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Dissipationless spin current generation in a Kitaev chiral spin liquid
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α-RuCl3 is a promising candidate material for the Kitaev spin liquid state where the half quantization of
the thermal Hall effect, suggesting a topological character, has been observed. Here we propose a more direct
signature of a chiral Majorana edge mode which emerges in a universal scaling of the Drude weight of the edge
spin Seebeck effect in the Kitaev model. Moreover, the absence of backscatterings in the chiral edge mode results
in the generation of a dissipationless spin current in spite of an extremely short spin correlation length close to
a lattice constant in the bulk. This result is not only experimentally observable, but also opens a way towards
spintronics application of Kitaev materials.
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I. INTRODUCTION

Quantum spin liquids have been the focus of attention
for many years, both theoretically and experimentally. They
do not have long-range magnetic order despite their strong
spin correlation. Recently, it has been pointed out that the
spin liquids are suitable for nanoscale spintronics devices
[1–12]. While quantum fluctuations rather stabilize the exotic
states even in atomic scale, fractionalized excitations char-
acterizing spin liquids can indeed carry spin currents [12].
On the other hand, a Kitaev chiral spin liquid described by
the two-dimensional (2D) Kitaev model is potentially real-
ized in 2D honeycomb materials such as α-RuCl3 [13–49].
The Kitaev materials may provide another possible root to
nanoscale spintronics application. The Kitaev model is a spin
system in which Ising-like exchange interactions depending
on bond directions act on S = 1/2 spins localized on each site
of the honeycomb lattice. In terms of the Majorana fermion
representation, the model is exactly solvable, and exhibits a
quantum spin liquid state regardless of the system size [13].
When time-reversal symmetry is broken by an applied mag-
netic field, the system becomes a chiral spin liquid state with a
chiral Majorana edge, resulting in the Ising topological order
in the bulk. The observation of the half-quantized thermal
Hall effect, which is a signature of chiral Majorana fermions,
has been reported [50]. Although further experimental ob-
servations which support the half-quantization of the thermal
Hall effect in α-RuCl3 are accumulating [50–52], it is still an
important issue to confirm the existence of Majorana fermions
from different and more direct approaches.

Here we propose the universal scaling of the Drude weight
of the edge spin Seebeck effect of the Kitaev model as defini-
tive evidence of the existence of Majorana fermions. The spin
Seebeck effect is a phenomenon in which the temperature
difference imposed on opposite sides of a sample produces the
flow of a spin current. In a Kitaev chiral spin liquid, spins are
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fractionalized into Majorana fermions, and it has an extremely
short spin correlation length close to a lattice constant in the
bulk. In spite of this feature, a dissipationless spin current
flow at the edge of the system is found, which leads to the
spin Seebeck effect. We here use the temperature dependence
of the Drude weight of this edge spin Seebeck effect as the
signature of the Majorana edge mode. This signature is ex-
pected to be more general and stable than the thermal Hall
effect. This is because it does not require quantitatively pre-
cise measurements like the half-quantized thermal Hall effect,
and the qualitative temperature dependence is not expected to
be affected even if it is disturbed by other degrees of freedom,
such as phonons.

Furthermore, our proposal is also useful for the application
to spintronics devices. The Kitaev chiral spin liquid state re-
mains stable down to atomic scale, and enables the generation
of a spin current without dissipation due to the existence of a
chiral Majorana edge mode. The spin current may be detected
via the measurement of the surface magnetization generated
by the spin accumulation, or the inverse spin Hall effect. This
makes it possible to fabricate a highly integrated device with
substantial efficiency to generate a spin current, paving the
way to Kitaev spintronics.

II. MODEL SETUP

Our model setup for the edge spin Zeebeck effect is illus-
trated in Fig. 1(c). We consider an open boundary condition
for the y direction and a periodic boundary condition for the
x direction. The unit cell of the system is shown in Fig. 1(d).
We label unit cells as l = 1, . . . , Lx, where Lx is the number
of unit cells, from left to right. For this configuration, the
gauge-field Majorana fermions included in the top and bottom
spins at open edges, bz

l,1 and bz
l,N , cannot form the Z2 gauge

fields [53–56]. Thus, the perturbative caluculations within the
vortex-free sector are except these sites.

We assume that there are total N sites in the unit cell.
Within the vortex-free sector, the Hamiltonian of our system
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FIG. 1. (a) Structure of the Kitaev model. Yellow, blue, and
green bonds represent x, y, and z bonds, respectively. Black arrows
represent the sign convention of the next-nearest-neighbor hoppings.
(b) Phase diagram of the Kitaev model. The orange region is the
gapped A phase, while the blue region is the gapless B phase. (c) Ex-
perimental setup of the spin Seebeck effect. (d) Unit cell of the
system with open edges in the y direction.

under an applied magnetic field with hxhyhz �= 0 is expressed
as

H = HK +H (3) −
∑

l

(
hzS

z
l,1 + hzS

z
l,N

)
(1)

=:
1

2

∑
(l,m),(l ′,n)

cl,mA(l,m)(l ′,n)cl ′,n, (2)

HK = −
∑
〈i j〉α

KαSα
i Sα

j , (3)

H (3) = −�
∑
i, j,k

Sx
i Sy

j S
z
k, (4)

� ∼ hxhyhz

K2
, (5)

where HK is the Hamiltonian of the Kitaev model, H (3) is
the mass term generated by third-order perturbations in the
magnetic field, and the last term in the first line is the Zeeman
term for edge spins. 〈i j〉α , 〈 jk〉β with α �= β, and we assume
K = Kx = Ky = Kz here for simplicity in the derivation of �.
Details are included in the Appendix A. Although the first-
order term in the magnetic field is suppressed in the bulk of
the spin liquid state, the edge Zeeman term is not negligible,

as described below. In the second line of Eq. (2), l and l ′ label
the indices of the unit cell, while m and n label the sites inside
the unit cell. A key idea of the derivation of the Majorana
Hamiltonian, Eq. (2), is to identify the gauge-field Majorana
operators bz

l,1 and bz
l,N with new matter Majorana operators

cl,0 and cl,N+1, respectively, and m (and n) runs from 0 to N +
1. This enables us to treat the edge Zeeman term exactly. We
write the coordinate of the (l, m) site as rl,m = (xl,m, yl,m). We
use the Fourier transformation of cl,m only in the x- direction,
cl,m → ckx,m. Then, the Bloch Hamiltonian can be written as

H = 1

2

∑
kx,m,n

c†
kx,m
Hkx,m,nckx,n, (6)

Hkx,m,n := 2
∑
l,l ′

e−ikx (xl,m−xl′ ,n )A(l,m)(l ′,n). (7)

III. DEFINITION OF THE ENERGY CURRENT
AND THE SPIN CURRENT

To evaluate the spin Seebeck coefficient, we introduce the
energy polarization operator as

PE = 1

2

∑
(l,m)(l ′,n)

rl,m + rl ′,n

2
cl,mA(l,m)(l ′,n)cl ′,n, (8)

where A(l,m)(l ′,n) is defined in Eq. (2). We introduce the energy
current operator as JE = i[H, PE ]. Note that since the chem-
ical potential is always zero in the Kitaev system, JE is equal
to the thermal current operator.

We emphasize that although it is impossible to express the
spin and spin current operators in the bulk only in terms of c
operators, the spin operator at the edge can be still written
solely in terms of matter Majorana fermions, because we
redefined bz

l,1 and bz
l,N as cl,0 and cl,N+1, respectively. The

total Sz at the edge, Sedge
z = ∑

l [S
z
l,1 + Sz

l,N ], can be written
in terms of a skew symmetric matrix B(l,m)(l ′,n),

Sedge
z =:

1

2

∑
(l,m),(l ′,n)

cl,mB(l,m)(l ′,n)cl ′,n. (9)

We define the spin current operator using this B matrix as

Jx
s := 1

4

∑
kx,m,n

[
vkx S

z
kx

+ Sz
kx
vkx

]
mn

c†
kx,m

ckx,n, (10)

[
Sz

kx

]
m,n :=

∑
l,l ′

2e−ikx (xl,m−xl′ ,n )B(l,m)(l ′,n), (11)

where vkx = ∂Hkx
∂kx

. There is an ambiguity in the definition of
the spin current when spins are not conserved. Thus, we sim-
ply employ a conventional definition relevant to experimental
detection, using the anticommutation of the group velocity vkx

and the edge spin Sz
kx

.

IV. EDGE SPIN SEEBECK EFFECT

A. Kubo formula

The spin Seebeck effect is characterized by the Kubo cor-
relation function κxx

Kubo for the spin current and the energy
current as 〈Jx

s 〉∇T /Lx = −κxx
Kubo∇xT . We note that the longitu-

dinal component is obtained directly from the Kubo formula,
whereas the transverse component needs a contribution from
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FIG. 2. Plots of κ reg and D(T ) versus T . (a) κ reg for the
A phase. (b) κ reg for the B phase. (c) D(T ) for the A phase.
(d) D(T ) for the B phase. The parameters for the A phase
are (Kx, Ky, Kz, hz, �, N, Lx ) = (1.0, 0.1, 0.1, 0.1, 0, 80, 1000). The
parameters for the B phase are (Kx, Ky, Kz, hz, �, N, Lx ) =
(1.0, 1.0, 1.0, 0.1, 0.01, 80, 1000).

the gravitational magnetization additionally [33,57,58]. We
compute κxx

Kubo as described in the Appendix B, and obtain

κxx
Kubo(T, ω) = 2πD(T )δ(ω) + κ reg(T, ω), (12)

D(T ) = − 1

T Lx

∑
kx,u,v,Ekx ,u=Ekx ,v

JE
kx,u,vJs

kx,v,u f ′(Ekx,u
)
, (13)

κ reg(T, ω) = − 2π

T Lx

∑
kx,u,v,Ekx ,u �=Ekx ,v

JE
kx,u,vJs

kx,v,u

× δ
(
ω+Ekx,v − Ekx,u

) f
(
Ekx,v

)− f
(
Ekx,u

)
Ekx,v − Ekx,u

, (14)

where the D(T ) is the Drude weight and κ reg(T, ω) is the
regular part of κxx

Kubo(T, ω), Ekx,u is an eigenvalue of the Bloch
Hamiltonian, and f (E ) is the Fermi distribution function.
Js

kx,u,v and JE
kx,v,u are, respectively, spin and energy currents.

B. Ballistic edge transport

By using the Kubo formula obtained in the previous sec-
tion, we calculate the spin Seebeck conductivity κxx

Kubo. We,
here, present the numerical results for the Drude weight and
the regular part of κxx

Kubo(T, ω) in the dc limit, i.e., ω → 0.
We note that the regular part and the Drude weight are always
negative in our definition of the spin current.

To confirm whether the existence of edge states affects the
spin Seebeck effect or not, we first perform the calculation for
both the A phase and the B phase of the Kitaev model as shown
in Fig. 2. The parameters for Figs. 2(a) and 2(c) are Kx = 1,
Ky = Kz = 0.1, � = 0, hz = 0.1, N = 80, and Lx = 1000,
which correspond to the gapped A phase. The parameters
for Figs. 2(b) and 2(d) are KX = Ky = Kz = 1, � = 0.01,
hz = 0.1, N = 80, and Lx = 1000, which correspond to the
gapped B phase with a chiral edge mode. It is cautioned that
the calculations are valid only for low temperature regions
below 0.01 K, where the effective Hamiltonian is applicable.
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FIG. 3. Logarithmic plot of D(T )/T versus T/K . (a) For the pa-
rameter set (hz, �, N, Lx ) = (0.1, 0.05, 80, 1000). White circles are
the numerically calculated data, and the black line is the line fitting
between T = 2.0 × 10−6 and T = 2.0 × 10−5. (b) (hz, �, N, Lx ) =
(1.0, 0.05, 80, 1000). The black line is the line fitting between T =
10−4 and T = 10−3.

We show the results in high temperature regions above 0.01 K
just for examining the contributions of the bulk gapful exci-
tations to the regular part of the conductivity. As shown in
Figs. 2(a) and 2(b), κ reg has only the bulk contribution. By
comparing Figs. 2(c) and 2(d) we can easily see that there is
an edge contribution only in the B phase. The fact that the
contribution of the chiral edge mode appears in the Drude
weight means that the transport via the edge mode is protected
from backscatterings, resulting in the generation of ballistic
spin current at the edge.

An important feature of the Drude weight arising from
chiral Majorana edge contributions is the universal temper-
ature scaling at low temperatures. In Fig. 3, we show the
temperature dependence of the Drude weight divided by the
temperature D(T )/T at low temperature with hz = 0.1, 1.0.
In the case of (a), the parameters are set to Kx = Ky = Kz = 1,
� = 0.05, N = 80, and Lx = 1000. In the case of (a), the
data are fitted by the fitting function shown in the solid line
in the region from T = 2.0 × 10−6 to T = 2.0 × 10−5. We
use the fitting function g(T ) = a + bT c, and the result is that
a = 3258.68(2), b = −7.321(3) × 1010, and c = 2.08(2). In
the case of (b), the data are fitted by the fitting function
shown in the solid line in the region from T = 10−4 to T =
10−3. The result is that a = 327.027(3), b = −1.9(2) × 106,
and c = 2.02(2). This result shows nearly T 2 correction to
D(T )/T at low temperature. We stress that this temperature
dependence is robust against any perturbations due to disorder
or phonons, because it arises from the chiral character of the
Majorana edge states with no backscatterings. This signature
can be utilized for a clear-cut experimental detection of the
Majorana edge states.

V. CONFORMAL FIELD THEORY DESCRIPTION

To see the property of the dissipationless transport in more
detail, we further investigate the Drude weight from a different
perspective. This transport problem of the chiral edge mode is
essentially one dimensional (1D), and conformal field theory
(CFT) is known to be a powerful tool to investigate such a 1D
system.

Before going into the CFT description, we show band
structures (with gauge-field Majorana fermions at the edge) in
Fig. 4. In Figs. 4(a)–4(c), we change the magnetic field in the
z direction from hz = 0.01 to hz = 1.0. The magnetic field hz
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FIG. 4. Majorana band structures in a magnetic field. (a) For
the parameter set (hz, �, N, Lx ) = (0.01, 0.05, 80, 1000). (b) For the
parameter set (hz, �, N, Lx ) = (0.1, 0.05, 80, 1000). (c) For the pa-
rameter set (hz, �, N, Lx ) = (1.0, 0.05, 80, 1000).

determines the coupling between matter Majorana fermions
and gauge-field Majorana fermions. In the small coupling
region shown in Fig. 4(a), the cross point where the edge
state passes zero energy is not well defined because the energy
band of the edge state becomes flat. However, as we increase
the coupling strength, the edge state becomes dispersive as
shown in Figs. 4(b) and 4(c). In other words, the unique flat
band of the zigzag edge with hz = 0 becomes chiral due to
the mixing with gauge-field Majorana fermions, so that we
can expect that CFT is applicable in the large-field region.
Thus, we investigate the temperature dependence of the Drude
weight in the region where hz is large enough, and compare the
results with the CFT prediction. The Drude weight behaver at
low temperature shown in Fig. 3 is consistent with the Ising
CFT when the magnetic field becomes large enough [59,60].
From the prediction of CFT, the correction of D(T ) from the
T -linear contribution always begins from T 2. It is known that
the leading irrelevant operator of the chiral Ising CFT is the
energy-momentum tensor to the second power [59], which
leads to the T 2 correction to D(T )/T .

VI. DISCUSSION AND CONCLUSION

From the results obtained above, we can propose an ex-
periment which potentially detects Majorana fermions in
α-RuCl3, which is currently still under debate. The dissipa-
tionless spin current generated by the spin Zeebeck effect is a
unique property of a Kitaev chiral spin liquid which possesses
chiral Majorana edge states. The universal temperature scaling
of the Drude weight in the spin Seebeck effect should be a
definite signature of chiral Majorana edge states, and better
observable, because we can expect that the universal scaling
is stable with respect to various extrinsic perturbations such as
disorder and phonons, provided that the roughness of the edge
is sufficiently weak. In the case that the edge is a strongly ran-
dom admixture of a zigzag type and an armchair type, the spin

current is suppressed. However, it is expected that, even in
such situations, the spin current does not vanish completely as
long as a magnetic field hz is applied. Although disorder due
to impurities in real systems may broaden the Drude peak, the
total weight is not affected because of the chiral character of
the edge states. These results are contrasted to the case without
a bulk energy gap, where the Drude weight is substantially
suppressed by weak randomness [61]. Not only for the basic
research, the discovery of the dissipationless spin transport
should be the key to the direct application of the Kitaev chiral
spin liquid to spintronics technology. We note that, as seen
in Fig. 2(d), even at very low temperatures T/K ∼ 0.001, the
magnitude of the Drude weight part of the spin Seebeck con-
ductivity is roughly ∼KaμB/h̄ with K the Kitaev interaction,
a a lattice constant, and μB the Bohr magneton. For α-RuCl3
[27], ∼KaμB/h̄ ∼ 1000μB (m−1 s−1 × μB), which implies
that the effect is more enhanced compared to conventional
thermoelectric effects of electrons in semiconductors. The
origin of the notable enhancement is attributed to two factors:
one is the absence of the backward scattering in the chiral edge
state, and the other is the flatness of the edge Majorana band
(see Fig. 4), i.e., the large energy derivative of the density of
states, which arises from the unpaired gauge-field Majorana
fields at the edges. We stress that these factors are ubiquitous
features of the Kitaev chiral spin liquid state.
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APPENDIX A: KITAEV HAMILTONIAN

In this section, to establish notations, we briefly summarize
the basics of the Kitaev honeycomb model. We start with the
following Hamiltonian on the honeycomb lattice shown in
Fig. 1(a) of our main text:

HK = −
∑
〈i j〉α

KαSα
i Sα

j , (A1)

where Sα
i is an α = x, y, z component of an S = 1/2 spin

operator at the ith site. Here, 〈i j〉α denotes that the ith site
and the jth site are the nearest-neighbor sites connected by
an α bond on the honeycomb lattice. α bonds (α = x, y, z) are
defined as shown in Fig. 1(a) of our main text.

The ideal Kitaev Hamiltonian HK is exactly solvable in
terms of the Majorana fermion representation:

Sx
j = i

2
bx

jc j, Sy
j = i

2
by

jc j, Sz
j = i

2
bz

jc j, (A2)

where bα
j (α = x, y, z) and c j are Majorana fermion operators,

and the Hilbert space where these operators act is restricted
to satisfy Di |φ〉 = |φ〉 with Di = bx

i by
i b

z
i ci. In terms of the
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Majorana representation,HK is expressed as

HK = i

4

∑
i, j

Âi jcic j, (A3)

where Âi j = Kα ûα
i j/2 and ûα

i j = ibα
i bα

j with 〈i j〉α , and other-
wise Âi j = 0. The Z2 gauge fields ûα

i j commute with HK , and
can be replaced by eigenvalues ±1.

For Kα > 0, in the ground state, we can put ûα
i j → 1,

and hence, Âα
i j → Kα/2. We use this flux-free approximation

throughout this paper. It is a good approximation for the
low-temperature region we are interested in. Then, Eq. (A3)
is reduced to the Hamiltonian of free massless Majorana
fermions, which can be diagonalized in the momentum rep-
resentation. The phase diagram of this model is shown in
Fig. 1(b) of our main text. In Fig. 1(b) of our main text, the
A phase is a gapped toric code phase, while the B phase is a
gapless phase.

In the B phase, when a magnetic field 	h = (hx, hy, hz )
satisfying hxhyhz �= 0 is applied to the system, the Zeeman
interaction

H2 = −
∑

i

(
hxSx

i + hySy
i + hzS

z
i

)
(A4)

generates a mass gap for Majorana fermions in the bulk, and
the system exhibits a chiral spin liquid state with a chiral
Majorana edge state. The edge state is known to be described
by the Ising CFT [13]. The mass term is obtained by a pertur-
bative calculation up to the third order in hα , which leads to
three-spin interaction terms,

H (3) = −�
∑
i, j,k

Sx
i Sy

j S
z
k, (A5)

� ∼ hxhyhz

K2
, (A6)

where 〈i j〉α and 〈 jk〉β with α �= β, and we assume K = Kx =
Ky = Kz here for simplicity in the derivation of �. In terms of
Majorana fields,H (3) is written as

H (3) = i
�

8

∑
〈〈i j〉〉

cic j, (A7)

where 〈〈i j〉〉 means a next-nearest-neighbor hopping. The di-
rection of the hopping is shown in Fig. 1(a) of our main text.
This term yields the Majorana mass gap �Majorana ∼ �. It is
noted that the mass gap term also arises from the perturbation
in the non-Kitaev interaction �′ [62,63].We also note that the
second-order corrections in the magnetic field merely renor-
malize the magnitude of the Kitaev interaction, and do not
affect the effective Hamiltonian qualitatively.

We stress, here, that in the vortex-free spin liquid state,
the first-order corrections with respect to the Zeeman term
Eq. (A4) vanish, and the gauge-field Majorana fermions bα

j
can be completely eliminated in the effective low-energy
Hamiltonian in the bulk, i.e., the system can be described
only in terms of matter Majorana fermions c j . However, the
situation drastically changes at open edges, which is a key
factor of dissipationless spin currents at the edges.

APPENDIX B: DERIVATION OF THE CONDUCTIVITY

Here, we show the details of the derivation of the spin
Seebeck conductivity, Eqs. (12)–(14), in the main text. We
first diagonalize the Hamiltonian, whose labels run from 0 to
N + 1 because the unpaired gauge-field Majorana fermions at
open edges can be regarded as additional itinerant Majorana
fermions ckx,0 and ckx,N+1. After this identification, the system
is equivalent to a free fermion system with open boundaries,
and can be treated exactly.

	ckx = (
ckx,0, ckx,1, . . . , ckx,N , ckx,N+1

)T
, (B1)

H = 1

2

∑
kx

	c†
kx
Hkx 	ckx , (B2)

Hkx,m,n := 2
∑
l,l ′

e−ikx (xlm−xl′n )A(l,m)(l,n). (B3)

Due to the particle-hole symmetry, all eigenvalues appear
in pairs with opposite signs and the same absolute value. Thus,
we label positive eigenvalues Ekx,n (n = 1, 2, . . . , N

2 , N
2 + 1),

and negative ones Ekx,−n (= −Ekx,n). The Bloch Hamiltonian
is diagonalized as

U †
kx
HkxUkx = diag

(
Ekx,−(N/2)−1, Ekx,−N/2, . . . , Ekx,−1, Ekx,1,

. . . , Ekx,N/2, Ekx,(N/2)+1
)
, (B4)

with a unitary matrix Ukx . We introduce a fermionic operator
f to diagonalize the Hamiltonian as

	f †
kx

= 	c†
kx

Ukx , 	fkx = U †
kx

	ckx . (B5)

Thus, the Hamiltonian can be recast into

H = 1

2

∑
kx

	c†
kx

UkxU
†
kx
HkUkxU

†
kx

	ckx , (B6)

= 1

2

∑
kx

Ekx,n f †
kx,n

fkx,n. (B7)

Next, we define an energy current operator for the honey-
comb Kitaev model. We first introduce an energy polarization
operator as

Px
E = 1

2

∑
(m,l )(n,l ′ )

xm,l + xn,l ′

2
cm,l A(m,l )(n,l ′ )cn,l ′ . (B8)

(B9)

Then, we define an energy current as

Jx
E = i

[
H, Px

E

]
. (B10)

We introduce a group velocity as

vkx,m,n = ∂Hkx,m,n

∂kx
(B11)

= (−2i)
∑
l,l ′

(xl,m − xl ′,n)A(l,m)(l ′,n)e
−ikx (xl,m−xl′ ,n ).

(B12)

Then, the energy current is written as

Jx
E = 1

4

∑
kx,m,n

c†
kx,m

[
vkxHkx +Hkx vkx

]
m,n

ckx,n. (B13)
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Using fermionic operators given by Eq. (B5), we can rewrite
the energy current as

Jx
E =

∑
kx,u,v

JE
kx,u,v f †

u,kx
fv,kx , (B14)

JE
kx,u,v = 1

4

(
Eu,kx + Ev,kx

)[
U †

kx

∂Hkx

∂kx
Ukx

]
u,v

. (B15)

Similarly, we can rewrite the spin current operator as

Jx
s =

∑
kx,u,v

Js
kx,u,v f †

u,kx
fv,kx , (B16)

Js
kx,u,v = 1

4

[
U †

kx

(
∂Hkx

∂kx
Sz

kx
+ Sz

kx

∂Hkx

∂kx

)
Ukx

]
u,v

. (B17)

Finally, the spin Seebeck conductivity κμν (μ, ν = x, y) is
defined by 〈

Jμ
s

〉
∇T /Lx = −κμν∇νT, (B18)

where Lx is the number of unit cells and 〈O〉∇T is the expecta-
tion value of O in the presence of a thermal gradient ∇T . We
here focus on the longitudinal component. The longitudinal
conductivity can be evaluated from the Kubo formula,

κxx
Kubo(ω) = 1

T Lx

∫ ∞

0
dt ei(ω+iδ)t

∫ β

0
dλ

〈
Jx

E (−iλ)Jx
s (t )

〉
,

(B19)

where Jx
α (t ) = eiHt Jx

αe−iHt (α = s, E ) and β = 1/T is the
inverse temperature. Using Eqs. (B14)–(B17), the Wick’s
theorem, and Ekx,n = E−kx,n derived from the inversion sym-
metry, κxx(ω) can be recast into

κxx
Kubo(T, ω) = 2πD(T )δ(ω) + κ reg(T, ω), (B20)

D(T ) = − 1

T Lx

∑
kx,u,v,Ekx ,u=Ekx ,v

JE
kx,u,vJs

kx,v,u f ′(Ekx,u
)
,

(B21)

κ reg(T, ω) = − 2π

T Lx

∑
kx,u,v,Ekx ,u �=Ekx ,v

JE
kx,u,vJs

kx,v,u

× δ
(
ω + Ekx,v − Ekx,u

) f
(
Ekx,v

) − f
(
Ekx,u

)
Ekx,v − Ekx,u

.

(B22)

Here, we have used JE
−kx,−u,−v = −JE

kx,v,u because v−kx =
−vkx . D(T ) is the Drude weight of the spin Seebeck con-
ductivity, which characterizes the ballistic transport at ω = 0.
f ′(E ) means the derivative of the Fermi distribution f (E ) =
1/(eβE + 1).
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