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We study the ground-state properties of ferromagnetic quasi-one-dimensional quantum wires using the
quantum Monte Carlo (QMC) method for various wire widths b and density parameters rs. The correlation
energy, pair-correlation function, static structure factor, and momentum density are calculated at high density.
It is observed that the peak in the static structure factor at k = 2kF grows as the wire width decreases. We
obtain the Tomonaga-Luttinger liquid parameter Kρ from the momentum density. It is found that Kρ increases by
about 10% between wire widths b = 0.01 and b = 0.5. We also obtain ground-state properties of finite-thickness
wires theoretically using the first-order random phase approximation (RPA) with exchange and self-energy
contributions, which is exact in the high-density limit. Analytical expressions for the static structure factor and
correlation energy are derived for b � rs < 1. It is found that the correlation energy varies as b2 for b � rs from
its value for an infinitely thin wire. It is observed that the correlation energy depends significantly on the wire
model used (harmonic versus cylindrical confinement). The first-order RPA expressions for the structure factor,
pair-correlation function, and correlation energy are numerically evaluated for several values of b and rs � 1.
These are compared with the QMC results in the range of applicability of the theory.
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I. INTRODUCTION

One-dimensional (1D) homogeneous electron gases
(HEGs) are known to behave as strongly correlated systems at
all densities [1,2]. The present work studies the ground-state
properties of quasi-1D electron fluids using quantum Monte
Carlo (QMC) methods and an analytical theory valid in the
high-density range.

An infinitely thin wire cannot be realized experimentally.
As the channel width is reduced, the electrons occupy the
lowest-energy subband for their transverse motion, leading to
a realization of a quasi-1D electron system. The transverse
confinement of an electron fluid affects the electron-electron
interaction potential and thus the properties of the quasi-1D
electron system. The recent advancement of fabrication tech-
nology and pursuit of obtaining narrower wires have given
impetus to intense experimental and theoretical research in 1D
systems. The experimental formation of 1D nanowires on sur-
faces makes use of the symmetry of the substrate, which can
produce 1D topographic structures. In an early work by Wang
et al. [3], a nanowire structure was obtained by depositing a
monolayer of Au on a Ge(001) surface [4]. More recently,
nanowires with well-defined long-range order and on large
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scale have been obtained [5,6]. In particular, the high-density
1D HEG can be realized experimentally in zigzag carbon
nanotubes formed on SrTiO3 substrates with high dielectric
constant [7,8]. The semiconductor industry is expecting to
achieve the building of single-digit nanometer chips. There-
fore, it is relevant to study the thickness-dependent properties
of 1D wires for different confinement models. In this paper,
we use a harmonic confinement model for QMC simulations
and we study both harmonic and cylindrical hard-wall con-
finement models with the theoretical approach.

We report QMC calculations of the ground-state energy,
static structure factor (SSF), pair-correlation function (PCF),
and momentum density (MD) at various wire widths at high
density for fully spin-polarized (ferromagnetic) 1D HEGs.
The Tomonaga-Luttinger (TL) parameters are key parame-
ters describing a TL liquid [9–12]. The MD data were fitted
with appropriate functions around k ∼ kF to obtain the TL
parameter Kρ . The dependence of Kρ on wire width b reveals
the importance of electron confinement effects in a 1D HEG.
In addition, we study the wire width dependence of various
ground-state properties of the interacting HEG at high densi-
ties using the first-order random phase approximation (RPA)
with exchange and self-energy contributions [13,14]. We
present suitable expressions for b-dependent SSFs, PCFs, and
correlation energies for cylindrical and harmonic-potential
models of transverse confinement. The high-density first-
order RPA theory is found to be in good agreement with QMC
results. Analytical expressions for the SSF and correlation
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energy have been obtained for both confinement models in
the limit b � rs < 1. The b-dependent analytical expression
for the correlation energy in the limit b → 0 at high density
reduces to −π2/360 [15]. In this work, we take rs and the
wire width b to be in units of the Bohr radius (aB).

The outline of this paper is as follows. In Sec. II, we briefly
describe the QMC method and report the ground-state prop-
erties such as the PCF, SSF, correlation energy, and MD for
several values of b. The effect of the confining potential on the
TL parameter Kρ is also studied. In Sec. III, the confinement
models and the dynamic density response function in first-
order RPA with exchange and self-energy contributions are
described. Wire-width-dependent expressions for the SSF and
correlation energy are given in this section. The SSF, PCF, and
correlation energy are calculated numerically for several wire
widths for b < rs < 1 and compared with QMC simulations.
The overall conclusions are given in Sec. IV.

II. QUANTUM MONTE CARLO SIMULATIONS

The form of Hamiltonian which is used for simulating a
fully spin-polarized (ferromagnetic) N-electron 1D HEGs is

Ĥ = −1

2

N∑
i=1

∂2

∂x2
i

+
∑
i< j

Ṽ (xi j ) + N

2
VMad, (1)

where Ṽ (xi j ) and VMad denote the Ewald interaction and
Madelung energy, respectively. Throughout we use Hartree
atomic units (a.u.), in which h̄ = |e| = me = 4πε0 = 1 a.u.

The confinement model that we have studied is a harmon-
ically regularized Coulomb potential in which the electrons
are confined to 1D by a harmonic potential of form V⊥(r⊥) =
r2
⊥/8b4, where b is a wire width parameter and r⊥ is the

distance perpendicular to the wire. Further, we follow the
single-subband approximation which states that the intersub-
band energy must be greater than Fermi energy for electrons
to occupy the lowest subband. This condition requires rs >

πb/4. Integrating over the transverse degree of freedom, one
obtains the effective potential in real space as [16]

V (x) =
√

π

2b
e

x2

4b2 erfc

( |x|
2b

)
. (2)

For a harmonic wire, the Ewald-like interaction is calculated
as [17,18]

Ṽ (xi j ) =
∞∑

m=−∞

[
π

2b
e(xi j−mL)2/(4b)2

erfc

( |xi j − mL|
2b

)

− 1

|xi j − mL|erf

( |xi j − mL|
2b

)]

+ 2

L

∞∑
n=1

E1[(bGn)2] cos(Gnxi j ), (3)

where b is the wire width, G = 2π/L, and E1 is the expo-
nential integral function. The electrostatic potential at one
electron due to its interaction with all its periodic images
(excluding itself) is the Madelung constant

VMad = lim
x→0

[Ṽ (x) − V (0)]. (4)

TABLE I. DMC ground-state energies per particle extrapolated
to the thermodynamic limit E∞ and correlation energies εc for
fully spin-polarized (ferromagnetic) harmonic wires in the thermo-
dynamic limit at density parameter rs = 0.5.

b E∞ εc

(a.u.) (a.u./electron) (a.u./electron)

0.01 −2.35955(6) −0.02345(6)
0.1 −0.135195(2) −0.013913(2)
0.2 0.434211(3) −0.007769(3)
0.3 0.715752(3) −0.004768(3)
0.4 0.887735(4) −0.003168(4)
0.5 1.004636(4) −0.002239(4)
0.6 1.089589(4) −0.001659(4)

The variational and diffusion quantum Monte Carlo (VMC
and DMC) techniques as implemented in the CASINO code
[19] are used for the computation of ground-state properties of
the 1D HEG at high density. A Slater-Jastrow-backflow trial
wave function [20,21] is used in the calculations. We com-
puted expectation values of quantities other than the energy
by combining VMC and DMC results to form extrapolated
estimates [22]. Errors in the VMC and DMC expectation
values of operators that do not commute with the Hamiltonian
are linear in the error in the trial wave function; however, the
errors in the extrapolated estimates of the PCF and SSF are
quadratic in the error in the trial wave function. The simula-
tion details of Ref. [23] are followed. The ground-state energy
is calculated for electron numbers N = 37, 55, 77, and 99 for
harmonic wires at high densities. The thermodynamic limit
for the ground-state energy per particle is obtained by extrapo-
lating the energies per particle E (N ) using the fitting function
E (N ) = E∞ + BN−2 [18], where B and E∞ are fitting param-
eters. Further, the correlation energies are calculated using the
DMC energies. Both are reported in Table I.

The parallel-spin PCF is

g(r) = 1

Nρ

〈
N∑

i> j

δ(|xi − x j | − r)

〉
, (5)

where ρ is the electron density and xi is the position of the ith
electron. The angular brackets 〈· · · 〉 denote an average over
configurations distributed as the square modulus of the wave
function. The PCF of a harmonic wire at density rs = 0.5 for
several wire widths b is plotted in Fig. 1.

The SSF is defined as

S(k) = 1

N
[〈ρ̂(−k)ρ̂(k)〉 − 〈ρ̂(−k)〉〈ρ̂(k)〉], (6)

where ρ̂(k) = ∑
i eikxi . The SSF is studied to analyze the

charge ordering in the system. In Fig. 2, the SSF is plotted for
several wire widths. It shows that the peak height decreases
with increasing wire width.

The MD is computed using

n(k) = 1

2π

〈∫
ψT(r)

ψT(x1)
exp[ik(x1 − r)] dr

〉
, (7)
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FIG. 1. PCFs for harmonic wires with N = 99 and rs = 0.5 at
various wire widths b = 0.1 to b = 0.5 a.u. (top to bottom). The inset
shows a zoomed-in view of the peak at r = 1. The data shown are
extrapolated estimates [2gDMC(r) − gVMC(r)], where gDMC and gVMC

are the DMC and VMC PCFs, respectively.

where the trial wave function ψT(r) is evaluated at
(r, x2, . . . , xN ). The angular brackets represent an average
over electron configurations.

In 1D, the MD has a peculiar power-law behavior: it is
continuous at k = kF although its derivative is singular at
k = kF. TL theory suggests that the MD takes the form [10,24]

n(k) = n(kF) + A[sgn(k − kF)]|k − kF|α (8)

near k = kF, where n(kF), A, and α are fitting parameters. TL
theory describes the relationship between exponent α and TL

1.95 2 2.05

1

1.05

1.1

0 0.5 1 1.5 2
k / kF

0

0.2

0.4

0.6

0.8

1

1.2

S(
k)

 b = 0.1 a.u.
 b = 0.3 a.u.
 b = 0.5 a.u.

FIG. 2. SSFs for harmonic wires with rs = 0.5 for various wire
widths b. The inset shows the b dependence of the 2kF peak.
The data shown are for N = 99 and are extrapolated estimates
[2SDMC(k) − SVMC(k)], where SDMC and SVMC are the DMC and
VMC SSFs, respectively.
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FIG. 3. MDs for harmonic wires with N = 99 at rs = 0.5 for
various wire widths. The data shown are extrapolated estimates
[2nDMC(k) − nVMC(k)], where nDMC and nVMC are DMC and VMC
MDs, respectively. It is observed that as b → 0, the harmonic wire
MD agrees with the infinitely thin wire MD. The statistical error bars
are omitted for clarity as they are smaller than the symbols.

parameter Kρ as [25,26]

α = 1

4

(
Kρ + 1

Kρ

− 2

)
, (9)

which can be rewritten as Kρ = 1 + 2α − 2
√

α + α2. In
Fig. 3, the MD obtained using the extrapolated estimator
2nDMC(k) − nVMC(k) for the harmonic wire is plotted for
N = 99 at rs = 0.5 for several values of the wire width b. It
is interesting to note that in the limit b → 0, the harmonic
wire MD approaches the MD for an infinitely thin wire [23].
The interaction exponent α is calculated by fitting Eq. (8)
to MD data. However, we cannot use the full range of MD
data for extracting α as Eq. (8) is valid only for k → kF. So,
we calculate α by choosing MD data in the range defined
by |k − kF| < εkF, where ε > 0.075. The exponent α is then
calculated by extrapolating α to ε = 0. In this work, we report
the thermodynamic value of α calculated by extrapolating it
using α(N ) = α∞ + B/N , where α∞ and B are fitting param-
eters. Further, we calculate Kρ in thermodynamic limit. Both
α and Kρ are plotted against b in Fig. 4. It shows that the TL
parameter Kρ depends significantly on the width of the wire.

III. THEORY

A. Confinement models

We consider a softened Coulomb potential of the form
V (x) = 1/

√
x2 + b2, where b is the transverse width param-

eter of the cylindrical wire. The Fourier transform of this
potential is 2K0(bq) and its series expansion in b is given as

V (q) = −2

[
ln

(
bq

2

)
+ γ

]

− b2q2

2

[
ln

(
bq

2

)
+ γ − 1

]
+ O(b3), (10)
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FIG. 4. TL parameter Kρ as a function of b, obtained from QMC
calculations. The exponent α is plotted against b in the inset. The cor-
responding values for infinitely thin wires at rs = 0.5 are indicated on
the vertical axes by the symbol �.

where K0 is the modified Bessel function of the 2nd kind and
γ is the Euler constant.

The second model that we have studied is a harmonic
potential which is discussed in detail in Sec. II. The
Fourier transform of the potential as in Eq. (2) is V (q) =
E1(b2q2) eb2q2

. Its series expansion in b reads

V (q) = −2

[
ln(bq) + γ

2

]

− b2q2[2 ln(bq) + γ − 1] + O(b3), (11)

where E1 is the exponential integral. The series given in
Eqs. (10) and (11) are useful only for b < rs.

B. Density response function

In this section, the static properties of the 1D HEG have
been obtained using the density response function and the
fluctuation-dissipation theorem. The density response func-
tion is defined as [1,13,14]

χ (q, ω) = χ0(q, ω) + λχ1(q, ω)

1 − λV (q)[χ0(q, ω) + λχ1(q, ω)]
, (12)

where λ indicates the order of the potential and χ1(q, ω) =
χ se

1 (q, ω) + χ ex
1 (q, ω) is the first-order correction to the po-

larizability with exchange and self-energy contributions. The
first-order approximation of Eq. (12), valid for the high-
density limit, is given as

χ (q, ω) ≈ χ0(q, ω) + λ v(q)χ2
0 (q, ω)

+ λ χ se
1 (q, ω) + λ χ ex

1 (q, ω), (13)

where the parameter λ indicates the order of the expansion.
The noninteracting polarizability is explicitly given as

χ0(q, ω) = gsm

2πq
ln

[
ω2 − ( q2

2m − qkF

m

)2

ω2 − ( q2

2m + qkF

m

)2

]
, (14)

and the self-energy and exchange contributions respectively
read after simplification [14]

χ se
1 (q, ω) = 2gs

∑
k,p

nknp[v(k − p) − v(k − p + q)]

× 2
k,q + ω2(

2
k,q − ω2

)2 (15)

and

χ ex
1 (q, ω) = −2gs

∑
k,p

{
v(k−p)

[
nk− q

2
np− q

2
−nk− q

2
np+ q

2

]

×
(
k− q

2 ,q p− q
2 ,q + ω2

)
(
2

k− q
2 ,q − ω2

)(
2

p− q
2 ,q − ω2

)}
. (16)

Here k,q = ωk − ωk+q, p,q = ωp − ωp+q, gs is the spin de-
generacy factor, and nk denotes the Fermi-Dirac distribution
function. The expressions above are directly used in our cal-
culation.

C. Structure factor

The SSF is defined as

S(q) = − 1

πρ

∫ ∞

0
dω χ ′′(q, ω), (17)

where χ ′′(q, ω) is the imaginary part of the density response
function. The integral in Eq. (17) can be rewritten using the
contour integration method [1] as

S(q) = − 1

π ρ

∫ ∞

0
dω χ (q, i ω). (18)

Substituting Eq. (13) into Eq. (18), the total SSF can be
written as

S(q) = S0(q) + Sd
1 (q) + Sse

1 (q) + Sex
1 (q). (19)

The noninteracting SSF is given as S0(q) = x for x < 1 and
S0(q) = 1 for x > 1 with x = q/2kF. The first-order SSF is
defined as S1(x) = Sd

1 (x) + Sse
1 (x) + Sex

1 (x). The ω integration
of the self-energy term turns out to be zero so that there is no
contribution of Sse

1 (x) to the SSF. The sum of both corrections,
Sd

1 (x) and Sex
1 (x) for small b, and the next term in series

expansion are denoted SHr
1 (x) and SHr

1 (x, b), respectively, for
harmonic wires and similarly as SCy

1 (x) and SCy
1 (x, b) for

cylindrical wires.
The exchange contribution to the SSF [14] for x < 1 is

Sex
1 (q) = g2

srs

π2x

[(
(1 + x)

∫ 1+x

1
−(1 − x)

∫ 1

1−x

)
dx̄

x̄
v(x̄)

+
(∫ 1

1−x
−

∫ 1+x

1

)
dx̄v(x̄)

]
, (20)
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and similarly for x > 1 it is

Sex
1 (q) = g2

srs

π2x

[(
(1 + x)

∫ 1+x

x
−(x − 1)

∫ x

x−1

)
dx̄

x̄
v(x̄)

+
(∫ x

x−1
−

∫ 1+x

x

)
dx̄ v(x̄)

]
. (21)

The explicit integrals in Eqs. (20) and (21) can be solved
analytically for a given potential to calculate the exchange
term. The direct term contribution [27,28] is obtained in the
small-b limit for x < 1 as

Sd
1 (x) = − g2

srs

π2x
{[(1 − x) ln(1 − x)

+ (x + 1) ln(x + 1)]v(x)}, (22)

and for x > 1 as

Sd
1 (x) = −g2

srs

π2x
{[(x − 1) ln(x − 1) − 2x ln(x)

+ (x + 1) ln(x + 1)]v(x)}. (23)

On including the next term of the series expansion O(b2)
of the harmonic potential [Eq. (11)], the analytical expression
for the sum of Sex

1 (q) and Sd
1 (x) is derived for x < 1 as

SHr
1 (x, b) = SHr

1 (x) + g2
srsb2

3π2x
{3x2[2 ln(bx) + γ − 1]

× [(x − 1) ln |x − 1| + (x + 1) ln(x + 1)]

− 6x2 ln(b) + x2(−3γ + 8)

− |(x − 1)3| ln |x − 1| − (x + 1)3 ln(x + 1)},
(24)

and for x > 1,

SHr
1 (x, b) = SHr

1 (x) + g2
srsb2

3π2x
{3x2[2 ln(bx) + γ − 1]

× [(x − 1) ln(x − 1) + (x + 1) ln(x + 1)

− 2x ln(x)] − 18x3 ln b + x[2x2 ln(x) − 3γ + 8]

− (x − 1)3 ln(x − 1) − (x + 1)3 ln(x + 1)}.
(25)

We plot the difference �S(k) = SHr
1 (x, b) − SHr

1 (x) in Fig. 5
at rs = 0.5 for a harmonic wire. It shows that in the limit b →
0, the b-dependent correction reduces to zero.

The expression for SCy
1 (x, b) for the next term of series

expansion O(b2) of the cylindrical potential (10) is given for
x < 1 as

SCy
1 (x, b) = SCy

1 (x) + g2
srsb2

12π2x

{
6x2[|x − 1| ln |x − 1|

− (x + 1) ln(x + 1)]

[
ln

(
bx

2

)
+ γ − 1

]

+ 6x2 ln

(
2

b

)
+ (11 − 6γ )x2

− |(x − 1)3| ln |x − 1| − (x + 1)3 ln(x + 1)

}
,

(26)
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FIG. 5. SSF difference �S(k) = SHr
1 (x, b) − SHr

1 (x) as a function
of k/kF for several harmonic wire widths b = 0.01–0.09 for rs = 0.5,
evaluated using the first-order RPA. The greatest value of |�S(k)| is
for b = 0.09 in this plot.

and for x > 1,

SCy
1 (x, b) = SCy

1 (x) + g2
srsb2

12π2x

{
6x2[(x − 1) ln(x − 1)

− 2x ln(x) + (x + 1) ln(x + 1)]

[
ln

(
bx

2

)
+ γ

− 1

]
+ 6x ln

(
2

b

)
+ x[2x2 ln(x) − 6γ + 11]

− (x − 1)3 ln(x − 1) − (x + 1)3 ln(x + 1)

}
,

(27)

where the expressions for SHr
1 (x) and SCy

1 (x) for x < 1 and
x > 1 are presented in Appendix A.

The SSF of Eq. (19) for a harmonic wire is calculated
numerically and plotted in Fig. 6 for various wire widths. The
SSF shows a peak at 2kF, which is illustrated in greater detail
in the inset of the figure. The peak height is seen to increase in
the limit b → 0. Further, in Fig. 7, we compare the SSF with
our QMC data. The wire width dependence of the SSF shows
excellent agreement with our first-order RPA results.

D. Pair-correlation function

The PCF g(r) is obtained from the SSF S(q) as

g(r) = 1 − 1

2πρ

∫ ∞

−∞
dq eiqr[1 − S(q)]. (28)

In Fig. 8, the PCF evaluated using Eq. (28) is plotted for a
finite-width harmonic wire. The confinement effect of correla-
tions in the PCF is compared with the QMC simulation results
and found to be in very good agreement.

E. Ground-state energy

The ground-state energy in terms of the density-density
response function can be written using the fluctuation-
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FIG. 6. First-order RPA SSF as a function of k/kF for various
harmonic wire widths b = 0.01–1 (top to bottom) at rs = 1. The inset
shows a zoomed-in view of the 2kF peak.

dissipation theorem [27] as

Eg = E0 + ρ

2

∑
q �=0

V (q)

×
(

− 1

ρπ

∫ 1

0
dλ

∫ ∞

0
χ (q, ιω; λ) dω − 1

)
, (29)

where ρ = (kF gs )/π is the linear electron number density and
kF is the Fermi wave vector. Using Eq. (13) in Eq. (29), the
ground-state energy can be written as a sum of the kinetic
energy of the noninteracting HEG E0, the exchange energy
εx, and the correlation energy εc as

Eg = E0 + Ex + Ec, (30)

0 0.5 1 1.5 2 2.5 3
k / kF

0

0.25

0.5

0.75

1

1.25

S(
k)

 b = 0.01 a.u.

0 1 2 3
0

0.5

1

 b = 0.6 a.u.

First-order RPA
}QMC

FIG. 7. First-order RPA for harmonic wires (solid line) com-
pared with extrapolated estimates [2SDMC(k) − SVMC(k)] of SSFs for
N = 99 at rs = 0.5. The main plot shows the SSF for b = 0.01, and
the inset is for b = 0.6.
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FIG. 8. Theoretical PCF compared with extrapolated estimates
of PCFs [2gDMC(r) − gVMC(r)] for harmonic wires with N = 99 at
rs = 0.5. The main plot is for b = 0.01 and the inset is for b = 0.6.

where the kinetic energy is given by E0 = π2/24r2
s for the

fully spin-polarized HEG. The exchange energy contribution
is given by

Ex = ρ

2

∑
q �=0

V (q)

(
− 1

ρπ

∫ 1

0
dλ

∫ ∞

0
χ0(q, ιω)dω − 1

)

= ρ

2

∑
q �=0

V (q)[S0(q) − 1)], (31)

and the correlation energy is

Ec = ρ

2

∑
q �=0

V (q)

{
− 1

ρπ

∫ 1

0
dλ

∫ ∞

0

[
λV (q)χ2

0 (q, ιω)

+ λ χ se
1 (q, ιω) + λ χ ex

1 (q, ιω)
]
dω

}

= ρ

4

∑
q �=0

V (q)
[
Sd

1 (q) + Sse
1 (q) + Sex

1 (q)
]
,

εc = 1

4π

∫ ∞

0
V (q)

[
Sd

1 (q) + Sse
1 (q) + Sex

1 (q)
]
dq. (32)

We calculate the correlation energy as in Eq. (32) nu-
merically within the range of applicability of our theory for
both harmonic and cylindrical wires. The results are shown in
Fig. 9. In this figure, we also present the result for rs = 0.1
in the inset. It is seen that the difference between QMC and
theoretically calculated values decreases as rs is made smaller.
The difference in the two values for rs = 0.5 at b = 0.01 is
about 10%. The QMC data obtained for a harmonic potential
are also shown as symbols. There is a significant difference
between the correlation energies of harmonic and cylindrical
wires as b increases. The difference of the correlation energy
from its value for the infinitely thin wire is plotted against the
wire width in Fig. 10.

An analytical expression for the wire-width-dependent cor-
relation energy is derived using the next term of the series
expansion O(b2) of the potential [Eq. (11)] for a harmonic
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FIG. 9. Correlation energy per particle for a harmonic wire and a
cylindrical wire calculated using first-order RPA (shown as solid and
dashed lines) valid in the high-density limit, compared with VMC
and DMC data obtained for a harmonic wire. The main plot shows
the comparison for rs = 0.5 and the inset is for rs = 0.1. The value
of the first-order RPA correlation energy for an infinitely thin wire
is represented by �. The disagreement of the QMC data with first-
order RPA at smaller values of b is due to the approximation used in
Eq. (13), which restricts its applicability to the high-density limit.

wire and the SSF as in Eqs. (A1) and (A2) for x < 1 and
x > 1, respectively. The correlation energy per particle reads

εHr
c (b, rs) = 1

4rs
{�1 + �2}, (33)

where �1, the contribution for x < 1, is

�1 =
∫ 1

0
v(x)

[
SHr

1 (x)
]

x<1 dx

= rsg2
s

π2
[α0 + α1b′2 + (α2 + α3b′2) ln b′]. (34)

With η = γ − 1 − 3 ln 2 we have

α0 = 6 ln3 2 − 1

3
ln4 2 + ln2 2

(
π2

3
− 14

)
− 8 Li4

(
1

2

)

+ π4

12
− 7

4
(1 + ln 2)ζ (3) + 4 ln(2)

+ η

(
2 ln 2(ln 2 − 2) + 7

4
ζ (3)

)
,

α1 = 11

18
+ π2

108
+ ln 2

36
[3π2 − 74 + 8 ln 2(9 ln 2 − 11)]

+ 5

12
ζ (3) + η

(
π2

36
− 1

6
+ 2 ln 2

3
(ln 2 − 1)

)
,

α2 = 4 ln 2(ln 2 − 2) + 7ζ (3)

2
,

α3 =
(

π2

18
− 1

3
+ 4 ln 2

3
(ln 2 − 1)

)
.

 r
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FIG. 10. Change in the first-order RPA correlation energy per
particle from its value for the infinitely thin wire as a function of b
for a harmonic wire (upper) and cylindrical wire (lower) for various
rs values (0.1–1) from top to bottom.

�2, the contribution for x > 1, is

�2 =
∫ ∞

1
v(x)

[
SCy

1 (x)
]

x>1 dx

= rsg2
s

π2
[β0 + β1b′2 + (β2 + β3b′2) ln b′] (35)

with

β0 = −α0 − π4

90
,

β1 = −π2

36
+ ln 2

36
[24 ln 2(2 − 3 ln 2) − 9π2 + 48 ln 2 + 56]

− 7

4
ζ (3) − η

(
2 ln 2

3
(ln 2 − 1) + π2

12

)
,

β2 = −α2,

β3 = −4 ln 2

3
(ln 2 − 1) − π2

6
,
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where b′ = b2kF, Lin(z) is the polylogarithm function [29],
and ζ (s) is the Riemann zeta function. Equations (34) and (35)
can be expressed in simpler form by writing the values of the
constants as

�1 = −g2
srs

π2
[0.766477 + 0.073906 b′2

+ (−0.583834 + 0.068614 b′2) ln(b′)], (36)

�2 = −g2
srs

π2
[0.315846 + 0.798215 b′2

+ (0.583834 + 1.361340 b′2) ln(b′)]. (37)

On adding Eqs. (34) and (35), major cancellations occur and
the analytical form of the correlation energy per particle for a
harmonic wire simplifies as

εHr
c (b, rs) = − π2

360
− b2

216rs
2

[
6(3 + π2) ln

(
πb

rs

)

+ 72ζ (3) + 3γ (3 + π2) − 2π2 − 42

]
. (38)

Similarly, the correlation energy per particle for a cylindri-
cal wire is calculated. The details are given in Appendix B.
The final expression for the correlation energy per particle is

εCy
c (b, rs) = − π2

360
− b2

864rs
2

[
6(3 + π2) ln

(
πb

rs

)

+ 72ζ (3) + 6γ (3 + π2) − 5π2 − 51

− π2 ln(64) − 18 ln(2)

]
. (39)

The first term of Eqs. (38) and (39) has been found previ-
ously using conventional perturbation theory [15,30], variant
RPA [14], and QMC [23]. Here, we report the next term in
the expansion. The b and rs dependence enables one to study
correlation effects for a finite thickness wire. The expressions
for the correlation energy per particle in Eqs. (38) and (39)
are plotted against the wire width b at rs = 0.5, and compared
with exact numerical results for both wires in Fig. 11. The plot
shows that the derived expressions are applicable only in the
limit b � rs < 1.

Having found all the components of the ground-state en-
ergy [Eq. (30)], one can obtain the ground-state energy. In
Fig. 12, the ground-state energy as a function of wire width for
various values of rs is plotted. It shows that, as the wire width
is reduced, the ground-state energy decreases and becomes
negative for smaller b values, signifying that the 1D HEG
is energetically more stable. This stabilization is only for
an ideal HEG with a neutralizing background, and neglects
the transverse confinement energy. Further, we study the rs

dependence of the ground-state energy and compare it with
our recent VMC calculations [23] in Fig. 13 (upper), finding
excellent agreement. The first-order RPA correlation energy
as a function of rs is also compared with VMC and lattice-
regularized diffusion Monte Carlo (LRDMC) data [31–33] in
Fig. 13 (lower). The correlation energy as a function of rs for
a given fixed thickness b is in good agreement with previous
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ε cH
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Analytical
valid for small b
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FIG. 11. Analytical expressions for the wire-width-dependent
correlation energy [Eqs. (38) and (39)], which are valid only for small
b, plotted as a function of wire width b for rs = 0.5. The solid curves
are for analytical results and dashed curves are result of numerical
calculations of correlation energy as in Eq. (32). The plot shows the
applicability of the analytical results in the range b < 0.1.

LRDMC simulations. The RPA correlation energy deviates
from the QMC correlation energy for smaller values of b and
larger values of rs. The RPA used in the present work is a good
approximation for rs < 1. It can be seen from Eq. (2) that for
wires of finite thickness, the effective coupling depends on
two length scales, rs and b. For rs < 1, the coupling increases
as b decreases and hence the accuracy of the RPA expansion
decreases, leading to the observed deviation from the QMC
results.
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FIG. 12. Total ground-state energy Eg as a function of wire width
b. In the main plot, the first-order RPA for rs = 0.5 is compared
with DMC simulations and in the inset the analytical first-order RPA
results are plotted for rs = 0.2–1 in steps of 0.1 (top to bottom). The
statistical error bars on the DMC results are omitted as they are much
smaller than the symbols used.
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FIG. 13. Top panel: Total ground-state energy (Eg) as a function
of density parameter rs. In the main plot, analytical first-order RPA
results are plotted for b = 0.1, 0.3, 0.5, 0.7, and 0.9 (bottom to top),
and in the inset the first-order RPA results for b = 0.5 are compared
with VMC simulations. Bottom panel: Correlation energy per parti-
cle for a harmonic wire calculated using first-order RPA (shown as
solid lines) compared with the available QMC simulation data. The
LRDMC data shown are taken from Ref. [31].

IV. CONCLUSIONS

In this paper, we have performed VMC and DMC simula-
tions of the ground-state properties of a finite-width harmonic
wire in the high-density regime. The MD data have been
used to find the TL parameter Kρ for several wire widths at
high densities. The TL parameter is found to change around
10% from its value for thin wires. We have also obtained
analytical expressions for the wire-width-dependent SSF and
correlation energy for cylindrical and harmonic models of
transverse confinement at high density. Further, we provide
numerical results for the wire-width-dependent PCF, SSF, and
correlation energy. First-order RPA correlation energies are
found to deviate from QMC data for smaller values of b < rs

due to the fact that the effective electron-electron coupling
increases as b decreases in the high-density limit.
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APPENDIX A

For reference, we provide here the small-b SSF S1(x) for
harmonic and cylindrical wires, where x = q/(2kF). For the
harmonic wire, it reads for x < 1 as

SHr
1 (x) = g2

srs

π2x
(−(x + 1) ln2(x + 1) + 2(x + 1)[ln(x) + 1] ln

× (x + 1) + (x − 1) ln(1 − x)

× {ln(1 − x) − 2[ln(x) + 1]}) (A1)

and for x > 1 as

SHr
1 (x) = −g2

srs

π2x
(−2x[ln(x) + 1] ln(x2 − 1)

+ (x − 1) ln2(x − 1) + ln2(x + 1)

+ x{ln2(x + 1) + 2 ln(x)[ln(x) + 2]}
− 4[ln(x) + 1] coth−1(x)). (A2)

Similarly, for the cylindrical wire,

SCy
1 (x) = g2

srs

π2x

{
ζ (x), if x < 1,

ζ (x) − 2x ln x ln e2x, if x > 1,
(A3)

with

ζ (x) = (x + 1) ln(x + 1) ln

(
x2e2

x + 1

)

+ |x − 1| ln |x − 1| ln

(
x2e2

|x − 1|
)

. (A4)

The first-order SSF in the small-b limit comes out to be inde-
pendent of the width parameter for both of the wires.

APPENDIX B

The correlation energy per particle up to second order in b
for a cylindrical wire is given by

εCy
c = 1

4rs
{�1 + �2}, (B1)

where �1, the contribution for x < 1, is

�1 =
∫ 1

0
v(x)

[
SCy

1 (x)
]

x<1 dx

= rsg2
s

π2
[α0 + α1b′2 + (α2 + α3b′2) ln b′]. (B2)
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With η = γ − 1 − 3 ln 2 we have

α0 = 8 ln3 2 − ln4 2

3
+ ln2 2

(
π2

3
− 16

)
− 8 Li4

(
1

2

)

+ π4

12
+ η

(
4 ln 2(ln 2 − 2) + 7

2
ζ (3)

)
,

α1 = 11

72
+ π2

432
+ ln 2

9

(
π2

4
− 5 + ln 2(6 ln 2 − 7)

)

+ 5

48
ζ (3) + η

(
π2

72
− 1

12
+ ln 2

3
(ln 2 − 1)

)
,

α2 = 4 ln 2(ln 2 − 2) + 7ζ (3)

2
,

α3 =
(

π2

72
− 1

12
+ ln 2

3
(ln 2 − 1)

)
.

For �2, the contribution for x > 1 is

�2 =
∫ ∞

1
v(x)

[
SCy

1 (x)
]

x>1 dx

= rsg2
s

π2
[β0 + β1b′2 + (β2 + β3b′2) ln b′] (B3)

with

β0 = −α0 − π4

90
,

β1 = − π2

144
+ ln 2

36
[14 − 3π2 + 4 ln 2(7 − 6 ln 2)]

− 7

16
ζ (3) − η

(
ln 2

3
(ln 2 − 1) + π2

24

)
,

β2 = −α2,

β3 = − ln 2

3
(ln 2 − 1) − π2

24
.

Numerically, Eqs. (B2) and (B3) read

�1 = −g2
srs

π2
[1.00266 + 0.00296037 b′2

− (0.583834 − 0.0171535 b′2) ln(b′)], (B4)

�2 = −g2
srs

π2
[0.079662 − 0.108293 b′2

+(0.583834 + 0.340335 b′2) ln(b′)]. (B5)
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