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Environment-induced decay dynamics of antiferromagnetic order in Mott-Hubbard systems
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We study the dissipative Fermi-Hubbard model in the limit of weak tunneling and strong repulsive interactions,
where each lattice site is tunnel-coupled to a Markovian fermionic bath. For cold baths at intermediate chemical
potentials, the Mott insulator property remains stable and we find a fast relaxation of the particle number
towards half filling. On longer time scales, we find that the antiferromagnetic order of the Mott-Néel ground
state on bipartite lattices decays, even at zero temperature. For zero and nonzero temperatures, we quantify
the different relaxation time scales by means of waiting time distributions, which can be derived from an
effective (non-Hermitian) Hamiltonian and obtain fully analytic expressions for the Fermi-Hubbard model on a
tetramer ring.
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I. INTRODUCTION

An important question in non-equilibrium physics of quan-
tum many-body systems is the relaxation towards equilibrium
after the excitation by an external stimulus [1–4]. For weakly
interacting quantum many-body systems, there has been con-
siderable progress in this direction because such systems often
admit an effective single-particle description, e.g., via lin-
earization around a mean field [5,6]. For strongly interacting
quantum many-body systems however, our understanding—
although advanced in one-dimensional systems [7–13]—in
general is still far from complete.

As one of the most prominent examples for a strongly
interacting quantum many-body system, we consider the
Fermi-Hubbard Hamiltonian [9,14–16]

Ĥ = −J
∑
〈μν〉,s

ĉ†
μ,sĉν,s + U

∑
μ

n̂↑
μn̂↓

μ + ε
∑
μ,s

n̂s
μ

= ĤJ + ĤU + Ĥε, (1)

where ĉ†
μ,s and ĉν,s denote the fermionic creation and an-

nihilation operators at the lattice sites μ and ν with spin
s ∈ {↑,↓}, while n̂s

μ = ĉ†
μ,sĉμ,s is the corresponding num-

ber operator. The hopping strength J describes tunneling
between neighboring lattice sites 〈μν〉 and is supposed to
be much smaller than the on-site repulsion or interaction
strength U . Finally, we included the single-particle on-site
energy ε.

In the case of half filling, the ground state of the Hubbard
model (1) in higher dimensions would be metallic for weak
interactions U � J but it becomes insulating for strong re-
pulsion U � J [17]. This Mott-insulating state is separated
by the Mott gap ≈ U from those excited states containing
doublon-holon pairs and has mostly one particle per lat-
tice site, but, e.g., also features a small double occupancy

〈n̂↑
μn̂↓

μ〉 ∼ J2/U 2 due to (virtual) hopping processes, which
lower the energy [18]. At half filling, these hopping pro-
cesses are only allowed for opposite spins at neighboring
sites and thus induce an effective antiferromagnetic interac-
tion. As a result, the ground state displays antiferromagnetic
order (Mott-Néel state) on bipartite lattices (in higher
dimensions).

Variants of the Hubbard model are investigated for signs
of superconductivity [19,20]. This has sparked tremendous
efforts, such that nowadays experimental realizations of the
Fermi-Hubbard model (1) include ultracold fermionic atoms
in optical lattices [21–24] as well as electrons in various
lattice systems, for example ad-atoms on Si surfaces [25,26],
arrays of quantum dots [27,28], crystal structures such as
1T-TaS2 [29–31], or artificial lattices [32]. However, apart
from the first example (optical lattices), these systems are
never perfectly isolated, but more or less strongly coupled
to fermionic reservoirs. In the following, we study the im-
pact of this coupling to the environment on the relaxation
dynamics.

II. LINDBLAD MASTER EQUATION

In addition to the unitary system dynamics generated
by the Fermi-Hubbard Hamiltonian (1), we consider the
coupling to the environment. Assuming that the coupling
is sufficiently weak and that memory effects of the bath
can be neglected (Born-Markov approximation), we may
describe the evolution of the system density matrix ρ̂ by
a generic Gorini-Kossakowski-Sudarshan-Lindblad [33,34]
master equation (h̄ = 1)

d ρ̂

dt
= −i[Ĥ, ρ̂] +

∑
I

(
L̂I ρ̂L̂†

I − 1

2
{L̂†

I L̂I , ρ̂}
)

, (2)
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FIG. 1. Sketch of a Fermi-Hubbard model (1) with four sites,
where each site can host four states {|0〉, |↑〉, |↓〉, |2〉}, such that
the system Hilbert space dimension is 44 = 256. Between the sites,
electronic tunneling is possible with amplitude J . In absence of
tunneling, a single charge on a site (bottom right) will have an on-site
energy ε, whereas two electrons of opposite spin (top left) will have
the energy 2ε + U . The local reservoirs may load and unload the
system with bare rate γ .

where L̂I denote the Lindblad operators that we motivate
below. As in [11,35–40] we assume that each lattice site μ

features its local set of Lindblad operators [41] as is sketched
in Fig. 1.

Let us briefly discuss the region of applicability of this
description. If we first consider disconnected lattice sites (i.e.,
J = 0) weakly coupled to separate Markovian baths, such a
master equation (2) can be derived in a standard way [42] by
considering sites and reservoirs separately. Now switching on
the tunneling J between lattice sites, an analogous derivation
can be carried out, as we show in Appendix A, as long as the
coupling J between the lattice sites is weak in comparison
to their coupling γ to the reservoir—while both are much
smaller than the interaction strength U .

The applicability of the underlying assumptions of separate
or individual baths for each lattice site, as well as J � γ , de-
pends on the specific physical realization. For ultracold atoms
in optical lattices [21], the Mott-Hubbard system could be
realized in a planar lattice while the separate baths correspond
to atoms moving (guided by lasers) perpendicular to this
plane—where the in-plane hopping strength J can be tuned
to be much smaller than the perpendicular tunneling strength,
which determines γ . For Fermi-Hubbard simulators based on
gate-defined quantum dots [27], local tunneling reservoirs can
be represented by smaller tunnel electrodes placed nearby.
For other Hubbard systems sharing a common reservoir, the
description based on separate baths can be a good approx-
imation when the coupling to the lattice sites is effectively
incoherent (e.g., if the lattice spacing of the Hubbard system is
much larger than the relevant length scale, such as coherence
or correlation length of the reservoir; or the bath relaxation is
fast enough.)

Zero-temperature bath

As explained above, consistent with our assumption of a
strongly interacting system, we assume that the on-site repul-

sion U is not only much stronger than the system hopping
J , but also dominant in comparison with the coupling to the
bath. Apart from the spectral density of the reservoir, the
impact of this coupling to the bath is mainly determined by
the inverse temperature β and the chemical potential μb of the
reservoir (which we assume to consist of free fermions). Let
us first consider the case of zero temperature (cold bath), finite
temperatures will be discussed in Sec. VI below.

If the chemical potential of the bath is too low μb < ε, all
the particles from the system will just tunnel to the bath such
that we are left with an empty system state. In the other lim-
iting case, if the chemical potential is too high μb > U + ε,
the reservoir will fill up the system, also leading to a trivial
state. Thus, we assume an intermediate chemical potential, for
example μb = ε + U/2, where only a doubly occupied site
can release a particle into the reservoir due to its high on-site
repulsion energy U , while singly occupied sites cannot do that
as the reservoir states at the energy ε are already filled (Pauli
principle). Conversely, only an empty lattice site can receive
a particle from the bath. Altogether, a cold fermionic bath at
intermediate chemical potential is described by two Lindblad
operators for each site μ and spin s:

L̂I ∈ {√
γ
(
1 − n̂s̄

μ

)
ĉ†
μ,s,

√
γ n̂s̄

μĉμ,s
}
, (3)

where the double index I = {μ, s} comprises sites and spins.
Here, s̄ denotes the spin opposite to s and γ measures the
strength of the coupling to the environment. Here, we assume
that all these coupling strengths are the same, but one can also
consider the case of different couplings γ → γI .

III. RELAXATION DYNAMICS AT T = 0

Even though solving the full equation of motion (2) is only
possible for very small lattices, we may gain interesting in-
sight by considering special observables. For the total particle
number N̂ , we find a fast relaxation towards half filling

d

dt
〈N̂〉 = d

dt

∑
μ,s

〈
n̂s

μ

〉 = −2γ
∑
μ,s

(〈
n̂s

μ

〉− 1

2

)
. (4)

Another interesting observable is the total angular momen-
tum [9,43–46]

Ŝ =
∑

μ

Ŝμ = 1

2

∑
μ,s,s′

ĉ†
μ,sσs,s′ ĉμ,s′ (5)

with the matrix elements of the Pauli matrices denoted by σs,s′ .
Its components obey the usual spin algebra [Ŝx, Ŝy] = iŜz, and
one can define the usual ladder operators via Ŝ± = Ŝx ± iŜy

that obey the commutation relations [Ŝ−, Ŝ+] = −2Ŝz and
[Ŝz, Ŝ±] = ±Ŝ±. The unitary system dynamics generated by
the Fermi-Hubbard Hamiltonian (1) in absence of a bath
conserves this quantity [Ĥ, Ŝ] = 0 (and therefore also Ŝ

2
is

conserved for γ = 0). After coupling to the zero-temperature
bath discussed above (2), we still obtain an exact conservation
law for the expectation value of the total spin Ŝ

d

dt
〈Ŝ〉 = 0. (6)
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Unlike in the unitary case however, its square is not conserved

d

dt
〈Ŝ2〉 = 3γ

2

∑
μ

〈
n̂↑

μn̂↓
μ + (

1 − n̂↑
μ

)(
1 − n̂↓

μ

)〉
� 0. (7)

Since the right-hand side (r.h.s.) of the above equation is
non-negative, we find that 〈Ŝ2〉 always grows until a steady
state ρ̂∞ is reached. Furthermore, we find that this steady state
ρ̂∞ must have exactly one particle per site such that 〈n̂↑

μn̂↓
μ〉 =

〈(1 − n̂↑
μ)(1 − n̂↓

μ)〉 = 0, i.e., the Mott insulator property is
stable.

In addition to the total angular momentum Ŝ discussed
above, which can be defined for arbitrary lattice structures,
we may introduce further relevant observables in bipartite
lattices. For these, we can find a site ordering μ such that
the parity (−1)μ is always opposite for neighboring lattice
sites, which—in analogy to the spin—allows us to introduce
the pseudospin operators [47,48]

η̂ =
∑

μ

(−1)μĉμ,↑ĉμ,↓, η̂z = 1

2
(N̂ − Nlattice ), (8)

where Nlattice denotes the number of lattice sites. Analo-
gous to the spin ladder operators, these obey the relations
[η̂, η̂†] = −2η̂z, [η̂z, η̂] = −η̂, and [η̂z, η̂

†] = +η̂†. In contrast
to Eq. (6), the pseudospin is not conserved in presence of a
bath. The square of the total pseudospin is defined as

η̂2 = 1
2 (η̂η̂† + η̂†η̂) + η̂2

z , (9)

and commutes with Ĥ , N̂ , Ŝ, and Ŝ
2
. It obeys a simple evolu-

tion equation quite analogous to Eq. (7)

d

dt
〈η̂2〉 = 3γ

2

∑
μ

〈
n̂↑

μn̂↓
μ + (

1 − n̂↑
μ

)(
1 − n̂↓

μ

)〉− 4γ 〈η̂2〉.

(10)

Since the steady state ρ̂∞ must have exactly one particle per
site 〈n̂↑

μn̂↓
μ〉 = 〈(1 − n̂↑

μ)(1 − n̂↓
μ)〉 = 0, we see that 〈η̂2〉 must

vanish in the steady state.

A. Steady states

Even without solving the full problem, we may infer some
properties of the steady states [49,50] ρ̂∞. Because they have
exactly one particle per lattice site, the Lindblad operators
L̂I ρ̂∞ = 0 and the interaction term ĤU ρ̂∞ = 0 acting on these
states vanish identically while Ĥε acts trivially. Thus, it suf-
fices to consider only the action of the hopping Hamiltonian
ĤJ , which can be diagonalized easily. Since those station-
ary states ρ̂∞ must commute with ĤJ , we may diagonalize
them simultaneously. Then, because each term ĉ†

μ,sĉν,s in the
hopping Hamiltonian ĤJ , after acting on a state with exactly
one particle per lattice site, either annihilates this state or
leads to a doubly occupied (μ) and an empty (ν) lattice site,
these steady states ρ̂∞ must also be in the subspace with zero
eigenvalue of the hopping Hamiltonian ĤJ , i.e., ĤJ ρ̂∞ = 0.
One example is the ferromagnetic state | ↑↑↑ . . . 〉, which
maximizes Ŝz and Ŝ

2
and is obviously a steady state. Now, as

the ladder operators Ŝ± commute with Ĥ , we see that all the
states |�n〉 ∝ Ŝn

−| ↑↑↑ . . . 〉 are steady states. They maximize

Ŝ
2

and form a ladder with Nlattice + 1 states from | ↑↑↑ . . . 〉
to | ↓↓↓ . . . 〉, whose rungs can be labeled by their different
eigenvalues of Ŝz.

B. Anti-ferromagnetic order

As we found above, the states with maximum Ŝ
2

are steady
states. Note however, that the previous line of arguments does
not necessarily imply that these are the only steady states—
this depends on the lattice structure (which determines the
diagonalization of ĤJ ). For a lattice which can be decomposed
into two disconnected sublattices, for example, there are fur-
ther steady states (which maximize Ŝ

2
for each sublattice

separately).
However, the antiferromagnetic state (which is the ground

state of Ĥ on simply connected bi-partite lattices) is not a
steady state. As we have seen above, the steady states are
annihilated by ĤJ , i.e., all the hopping contributions vanish
or cancel each other. In contrast, the antiferromagnetic order
of the Mott-Néel state is precisely such that it facilitates tun-
neling in order to lower the energy [18].

As a result, while the Mott insulator structure itself is
stable (i.e., conserved by the steady states), we find a decay
of the antiferromagnetic order of the Mott-Néel state due to
the coupling to the environment according to Eq. (2).

C. Relaxation time scales

Finally, let us discuss the different time scales of relaxation.
Obviously, the relaxation to half filling occurs on a time scale
O(1/γ ). In contrast, in the strongly interacting case U � J at
half filling, the r.h.s. of (7) is suppressed as J2/U 2 (as already
mentioned in the introduction) and thus the growth in (7) is
much slower than that in (4). As a result, we find two vastly
different relaxation time scales—as already observed in many
other systems and scenarios, see, e.g., Refs. [31,39,40,51–53].
A more quantitative analysis of these two time scales will be
presented in the next section.

IV. WAITING TIME DISTRIBUTION

In order to study the different time scales observed above
in more detail, let us rewrite the master equation (2) in terms
of the Liouville super-operator L

d ρ̂

dt
= −iĤeff ρ̂ + iρ̂Ĥ†

eff +
∑

I

L̂I ρ̂L̂†
I = Lρ̂, (11)

where we have introduced the effective Hamiltonian

Ĥeff = Ĥ − i

2

∑
I

L̂†
I L̂I = Ĥ − i

2
L̂

2
, (12)

which is non-Hermitian due to the coupling with the bath. For
the cold bath (3), we find

L̂
2 = −2γ

∑
μ,s

(
n̂s

μ − 1

2

)
+ 4γ

∑
μ

n̂↑
μn̂↓

μ. (13)

Thus, apart from the c-number contribution, the effective
Hamiltonian (12) has the same structure as the Fermi-Hubbard
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model (1), just with complex parameters U → U − 2iγ and
ε → ε + iγ .

As the next step, we decompose the total Liouville super-
operator L into the jump term

Ljumpρ̂ =
∑

I

L̂I ρ̂L̂†
I (14)

and remaining contribution Lstay = L − Ljump corresponding
to no jumps. Then, the total evolution of the density matrix ρ̂

in a time interval [0, t] can be expanded into a Dyson series in
Ljump via

eLt = eLstayt +
∫ t

0
dt ′ eLstay (t−t ′ )LjumpeLstayt ′ + . . . (15)

The first term eLstayt corresponds to no jumps in time interval
[0, t], the second term describes one jump at a time t ′ and the
higher-order contributions correspond to two or more jumps.
As a result, starting with the initial state ρ̂0 = ρ̂(t = 0), the
probability for no jump during the time interval [0, t] is
given by

Pstay(t ) = Tr{eLstayt ρ̂0} = Tr{e−iĤeff t ρ̂0e+iĤ†
eff t }. (16)

This allows us to infer the waiting time distribution [54–62],
i.e., the probability density ω(t ) of the waiting time t until an
initial state ρ̂0 decays due to the first jump, via

ω(t ) = −Ṗstay. (17)

This waiting time distribution is a quantitative measure of the
relaxation rates and its decay constants are determined by the
complex eigenvalues σn of Ĥeff via e−iHeff t = ∑

n M̂n(t )e−iσnt ,
where the M̂n(t ) can (for degenerate σn) be polynomial func-
tions of t . Thus, the imaginary parts �σn � 0 in particular
determine the decay characteristics of the waiting time dis-
tributions.

A first rough estimate of these eigenvalues of Ĥeff can
be obtained by perturbation theory in γ . Note that pertur-
bation theory for non-Hermitian operators (such as Ĥeff )
is typically more complicated than for Hermitian operators
(such as Ĥ ) [63,64]. Nevertheless, starting from the undis-
turbed eigenstates |uλ〉 of the Fermi-Hubbard Hamiltonian
Ĥ corresponding to the real undisturbed (and assumed to be
nondegenerate) eigenvalues λ, we may find the first-order shift
of the associated complex eigenvalues σλ of Ĥeff by

σλ = λ − i

2
〈uλ|L̂2|uλ〉 + O(γ 2). (18)

For example, the empty state |uλ〉 = |00 . . . 〉 with λ = 0
is shifted to the imaginary eigenvalue σλ = −iγ Nlattice with
Nlattice denoting the number of lattice sites—which corre-
sponds to the fast relaxation of the particle number (4).
As another example, the aforementioned ferromagnetic state
|uλ〉 = | ↑↑ . . . 〉 is inert and thus has no imaginary shift
�(σλ) = 0, showing that it is a steady state (at zero temper-
ature).

The evaluation of waiting times between two jumps is
also possible [56,57], and can analogously be achieved by
evaluating the exponential of Ĥeff .

V. HUBBARD TETRAMER AT T = 0

The above approach based on the waiting-time distribution
goes along with a tremendous reduction in complexity. Instead
of calculating eLt or diagonalizing L, it suffices to diagonal-
ize the effective Hamiltonian Ĥeff . Moreover, we found that
Ĥeff has the same structure as the original Fermi-Hubbard
Hamiltonian Ĥ , just with complex parameters U and ε. Of
course, despite this reduction in complexity, one can only
derive general analytic expressions in those cases where the
original Fermi-Hubbard Hamiltonian Ĥ can be diagonalized.

In order to treat such a simple (yet nontrivial) case, we
consider the Fermi-Hubbard model on a square (which is
equivalent to a ring consisting of 4 lattice sites). Even in this
simple case, the total Hilbert space contains 44 = 256 states,
i.e., Ĥeff and Ĥ can be represented as 256 × 256 matrices. In
order to bring these matrices into a treatable block-diagonal
form, we employ a suitable set of commuting observables.

Apart from the total particle number N̂ , we select Ŝz and Ŝ
2

as further commuting observables. The total spin Ŝ
2

allows us
to classify the Hubbard tetramer spectrum into 42 singlets, 48
doublets, 27 triplets, 8 quadruplets, and 1 quintuplet. These
states compose the 42 · 1 + 48 · 2 + 27 · 3 + 8 · 4 + 1 · 5 =
256 states in the total Hilbert space. In analogy to the spin Ŝ

2
,

the pseudospin (9) also allows to classify the 256 states into
42 pseudosinglets, 48 pseudodoublets, 27 pseudotriplets, 8
pseudoquadruplets, and 1 pseudoquintuplet. The classification
according to the pseudospin is different from that according
to the spin, which allows us to decompose the Hilbert space
further.

As the final ingredient, we use suitable geometric
symmetries of the square. One option could be the
quasimomentum, which generates the cyclic permutation
P̂1234: 1 → 2, 2 → 3, 3 → 4 and 4 → 1 of the lattice sites,
see Appendix B. However, we found it more convenient to
employ the reflections at the two diagonals of the square, i.e.,
the permutations P̂13 and P̂24

P̂μν = exp

{
i
π

2

∑
s

(ĉ†
μ,sĉν,s + ĉ†

ν,sĉμ,s − n̂μ,s − n̂ν,s)

}
, (19)

exchanging sites 1 ↔ 3 and 2 ↔ 4, respectively. These
symmetry operations represent additional commuting
observables with eigenvalues (parities) ±1.

Now we may use the set {N̂, Ŝz, Ŝ
2
, η̂2, P̂13, P̂24} to di-

agonalize Ĥeff , which can be decomposed into independent
blocks with maximum rank four, which allows us to find the
eigenvalues analytically. For example, the empty state |0000〉
lies in the sector with even parities where all the other quan-
tities {N̂, Ŝz, Ŝ

2
, η̂2} vanish. It is an eigenstate of Ĥeff with

the eigenvalue σ = −4iγ , and its waiting-time distribution
correspondingly reads

w(t ) = −Ṗstay(t ) = 8γ e−8γ t . (20)

As already explained above, the quintuplet states are steady
states

|�−2〉 = |↓↓↓↓〉,

|�−1〉 = 1

2
[|↑↓↓↓〉 + |↓↑↓↓〉 + |↓↓↑↓〉 + |↓↓↓↑〉],
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|�0〉 = 1√
6

[|↑↑↓↓〉 + |↑↓↑↓〉 + |↑↓↓↑〉

+ |↓↑↑↓〉 + |↓↑↓↑〉 + |↓↓↑↑〉],

|�+1〉 = 1

2
[|↓↑↑↑〉 + |↑↓↑↑〉 + |↑↑↓↑〉 + |↑↑↑↓〉],

|�+2〉 = |↑↑↑↑〉, (21)

and thus their waiting-time distributions vanish identically
w(t ) = 0. They all contain four particles with maximum Ŝ

2

and are labeled by their Ŝz eigenvalues. All these states have
odd parities (due to the Pauli principle) and are annihilated by
η̂2, i.e., |η| = 0. For the Hubbard tetramer, these are the only
steady states.

For the Hubbard dimer, we found in Ref. [40] a slow
relaxation for the spin singlet state (| ↑↓〉 − | ↓↑〉)/

√
2. Thus,

let us now consider its straight-forward generalization to four
lattice sites

|�zaf〉 = |↑↓↑↓〉 − |↓↑↓↑〉√
2

. (22)

This state displays Ising type (i.e., Ŝz) antiferromagnetic order
and lies in the sector with N = 4 particles, |S| = 1, Sz = 0,
and |η| = 0 and is separately odd under the site permutations
P̂13 and P̂24. This sector contains [65] two additional states
|�1

zaf〉 and |�2
zaf〉 that can be conveniently generated from

|�zaf〉 by acting with the hopping Hamiltonian ĤJ and sub-
sequent Erhard-Schmidt orthogonalization [66].

In the basis {|�0
zaf〉 = |�zaf〉, |�1

zaf〉, |�2
zaf〉}, the effective

Hamiltonian can be represented by the 3 × 3 matrix (the signs
of off-diagonal matrix elements can be controlled by properly
choosing the basis vectors)

Ĥeff =
⎛
⎝ 4ε +√

8J 0
+√

8J 4ε + U − 2iγ +√
8J

0 +√
8J 4ε + U − 2iγ

⎞
⎠. (23)

The eigenvalues of this matrix reflect the two relaxation times
scales mentioned above. In the strongly interacting limit U �
J , two eigenvalues σ± have a large imaginary part �(σ±) ≈
−2γ while the remaining eigenvalue σ0—whose eigenvec-
tor has the largest overlap with the antiferromagnetic state
(22)—has much smaller imaginary part �(σ0) = O(γ J2/U 2).
Specifically, a Taylor expansion in J/U � 1 up to quadratic
order yields

σ0 ≈ 4ε − 8J2

U
− i

16γ J2

U 2
, (24)

σ± ≈ 4ε + U ± 2
√

2J + 4J2

U
+ i

(
−2γ + 8γ J2

U 2

)
.

Finally, let us consider the full Heisenberg type antiferro-
magnetic state, i.e., the Mott-Néel state

|�af〉 = 1√
12

[2|↑↓↑↓〉 + 2|↓↑↓↑〉

− |↑↑↓↓〉 − |↑↓↓↑〉 − |↓↓↑↑〉 − |↓↑↑↓〉], (25)

which is orthogonal to the previously discussed states (21) and
(22). It belongs to the sector with N = 4, Sz = 0, |S| = 0,
|η| = 0, and is separately odd under the site permutations

P̂13 and P̂24. As before, this sector contains two additional
states that can be created by the action of ĤJ and subsequent
orthonormalization 2, and in the basis formed by {|�0

af〉 =
|�af〉, |�1

af〉, |�2
af〉}, the effective non-Hermitian Hamiltonian

has the representation

Ĥeff =
⎛
⎝ 4ε

√
12J 0√

12J 4ε + U − 2iγ 2J
0 2J 4ε + 2U − 4iγ

⎞
⎠. (26)

Taylor expansion for J/U � 1 yields the eigenvalues

σ0 ≈ 4ε − 12
J2

U
− i

24γ J2

U 2
,

σ1 ≈ 4ε + U + 8
J2

U
+ i

(
−2γ + 16γ J2

U 2

)
,

σ2 ≈ 4ε + 2U + 4
J2

U
+ i

(
−4γ + 8γ J2

U 2

)
, (27)

which now has three distinct modes, two fast decaying ones
and a slower decaying one.

Retrieving the isolated Fermi-Hubbard model by consid-
ering the real part of Eqs. (24) and (27), we see that the
lowest energy state comes from the sector described by ma-
trix representation (26), and indeed one can show that the
ground state in the sector with N↑ = N↓ = 2 is spanned by
the states |�0

af〉 and (for J � U small) contributions of |�1
af〉

and |�2
af〉. Indeed, it is well known [43] that the ground state

of the half-filled sector must have 〈Ŝ2〉 = 0. Given the evident
antiferromagnetic order of (22), this may appear surprising but
one should keep in mind that the true ground state maximizes
the full (Heisenberg type) antiferromagnetic order operator

Ôaf = −
4∑

μ=1

Ŝμ · Ŝμ+1, (28)

which is directly proportional to a Heisenberg Hamiltonian.
This order operator commutes with N̂ , Ŝz, Ŝ

2
, and the quasi-

momentum P̂1234 or the permutation operators P̂13 and P̂24,
it can therefore also be brought in the same block-diagonal
form as Ĥeff . Direct inspection of 〈�af |Ôaf |�af〉 = 2 shows
that |�af〉 is maximally ordered, and thereby more ordered
than |�zaf〉, for which one finds 〈�zaf |Ôaf |�zaf〉 = 1. Even for
finite but small J/U , the ground states (for γ = 0) of Eqs. (23)
and (26) possess the order parameters 〈Ôaf〉 ≈ 1 − 10J2/U 2

and 〈Ôaf〉 ≈ 2 − 15J2/U 2, respectively. One can show that
these expectation values are consistent with the lowest eigen-
values (24) and (27) of the isolated tetramer, for which
an effective Heisenberg-type Hamiltonian applies [18], see
Appendix C.

In an analogous fashion, the decay properties of all eigen-
states of the Hubbard model on the square can be analytically
evaluated. For illustration, we provide the qualitative decay
dynamics of all 36 states in the sector N↑ = 2 = N↓ in Ap-
pendix D.

VI. FINITE-TEMPERATURE BATH

For finite reservoir temperatures, the calculations are es-
sentially analogous, we just have to take the finite occupations
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of the reservoir into account. Then, the Lindblad operators in
(3) generalize to four operators per site and spin

L̂I ∈ {√
γ fE

(
1 − n̂s̄

μ

)
ĉ†
μ,s,

√
γ (1 − fE)

(
1 − n̂s̄

μ

)
ĉμ,s,√

γ fUn̂s̄
μĉ†

μ,s,
√

γ (1 − fU)n̂s̄
μĉμ,s

}
, (29)

which we motivate microscopically in Appendix E. Here,
the thermal properties of the reservoir are encoded in the
Fermi functions for transitions between empty (E) and
singly-charged dots fE = [eβ(ε−μb ) + 1]−1 and for transi-
tions between singly and doubly charged (U) dots fU =
[eβ(ε+U−μb ) + 1]−1, with inverse temperature β and chemical
potential μb while γ denotes the spectral density (assumed flat
over the energy scales of the tetramer, wide-band limit). The
first Lindblad operator above describes a transfer of an elec-
tron with spin s onto site μ, provided the other spin species s̄
is not present at that site and the second term describes the re-
verse process, i.e., an electron with spin s leaving site μ when
the other spin species is not present. The second line above
describes the same processes when the other spin species is
present, where the corresponding transition rates are modified
by the Coulomb interaction. When μb = ε + U/2 and βU �
1, we get fE → 1 and fU → 0, such that the previous Lindblad
operators (3) are reproduced. The generator (2) with Lindblad
operators (29) tends to locally thermalize the system, i.e., in
the limit J = 0 the state ρ̂β ∝ exp{−β(Ĥε + ĤU − μbN̂ )} is a
stationary state.

To identify the non-Hermitian Hamiltonian, we evaluate

L̂
2 =

∑
μs

[
γ fE

(
1 − n̂s̄

μ

)(
1 − n̂s

μ

)+ γ (1 − fE)
(
1 − n̂s̄

μ

)
n̂s

μ

+ γ fUn̂s̄
μ

(
1 − n̂s

μ

)+ γ (1 − fU)n̂s̄
μn̂s

μ

]
= 2Nlatticeγ fE1 + γ (1 + fU − 3 fE)

∑
μs

n̂s
μ

+ 4γ ( fE − fU)
∑
μs

n̂s̄
μn̂s

μ. (30)

Thus, apart from a shift of −Nlatticeiγ fE, the effective non-
Hermitian Hamiltonian contains the on-site energy ε → ε −
iγ /2(1 + fU − 3 fE) and the Coulomb interaction U → U −
2iγ ( fE − fU) as complex parameters also for finite tempera-
tures. The previously discussed zero-temperature limit (when
μb = ε + U/2 and βU � 1) is recovered by fE → 1 and
fU → 0.

A. Infinite temperature limit

At infinite temperatures, we just set fE → 1/2 and fU →
1/2, and the effective non-Hermitian Hamiltonian is trivially
shifted Ĥeff = Ĥ − i

2γ Nlattice1. Explicit evaluation of the mas-
ter equation (2) with Lindblad operators (29) then shows that
ρ̂∞ ∝ 1 is a stationary state at infinite temperatures. Consis-
tently, we find that in this limit observables that are conserved
for the isolated Fermi-Hubbard model obey simple closed
equations of motion. For example, the particle number again
decays quickly towards half filling, but the relaxation rate is

only half that of the low-temperature limit (4)

d

dt

∑
μ,s

〈
n̂s

μ

〉 = −γ

(∑
μ,s

〈
n̂s

μ

〉− 1

2

)
. (31)

The spin components are no longer conserved as in (6) but
decay according to

d

dt
〈Ŝ〉 = −γ 〈Ŝ〉. (32)

Analogously, in contrast to (7), the spin quadrature decays
according to

d

dt
〈Ŝ2〉 = −2γ

(
〈Ŝ2〉 − 3

2

)
. (33)

The stationary value 3/2 of the spin quadrature is consistent
with ρ̂∞ ∝ 1.

Furthermore, in contrast to (10), the pseudospin evolves
similarly to the spin

d

dt
〈η̂2〉 = −2γ

(
〈η̂2〉 − 3

2

)
. (34)

One may ask how the interacting Lindblad operators (29)
are compatible with the following phenomenological picture
[40]: For infinite temperatures, due to availability of the full
range of energies, one might expect that the model behaves
as independent sites, which can be loaded and unloaded just
as noninteracting electrons, i.e., independent of whether an
electron is already present or not. Closer inspection shows
that for states ρ̂ obeying [ρ̂, n̂s

μ] = 0 (e.g., having definite
particle numbers n̂s

μ for each site μ and spin s), one may
recombine the dissipators (29) to recover the local description
of independent electrons—formally equivalent to Eq. (E7) for
f = 1/2, which would also result from the coherent approxi-
mation introduced in Ref. [40]. This does of course depend on
the initial state, and it is indeed an interesting route of further
research to investigate how the decay dynamics depends on
the presence of correlations.

B. Hubbard tetramer

For finite temperatures and finite chemical potentials the
initially empty (E ) and initially filled (F ) states decay trivially

ωE (τ ) = 8γ fEe−8γ τ fE ,

ωF (τ ) = 8γ (1 − fU)e−8γ τ (1− fU ). (35)

In general, when we consider states that are completely
determined by the known quantum numbers, the effective
non-Hermitian Hamiltonian will be a 1 × 1 matrix, which
only allows the waiting-time distribution to decay in a simple
exponential fashion. For example, the five quintuplett states
(21) that are completely determined by fixing Ŝ

2
and Ŝz and

superpositions of them all obey the same waiting time distri-
bution

ω2(τ ) = 4γ (1 − fE + fU)e−4γ τ (1− fE+ fU ). (36)

As mentioned, for μb = ε + U/2, these states remain stable
in the zero-temperature limit βU � 1. For small but finite
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temperatures, we find that 1 − fE + fU ≈ 2e−βU/2, such that
their average lifetime scales as

〈τ 〉 =
∫ ∞

0
τω2(τ )dτ ≈ eUβ/2

8γ
. (37)

One could imagine to exploit this very long lifetime for storing
(quantum) information in superpositions of these states at low
temperatures. However, as the waiting time distribution (36) is
a simple exponential decay, it offers no lifetime guarantee, i.e.,
arbitrarily short lifetimes are possible (and actually always
more probable than long ones).

Note that this is different for the state (22), for which the
effective non-Hermitian Hamiltonian assumes nearly the same
form as for zero temperatures, the only difference to Eq. (23)
is that the top-left matrix element is modified to〈

�0
zaf

∣∣Ĥeff

∣∣�0
zaf

〉 = 4ε − 2iγ (1 + fU − fE), (38)

where we again reproduce the previous case at low temper-
atures and half-filling potential ( fE → 1 and fU → 0). The
situation is however fundamentally different in the infinite
temperature limit ( fE = fU = 1/2), where the eigenvalues of
Heff are just the eigenvalues of Ĥ shifted by −2iγ towards
the lower complex plane. Thus, at high temperatures this state
will decay in a trivial exponential fashion ∝ e−4γ t , whereas at
low temperatures the competing much slower timescale from
(24) is revealed.

For the fully antiferromagnetic state (25), we find that in
Eq. (26) two matrix elements have to be modified〈

�0
af

∣∣Ĥeff

∣∣�0
af

〉 = 4ε − 2iγ (1 + fU − fE),〈
�2

af

∣∣Ĥeff

∣∣�2
af

〉 = 4ε + 2U − 2iγ (1 + fE − fU), (39)

such that also here at high temperatures all modes decay
similarly.

The resulting waiting time distributions for the states (22)
and (25) are displayed for different temperatures in Fig. 2.

One can see that the differences between the waiting time
distributions for the two antiferromagnetic states are small
and become visible only at very small temperatures. Both
states can at small temperatures be equipped with a lifetime
guarantee (meaning that short lifetimes are less probable or
formally that ω(τ ) vanishes at small τ ), in contrast to the
trivially decaying quintuplet states.

VII. SUMMARY

We analyzed the relaxation dynamics of the open Fermi-
Hubbard model as a prototypical example for a strongly
interacting quantum many-body system subject to local dis-
sipation. More precisely, we considered the limit of large
on-site Coulomb repulsion U and small intrasystem hopping
strength J . In order to model the environment, each lattice site
is tunnel coupled to a (separate) free fermionic reservoir. In
this regime, dissipation can be described by a simple Lind-
blad master equation, which is local in time and space. As
a result, we were able to find simple evolution equations for
several observables, such as total particle number and total
angular momentum, which are valid for arbitrary lattices.
For zero-temperature reservoirs, these evolution equations al-
ready indicate the emergence of very different relaxation time
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FIG. 2. Main: Waiting time distribution (WTD) for state |�zaf〉
from Eq. (22) (dashed curves) and state |�af〉 from Eq. (25) (solid
curves) for different temperatures. For high temperatures, one has a
trivial exponential decay and both states decay virtually identically,
cf. the solid gray and dashed black curves for βU = 0 as well as the
solid orange and dashed red curves for βU = 10. For lower tempera-
tures, oscillations appear and differences between the curves become
visible, cf. the solid-light-blue and the dashed-dark-blue curves for
βU = 20 as well as solid-light-green and dashed-dark-green curves
at zero temperature. For the latter case, the waiting time distribution
at small times vanishes, making an immediate decay of the antiferro-
magnetic states unlikely. Top: Parametric plots of the corresponding
exact eigenvalues of Ĥeff as a function of temperature. For sector
(23) in the top-left panel, one eigenvalue (dashed-black line) moves
downwards with rising temperature (brown arrow), whereas the other
two remain rather inert (sketched by the red- and green-hollow
circles in the center). For sector (26) in the top-right panel, one eigen-
value (black-solid line) moves downwards and another (green-solid
line) upwards as the temperature increases (brown arrows), whereas
the remaining one remains approximately inert (red circle). However,
the antiferromagnetically ordered states always decay (the area under
all curves of the main plot is one and all eigenvalues remain in
the lower complex plane). Other parameters: ε = 0, J = U/200,
γ = U/20, μb = U/2.

scales, as also found in other examples [31,39,40,51–53], see
Fig. 3.

These different relaxation time scales can be made more
explicit in terms of waiting-time distributions describing the
probability of a jump (i.e., a tunneling event between sys-
tem and reservoir) in a given time interval, see Fig. 3.
Employing a description of the no-jump evolution by an ef-
fective non-Hermitian Hamiltonian, we derived an explicit
expression of the waiting-time distributions. This effective
non-Hermitian Hamiltonian has the same symmetries as the
original Fermi-Hubbard Hamiltonian [44,45] and can thus
be block-diagonalized in basically the same way—yielding
a tremendous reduction in complexity. We illustrate this re-
duction for the Fermi-Hubbard tetramer, whose dissipative
dynamics can be solved analytically.

While the Mott insulator property at half filling remains
stable after coupling to the reservoir (provided that it has an
intermediate chemical potential), we found that dissipation
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FIG. 3. Top: Sketch of a possible relaxation trajectory for an
initially empty (left) four-site Fermi-Hubbard model at zero temper-
ature. After a quick relaxation process the system may reach e.g. the
state |↓↓↑↓〉, which is inert to the local dissipation, but due to the ↑-
spin (marked red) is not yet a steady state. The internal dynamics of
the Hamiltonian in combination with dissipation then finally admits
to reach one of the steady states at much longer timescales. Bottom:
The statistics between quantum jumps can reveal information on the
involved timescales.

tends to destroy the antiferromagnetic order of the Mott-Néel
state (which is the ground state in bipartite lattices), even at
zero temperature. The coupling to the reservoir tends to in-
crease the total angular momentum 〈Ŝ2〉, such that states with
maximum 〈Ŝ2〉 like the ferromagnetic state |↑↑ . . . ↑↑〉 are
steady states. As an intuitive picture, the intrasystem tunnel
coupling J induces an effective antiferromagnetic interaction
between neighboring sites while the coupling to the (unpo-
larized) reservoir tends to “wash out” this ordering until an
inert state (such as |↑↑ . . . ↑↑〉) is reached. In the regime that
we considered, where local dissipators are valid, the Hubbard
model ground state is not a steady state, even at vanishing tem-
peratures. This is not too surprising as proving the existence
of thermal system steady states typically requires nonlocal
dissipators.

Let us discuss potential experimental realizations. In
non-equilibrium settings, the waiting time distributions are
experimentally accessible observables. For example, for the
Fermi-Hubbard trimer with a built-in charge detector real-
ized in Ref. [27], extraction of the waiting time distribution
requires time-resolved current measurements that have with
very high accuracy been performed for simpler systems
[67–71]. For larger systems, the relaxation time scales could
be obtained by pump-probe schemes, e.g., in the 1T-TaS2

system. Even in equilibrium, the reservoir-induced suppres-
sion of the antiferromagnetic order (expected for the closed
Fermi-Hubbard system on a bipartite lattice) could be an
experimentally observable signature. Note, however, that this
antiferromagnetic order could also be enhanced or suppressed
by other effects (such as direct magnetic interactions), which
are not captured by the Fermi-Hubbard Hamiltonian con-
sidered here. As another point, several systems (such as
1T-TaS2) do not correspond to bipartite lattices (e.g., an ef-
fectively triangular lattice structure). Nevertheless, even in
the absence of perfect long-range antiferromagnetic order
(as expected for bipartite lattices), the closed Fermi-Hubbard
system would still induce some (short-ranged or direction-
dependent) antiferromagnetic correlations. On the other hand,
the steady states with maximum 〈Ŝ2〉 can be generated by
Ŝn

−|↑↑ . . . ↑↑〉 and are thus permutation invariant, which

means that they do not have such antiferromagnetic cor-
relations. As a result, one would expect that the impact
of the environment tends to suppress these antiferromag-
netic correlations also for triangular lattices—provided that
the local Lindblad master equation used here yields a good
approximation.

As an outlook, it should be interesting to study
generalizations of this master equation by making it nonlocal
in time and/or space, or by taking into account coherent
tunneling processes, see also Refs. [13,40,72–74]. The
coherences should, however, play no crucial role in the regime
where J � γ as their generation due to the interdot tunneling
(∼J) is suppressed here. In contrast, for weak reservoir
coupling γ one should expect that the antiferromagnetic order
remains stable due to the nonlocal system dynamics reflected
in global Lindblad operators. For such Lindblad operators, it is
well known that generically the grand-canonical equilibrium
state of the system is a stationary state. At sufficiently low
temperatures, with chemical potentials chosen such that the
system is half filled, we thus expect the system to relax into the
ground state of that sector (with antiferromagnetic order). The
calculation of waiting time distributions can also exploit the
block structure of Ĥeff in this case. However, in contrast to the
local case discussed here, energetically degenerate eigenstates
will then form the blocks of Ĥeff . A bosonic reservoir (e.g.,
representing electron-phonon interactions [39,75]) in addition
to the fermionic bath considered here could also alter our
results (especially at finite temperatures) and introduce new
time scales. In particular, these further interactions need in
general not respect the block structure of Ĥeff . However,
in the particular case that the interactions couple a generic
reservoir operator B̂ globally e.g. to the total on-site energy
(ĤI = Ĥε ⊗ B̂) or the total kinetic term (ĤI = ĤJ ⊗ B̂) of
the Hubbard model (1), they will preserve the same quantum
numbers as the isolated system. Then, we expect just
additional diagonal contributions to Ĥeff and the same block
structure. Beyond these considerations, it should be illumi-
nating to explore the transition between the weak and strong
system-bath coupling in the context of our results. Also non-
locality in time or time-dependence of the Lindblad operators
should provide additional insight into the system dynamics at
intermediate times and is subject of our further research.
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APPENDIX A: MICROSCOPIC DERIVATION OF
LOCAL DISSIPATORS

In addition to the system Hamiltonian (1) we consider a
tunnel coupling

ĤI =
∑

μ

∑
s

∑
k

[tμksĉ
†
μsĉμks + H.c.] (A1)
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with small tunnel amplitudes tμks describing the tunneling of
electrons of spin s between site μ ∈ {1, 2, 3, 4} and mode k of
the adjacent lead. The reservoirs are modeled as noninteract-
ing fermions

ĤB =
∑

μ

∑
s

∑
k

εμksĉ
†
μksĉμks, (A2)

where ĉ†
μks creates an electron of spin s in mode k of the

reservoir attached to site μ with energy εμks. Usual deriva-
tions of master equations now employ a perturbative treatment
in ĤI (i.e., λ) only [42]. We are however interested in the
regime where J is smaller than the tμks, such that we follow a
slightly different derivation where system-reservoir (tμks) and
intrasystem (J) tunnel couplings are treated on the same foot-
ing. Following Ref. [76], we split the Hubbard Hamiltonian
(1) as Ĥ = Ĥ0 + ĤJ with Ĥ0 = Ĥε + ĤU . With this, we can go
to an interaction picture with respect to the free Hamiltonian
of system and reservoir Ĥ0 + ĤB within which the operators
follow the time dependence

ĉμks(t ) = e−iεμkst ĉμks,

ĉμs(t ) = e−iεt
(
1 − n̂s̄

i

)
ĉμs + e−i(ε+U )t n̂s̄

μĉμs (A3)

and analogous for the creation operators—we use bold sym-
bols to mark the interaction picture. In this interaction picture,
the density matrix of the universe follows the von Neumann
equation:

d

dt
ρ̂tot = −i[ĤJ (t ), ρ̂tot (t )] − i[Ĥ I (t ), ρ̂tot (t )]. (A4)

We formally integrate the above equation, but—in contrast to
standard derivations—insert the solution only in the second
term of the r.h.s. Performing a partial trace over the reservoir
ρ̂(t ) = TrB{ρ̂tot (t )} then yields

d

dt
ρ̂ = −i[ĤJ (t ), TrB{ρ̂tot (t )}] − iTrB{[Ĥ I (t ), ρ̂0]}

−
t∫

0

TrB{[Ĥ I (t ), [ĤJ (t ′) + Ĥ I (t ′), ρtot (t
′)]]}dt ′.

(A5)

This equation is still exact but untreatable. We therefore em-
ploy the Born approximation at all times

ρ̂tot (t ) = ρ̂(t ) ⊗ ρ̂B + O{tμks} + O{J}, (A6)

with ρ̂B denoting the grand-canonical Gibbs state of the four
leads, and where the corrections result from the fact that
system-reservoir correlations are neglected and that also ρ̂(t )
only represents an approximation to the exact reduced density
matrix of the system. Inserting it on the r.h.s., we obtain
a closed but non-Markovian master equation for the system
density matrix only

d

dt
ρ̂ = −i[ĤJ (t ), ρ̂(t )]

−
t∫

0

TrB{[Ĥ I (t ), [Ĥ I (t ′), ρ̂(t ′) ⊗ ρ̂B]]}dt ′

+ O{J2, tμksJ} + O
{
t3
μks, t2

μksJ, tμksJ
2}. (A7)

Here, we have used the following: First, the first commutator
term in (A5) generates corrections of order J2 and Jtμks,
since ρ̂ is only an approximation to the exact reduced density
matrix TrB{ρ̂tot}. Second, for a reservoir in the Gibbs state
and linear couplings we have TrB{Ĥ I (t )ρ̂B} = 0̂, such that
the second commutator term in (A5) vanishes exactly. Third,
under the same reasoning the mixed double commutator term
involving both Ĥ I and ĤJ generates terms of O{t2

μksJ, tμksJ2}
and the double commutator term involving Ĥ I twice with the
correction to the Born-approximated density matrix generates
terms of O{t2

μksJ, t3
μks}. Using additionally that ĤI = ∑

μs Ĥμs
I

with Ĥμs
I = ĉ†

μs

∑
k tμksĉμks + H.c. and that ρ̂B = ⊗

μs ρ̂
μs
B

with grand-canonical Gibbs state ρ̂
μs
B of the spin s popula-

tion in the μth lead, we can analogously use the property
Trμs{Ĥμs

I (t )ρ̂μs
B } = 0 to further conclude

d

dt
ρ̂ = − i[ĤJ (t ), ρ̂(t )]

−
∑
μs

t∫
0

Trμs
{[

Ĥ
μs
I (t ),

[
Ĥ

μs
I (t ′), ρ̂(t ′) ⊗ ρ̂

μs
B

]]}
dt ′

+ O{J2, tμksJ} + O
{
t3
μks, t2

μksJ, tμksJ
2}. (A8)

Hence, if O{J} � O{t2
μks}, the above equation is still second-

order accurate in the system-reservoir coupling strength. An
important observation is now that the dissipator originating
from the second line only is identical to the one that one
would obtain if the sites of the Hubbard model were via Ĥ

μs
I

exclusively coupled to their local reservoir (as if one would
consider the limit J → 0).

We further proceed as it is standard practice: First, we
express the partial trace by introducing correlation functions
whose fast decay is then used to motivate the Markov ap-
proximations ρ̂(t ′) → ρ̂(t ) and

∫ t
0 dt ′ → ∫∞

0 dt ′. Second, we
perform the secular approximation with respect to the energy
scales of Ĥ0 only (note that the degeneracy of the states ↑
and ↓ on the same site is unproblematic here as we have
already separated the spin species). Finally, we transform back
to the Schrödinger picture, where ĤJ and Ĥ0 recombine to
the original system Hamiltonian. Details for a single dot are
presented in Appendix E. It should be noted here that the
secular approximation is not the only possibility and more
sophisticated methods, such as the coherent approximation
[40], are available at this step. However, the coherences are
not expected to play a crucial role in the regime of small J .
Their generation is related to the weak interdot tunneling (∼J)
and hence is supposed to give rise to small corrections only.

The net result of this procedure is a dissipator (excluding
the Hamiltonian) that is additively composed from the local
dissipators that one would have obtained if the sites of the
model were exclusively coupled to their adjacent reservoir
(see e.g., Ref. [77] for a single dot master equation). Thus, in
this limit the only coupling between the sites is mediated by
the Fermi-Hubbard Hamiltonian. Furthermore assuming that
the spectral densities are frequency independent (wide-band
limit) �μs(ω) = 2π

∑
k |tμks|2δ(ω − εμks) = γ and identical

for sites and spins, we precisely obtain an LGKS generator (2)
with Hamiltonian (1) and Lindblad operators (29) as outlined
in the main text that is valid up to first order in γ in the regime
where J < γ .
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APPENDIX B: QUASIMOMENTUM IN RING-SHAPED
FERMI-HUBBARD MODELS

When the lattice structure of (1) is one dimensional and
periodic, i.e., ring shaped, we can employ a one-dimensional
discrete Fourier transform

ĉμs = 1√
M

M∑
k=1

ĉkse
−2π iμk/M (B1)

to new fermionic operators ĉks, where M denotes the number
of lattice sites. This transforms the Hamiltonian into

Ĥ =
M∑

k=1

∑
s

[
ε − 2J cos

(
2πk

M

)]
ĉ†

ksĉks

+ U

M

∑
kk′qq′

[
M∑

j=1

e+2π i j(k−k′+q−q′ )/M

M

]
ĉ†

k↑ĉk′↑ĉ†
q↓ĉq′↓,

(B2)

where the quadratic part is already diagonal but the Coulomb
interaction looks like a scattering process. The square bracket
in front of the scattering term ensures that k + q = k′ + q′
is conserved modulo M. This periodicity of the exponential
function together with the fact that, e.g., for the tetramer we
have (k − k′ + q − q′) ∈ {−6, . . . ,+6} leads to a subtle defi-
nition of a conserved quasimomentum operator. For example,
the operator

Q̂ =
M∑

k=1

∑
s

kĉ†
ksĉks (B3)

is not conserved [9]. However, the projectors onto subspaces
of its eigenvalues modulo M

P̂q = 1

M

M∑
j=1

exp

{
2π i

j

M

(
Q̂ − q · 1

)}
(B4)

are conserved [Ĥ, P̂q] = 0, which allows one to define a quasi-
momentum in various ways. For example, we could use these
projectors to define the quasimomentum as P̂ = ∑M

q=1 q · P̂q.
Alternatively, we could use the definition

P̂ = −i
M

2π
ln e

2π i
M Q̂. (B5)

In any case, the quasimomentum operator is now conserved
under the isolated Hubbard (1) dynamics [Ĥ, P̂] = 0.

The quasimomentum generates rotations, which can actu-
ally be seen from

P̂1234ĉμsP̂1234 = e+ 2π i
M P̂ĉμse

− 2π i
M P̂

= e+ 2π i
M Q̂ĉμse

− 2π i
M Q̂

= 1√
M

∑
k

e− 2π iμk
M e+ 2π ik

M ĉ†
ksĉks ĉkse

− 2π ik
M ĉ†

ksĉks

= 1√
M

∑
k

e− 2π iμk
M e− 2π ik

M ĉks

= ĉμ+1,s. (B6)

For the tetramer, each of the four quasimomentum sectors
hosts 64 states.

APPENDIX C: HEISENBERG LIMIT

In the isolated case γ = 0, we can compare the lowest-
lying of our approximate eigenvalues (24) and (27) with
the effective Heisenberg Hamiltonian, that arises for large
Coulomb repulsion. For ε = 0 it reads in the subspace of
absent doublon-holon occupations [18]

ĤHeis =
∑
〈μ,ν〉

J2

U

[
2Ŝμ · Ŝν − 1

2

]

=
∑

μ

J2

U
[4Ŝμ · Ŝμ+1 − 1], (C1)

where we have resolved the double-counting in the second
line. Computing the expectation value of this Hamilto-
nian in the ground state of (26), we obtain by virtue of
〈−∑

μ Ŝμ · Ŝμ+1〉 ≈ 2 for the tetramer

〈ĤHeis〉 ≈ −12
J2

U
, (C2)

which—together with the on-site energy of 4ε—provides
the first eigenvalue of (27) for γ = 0. Analogously, doing
the same for the ground state of (23), for which we have
〈−∑

μ Ŝμ · Ŝμ+1〉 ≈ 1, we obtain

〈ĤHeis〉 ≈ −8
J2

U
, (C3)

which (taking again the on-site energy shift of 4ε into account)
provides the first eigenvalue of (24) for γ = 0.

APPENDIX D: DECAY CHARACTERISTICS OF OTHER
STATES IN THE FERMI-HUBBARD TETRAMER

In the subspace with N = 4 and Sz = 0 (N↑ = N↓ = 2)
containing 36 states, the effective non-Hermitian Hamiltonian
can be decomposed into 4 blocks of size 1 × 1, 10 blocks of
size 2 × 2, and 4 blocks of size 3 × 3 with different quantum
numbers of Ŝ

2
, η̂2, and quasimomentum P̂. The eigenvalues of

each of these blocks can be analytically evaluated as we did
in the main text. In the zero-temperature limit, this leads to
the qualitative decay chart provided in Fig. 4. Blocks with
nonvanishing pseudospin all decay trivially (red symbols),
i.e., at least as fast as O{γ }. Among the blocks with vanishing
pseudospin, some decay nontrivially (blue symbols), i.e., one
mode decays slower as O{γ J2/U 2}. It can thus be seen that
states with a nonvanishing pseudospin always decay fast with
timescale γ , in agreement with Eq. (10).

The subspaces of other particle numbers then also host
blocks of size 4 × 4 that decay fast (not shown).

APPENDIX E: MARKOV AND SECULAR
APPROXIMATIONS FOR A SINGLE DOT

For notational ease, we just consider the dissipator from
(A8) only for a single site, such that we can drop the site index
μ (the treatment is identical for all sites). Then, it reads

Dsρ̂ = −
∫ t

0
TrB

{[
Ĥ

s
I (t ),

[
Ĥ

s
I (t ′), ρ̂(t ′) ⊗ ρ̂B

]]}
dt ′, (E1)
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FIG. 4. Qualitative classification of the decay dynamics of states
in the N↑ = N↓ = 2 sector at zero temperature vs total spin |S| ∈
{0, 1, 2} and pseudospin |η| ∈ {0, 1, 2}. Circles encode 1 × 1 blocks,
lines encode 2 × 2 blocks and triangles encode 3 × 3 blocks of the
effective non-Hermitian Hamiltonian (each symbol is associated to a
unique quasimomentum value). For red symbols, the decay is always
just fast, for the blue symbols we have a slow mode participating in
the dynamics, and the hollow symbol corresponds to the quintuplett
steady state of this sector. The two marked triangles correspond to
Eqs. (26) and (23) and the marked circle to the Sz = 0 state in (21) in
the main text, respectively.

where the interaction Hamiltonian is given by Ĥ s
I = ĉ†

s B̂s +
H.c. with B̂s = ∑

k tksĉks denoting the reservoir coupling oper-
ator. Bold symbols denote our interaction picture with respect
to ĤB + Ĥε + ĤU , where we write (A3) as ĉks(t ) = e−iεkst ĉks

and ĉs(t ) = e−iεt ĉs(1 − n̂s̄) + e−i(ε+U )t ĉsn̂s̄ with bath mode
energies εks.

The evaluation of the partial trace motivates to define the
two nonvanishing reservoir correlation functions

C1(τ ) = TrB{B̂s(τ )B̂†
s ρ̂B} =

∫
dω

2π
�(ω)[1 − f (ω)]e−iωτ ,

C2(τ ) = TrB{B̂†
s (τ )B̂sρ̂B} =

∫
dω

2π
�(ω) f (ω)e+iωτ , (E2)

where we have introduced the spectral coupling den-
sity �(ω) = 2π

∑
k |tks|2δ(ω − εks) and f (ω) is the Fermi

function of the reservoir. Since in our model neither of these
depend on the spin, we have dropped its index in these quan-
tities.

For rapidly decaying reservoir correlation functions (flat
Fourier transforms) we can perform the usual Markov approx-
imation on the dissipator

Dsρ̂ ≈ −
∫ ∞

0
dτ {[ĉ†

s (t ), ĉs(t − τ )ρ̂(t )]C1(τ )

+ [ρ̂(t )ĉs(t − τ ), ĉ†
s (t )]C2(−τ )

+ [ĉs(t ), ĉ†
s (t − τ )ρ̂(t )]C2(τ )

+ [ρ̂(t )ĉ†
s (t − τ ), ĉs(t )]C1(−τ )}, (E3)

which is the (local) Redfield master equation.

In the subsequent secular approximation, we neglect terms
that oscillate in time t in the interaction picture. For large
times Ut � 1, only few terms remain

Dsρ̂ ≈ −
∫ ∞

0
dτ {[ĉ†

s (1 − n̂s̄), ĉs(1 − n̂s̄)ρ̂(t )]e+iετC1(τ )

+ [ĉ†
s n̂s̄, ĉsn̂s̄ρ̂(t )]e+i(ε+U )τC1(τ )

+ [ρ̂(t )ĉs(1 − n̂s̄), ĉ†
s (1 − n̂s̄)]e+iετC2(−τ )

+ [ρ̂(t )ĉsn̂s̄, ĉ†
s n̂s̄]e

+i(ε+U )τC2(−τ )

+ [ĉs(1 − n̂s̄), ĉ†
s (1 − n̂s̄)ρ̂(t )]e−iετC2(τ )

+ [ĉsn̂s̄, ĉ†
s n̂s̄ρ̂(t )]e−i(ε+U )τC2(τ )

+ [ρ̂(t )ĉ†
s (1 − n̂s̄), ĉs(1 − n̂s̄)]e−iετC1(−τ )

+ [ρ̂(t )ĉ†
s n̂s̄, ĉsn̂s̄]e

−i(ε+U )τC1(−τ )}. (E4)

To get rid of the remaining integration we insert the Fourier
decomposition (E2) of the correlation functions and then use
the Sokhotski-Plemelj theorem

1

2π

∫ ∞

0
e+iωτ dτ = 1

2
δ(ω) + i

2π
P 1

ω
. (E5)

Here, the first term is relevant and the second eventually yields
the Lamb-shift terms (which can be absorbed in renormalized
on-site energies ε and Coulomb interaction U such that we
neglect them here). This yields

Dsρ̂ ≈ γ (1 − fE)[ĉs(1 − n̂s̄)ρ̂(t )ĉ†
s (1 − n̂s̄)

− 1
2 {n̂s(1 − n̂s̄)2, ρ̂(t )}]

+ γ (1 − fU)
[
ĉsn̂s̄ρ̂(t )ĉ†

s n̂s̄ − 1
2 {n̂sn̂

2
s̄ , ρ̂(t )}]

+ γ fE
[
ĉ†

s (1 − n̂s̄)ρ̂(t )ĉs(1 − n̂s̄)

− 1
2 {(1 − n̂s)(1 − n̂s̄)2, ρ̂(t )}]

+ γ fU
[
ĉ†

s n̂s̄ρ̂(t )ĉsn̂s̄ − 1
2 {ĉsĉ

†
s n̂2

s̄ , ρ̂(t )}], (E6)

where we have assumed the wide-band limit over the sys-
tem energy scales �(ε) = �(ε + U ) = γ and abbreviated
fE = [eβ(ε−μb ) + 1]−1 and fU = [eβ(ε+U−μb ) + 1]−1, compare
(29) in the main text. Under the transformation back to the
Schrödinger picture, in the dissipator we only have to replace
ρ̂(t ) → ρ̂(t ).
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Finally, we just note that it is not permissible to
perform the limit U → 0 a posteriori, as this con-
flicts with the secular approximation performed. In-
stead, in this limit an analogous derivation with ĉs(t ) =
e−iεt ĉs has to be followed, which would yield a Lind-
blad dissipator where the different spin-species do not

interact

DU=0
s ρ̂ ≈ γ (1 − f )[ĉsρ̂(t )ĉ†

s − 1
2

{
ĉ†

s ĉs, ρ̂(t )
}
]

+ γ f [ĉ†
s ρ̂(t )ĉs − 1

2 {ĉsĉ
†
s , ρ̂(t )}]. (E7)
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[37] M. Žnidarič, Relaxation times of dissipative many-body quan-
tum systems, Phys. Rev. E 92, 042143 (2015).

[38] L.-N. Wu and A. Eckardt, Bath-Induced Decay of Stark Many-
Body Localization, Phys. Rev. Lett. 123, 030602 (2019).

[39] F. Queisser and R. Schützhold, Environment-induced prerelax-
ation in the Mott-Hubbard model, Phys. Rev. B 99, 155110
(2019).

[40] E. Kleinherbers, N. Szpak, J. König, and R. Schützhold, Relax-
ation dynamics in a Hubbard dimer coupled to fermionic baths:
Phenomenological description and its microscopic foundation,
Phys. Rev. B 101, 125131 (2020).

[41] Deviations from this assumption and the consequences of a
global bath in comparison to local reservoirs will be discussed
in a forthcoming publication.

[42] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems, (Oxford University Press, Oxford, 2002).

[43] E. H. Lieb, Two Theorems on the Hubbard model, Phys. Rev.
Lett. 62, 1201 (1989).

[44] W.-H. Steeb, C. M. Villet, and P. Mulser, Hubbard model,
conserved quantities, and computer algebra, Int. J. Theor. Phys.
32, 1445 (1993).

[45] R. Schumann, Thermodynamics of a 4-site Hubbard model by
analytical diagonalization, Ann. Phys. 11, 49 (2002).

[46] A. Mielke, The Hubbard Model and its Properties, in Many-
Body Physics: From Kondo to Hubbard, edited by E. Pavarini, E.
Koch, and P. Coleman (Forschungszentrum Jülich, Jülich, 2015)
Chap. 11.

[47] C. N. Yang, η Pairing and Off-Diagonal Long-Range Order in a
Hubbard Model, Phys. Rev. Lett. 63, 2144 (1989).

[48] S. Zhang, Pseudospin Symmetry and New Collective Modes of
the Hubbard Model, Phys. Rev. Lett. 65, 120 (1990).

[49] V. V. Albert and L. Jiang, Symmetries and conserved quanti-
ties in Lindblad master equations, Phys. Rev. A 89, 022118
(2014).

[50] D. Nigro, On the uniqueness of the steady-state solution of
the Lindblad-Gorini-Kossakowski-Sudarshan equation, J. Stat.
Mech.: Theory Exp. (2019) 043202.

[51] F. Queisser, K. V. Krutitsky, P. Navez, and R. Schützhold,
Equilibration and prethermalization in the Bose-Hubbard
and Fermi-Hubbard models, Phys. Rev. A 89, 033616
(2014).

[52] L.-N. Wu and A. Eckardt, Prethermal memory loss in interact-
ing quantum systems coupled to thermal baths, Phys. Rev. B
101, 220302(R) (2020).

[53] K. Wang, F. Piazza, and D. J. Luitz, Hierarchy of Relaxation
Timescales in Local Random Liouvillians, Phys. Rev. Lett. 124,
100604 (2020).

[54] C. Cohen-Tannoudji and J. Dalibar, Single-atom laser spec-
troscopy. Looking for dark periods in fluorescence light,
Europhys. Lett. 1, 441 (1986).

[55] M. B. Plenio and P. L. Knight, The quantum-jump approach to
dissipative dynamics in quantum optics, Rev. Mod. Phys. 70,
101 (1998).

[56] T. Brandes, Waiting times and noise in single particle transport,
Ann. Phys. 17, 477 (2008).

[57] M. Albert, C. Flindt, and M. Büttiker, Distributions of Waiting
Times of Dynamic Single-Electron Emitters, Phys. Rev. Lett.
107, 086805 (2011).

[58] M. Albert, G. Haack, C. Flindt, and M. Büttiker, Electron
Waiting Times in Mesoscopic Conductors, Phys. Rev. Lett. 108,
186806 (2012).

[59] L. Rajabi, C. Pöltl, and M. Governale, Waiting Time Distribu-
tions for the Transport through a Quantum-Dot Tunnel Coupled
to One Normal and One Superconducting Lead, Phys. Rev. Lett.
111, 067002 (2013).

[60] B. Sothmann, Electronic waiting-time distribution of a
quantum-dot spin valve, Phys. Rev. B 90, 155315 (2014).
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