system sizes, we found that
while the entanglement of particles Q2, the coherence C2,
and the entanglement gap 
2 have their maximum/minimum
at the critical value V ∗ ≈ 2.22 in the thermodynamic limit,
the irreducible correlations D2 have critical value closer to
V ∗ ≈ 2.02. Comparing these results with the literature we
tend to conclude that while Q2,C2, and 
2 are most sensitive
to the BOW-CDW phase transition, D2 on the other hand is
most related to the SDW-BOW phase transition.

We observed (numerically) that the two-fermion reduced
density matrix has an su(2) symmetry, thus splitting the
Hilbert space into singlet and triplet subspaces. The overlap of
the reduced matrix on such subspaces is intriguingly constant
along all the phase diagram, depending only on the number of
sites L in the system. In the thermodynamic limit the overlap
onto all subspaces tends to be equal.

These symmetries opened interesting avenues for the in-
vestigation of the spectral properties of the reduced state.
Focusing our analysis on the superconducting region of the
phase diagram, we first observed the dominant (largest) eigen-
values of the reduced matrix on the different subspaces
cross at a critical interacting strength U ∗

ss−ts(L,V/t ). Thus the
dominant eigenvalue of the reduced state shifts from the sin-
glet subspace to the triplet one, signaling different dominant
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pairing orderings for the fermionic particles. Moreover, study-
ing the structure of the dominant eigenvector, we showed
that the dominance of a singlet or triplet eigenvalue in the
spectrum of the reduced density matrix is related to the spatial
distance between the fermionic pairs on the eigenvectors. Pre-
cisely, within the singlet subspace the fermion pairs tend to be
spatially closer to each other when the singlet eigenvalue is
dominant in the full spectrum. As one moves toward the TS
phase these singlet pairs tend to move apart from each other,
as well as decreasing the corresponding singlet eigenvalue.
The same mechanism occurs for the triplet pairs and their
eigenvalues.

An interesting perspective for our work stands on delineat-
ing possible connections between our quantifiers with other
approaches with more direct experimental access, such as
optical conductivity and optical gap studies [73,74]. These
could be experimentally probed by spectroscopy approaches,
and similarly to our quantifiers they are also based on
two-particle correlations. Nevertheless, a direct relation

among them is not straightforward and would require a deeper
analysis.
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