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We study the full counting statistics (FCS) and symmetry-resolved entanglement entropies of integer and
fractional quantum Hall states. For the filled lowest Landau level of spin-polarized electrons on an infinite
cylinder, we compute exactly the charged moments associated with a cut orthogonal to the cylinder’s axis. This
yields the behavior of FCS and entropies in the limit of large perimeters: in a suitable range of fluctuations,
FCS is Gaussian and entanglement spreads evenly among different charge sectors. Subleading charge-dependent
corrections to equipartition are also derived. We then extend the analysis to Laughlin wave functions, where
entanglement spectroscopy is carried out assuming the Li-Haldane conjecture. The results confirm equipartition
up to small charge-dependent terms, and are then matched with numerical computations based on exact matrix
product states.
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I. INTRODUCTION

Entanglement plays a central role in the construction of
many-body quantum states in terms of tensor networks, which
provide efficient numerical methods for the simulation of
strongly correlated systems [1–4]. It is also a powerful the-
oretical tool probing quantum correlations, both in condensed
matter and in high-energy physics [5,6]. For instance, the en-
tanglement entropy (EE) of gapped phases of matter obeys an
area law reminiscent of black hole entropy [7,8], while that of
one-dimensional (1D) critical systems exhibits an anomalous
logarithmic growth sensitive to the central charge [9–11]. In
the quantum Hall effect (QHE) to be studied here, entangle-
ment detects intrinsic topological order [12,13] and identifies
gapless edge modes at the boundary [14,15] or at the interface
between different fractional quantum Hall states [16–18]. It is
thus a crucial theoretical probe of the properties of topological
phases of matter.

The goal of this paper is to compute symmetry-resolved
measures of entanglement in the QHE. Indeed, fluctuations
of the local charge associated with some internal symme-
try have long been investigated in relation to entanglement
[19–21]. The corresponding random variable, known as full
counting statistics (FCS) [22,23], will feature prominently
throughout this work. It captures, e.g., the Luttinger parameter
of 1D systems [14,24,25], detects and counts massless Dirac
fermions in 2D [26], and measures the long-wavelength limit
of the structure factor of gapped 2D liquids [27]. It was re-
cently realized that internal symmetries also provide a natural

decomposition of entanglement measures in sectors with
definite values of the corresponding charge [28–31]. Such
symmetry-resolved EEs and their relation to charge fluctu-
ations have been studied in a number of contexts: critical
[30,32–41] or gapped [42,43] 1D systems, topological phases
[44–46], systems of free particles [26,47–56], integrable mod-
els [57–59], and even gravity [60,61]. As it turns out, entropy
typically spreads evenly among different symmetry sectors—
a property dubbed equipartition of EE [32].

In this work we investigate the equipartition of entropy
and its charge-dependent corrections for integer and fractional
quantum Hall states. The latter live on an infinite cylinder
whose perimeter is large compared to the magnetic length, and
the entangling region is a “half cylinder” whose boundary is
perpendicular to the cylinder’s axis. Symmetry-resolved EE
then satisfies an area law at leading order, while its depen-
dence on charge is captured by subleading terms that vanish
in the thermodynamic limit. A notion of universality emerges:
charge-dependent corrections obey similar scaling laws in
both integer and (Abelian) fractional phases, regardless of
the filling fraction. Furthermore, FCS has a leading Gaussian
form in both cases. This similarity ultimately stems from the
fact that the leading contribution to entanglement originates
from edge modes at the boundary of the entangling region,
through the bulk-edge correspondence. The only difference is
that noninteracting setups allow for a microscopic derivation
of all coefficients thanks to standard free fermion methods
[62–65], whereas the fractional QHE requires field-theoretic
arguments such as the Li-Haldane conjecture [12,66] and
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its irrelevant corrections [67]. The resulting predictions for
FCS and symmetry-resolved EE are eventually shown to be
consistent with exact numerical results obtained using matrix
product states (MPSs).

The paper is organized as follows. We start in Sec. II
with a brief review of symmetry-resolved entanglement for
generic (interacting or free) many-body systems. Section III is
then devoted to entanglement spectroscopy in a filled lowest
Landau level (LLL) on a cylinder. This is used in Sec. IV to
deduce charged moments, FCS, and symmetry-resolved EE in
the integer QHE. Finally, Sec. V focuses on analytical and nu-
merical computations of entanglement in fractional quantum
Hall states. We briefly conclude in Sec. VI with a summary
and a list of potential follow-ups, while the appendices contain
some further computational and numerical details.

II. SYMMETRY-RESOLVED REDUCED DENSITY MATRIX

This section sets up our notation and serves as a brief
reminder of the definition of FCS, charged moments, and
symmetry-resolved entropies. Consider therefore a many-
body quantum system enjoying a global U(1) symmetry
whose conserved charge Q is the integral of some local den-
sity. (A typical example below will be the number operator.)
Splitting the spatial sample into two subregions A and B yields
a bipartition H = HA ⊗ HB of the system’s Hilbert space and
the total charge can be decomposed as Q = QA ⊗ IB + IA ⊗
QB, where QA (QB) is the charge in region A (B). As long as
the total density matrix ρ describes a statistical superposition
of states with definite charge, it commutes with Q. A partial
trace over HB then gives [ρA, QA] = 0, where ρA ≡ TrB(ρ) is
the reduced density matrix (RDM) of region A. The RDM is
thus block-diagonal with respect to QA:

ρA =
⊕

q

�q ρA =
⊕

q

pq ρA(q), (1)

where �q is the projector on the eigenspace of QA with
eigenvalue q, while pq ≡ Tr(�qρA) is the probability that the
charge in region A is QA = q. This distribution pq is known
as full counting statistics (FCS) [22,23], with characteristic
function

Ẑ1(α) ≡ 〈
eiαQA

〉 ≡ Tr
(
eiαQAρA

)
. (2)

We assume throughout that the admissible values of the charge
QA are integers up to some real constant shift δ, i.e., q ∈ Z +
δ, as will be the case for charge deviations in the QHE.

The resolution (1) of the RDM in symmetry sectors pro-
vides a natural refinement of entanglement measures. Each
block ρA(q) is indeed normalized as TrρA(q) = 1: it is a bona
fide RDM that actually coincides with the collapsed RDM
following a measurement QA = q. The symmetry-resolved
von Neumann entanglement entropy (EE) at charge q is thus
defined as

S1(q) ≡ −Tr[ρA(q) log ρA(q)], (3)

encoding the amount of entanglement in sector q. A
straightforward computation then shows that the total EE,

S1 ≡ −Tr(ρA log ρA), can be split in two terms:

S1 = −
∑

q

pq log pq +
∑

q

pq S1(q). (4)

The first contribution is simply the Shannon entropy of charge
fluctuations, while the second is the average entropy per
sector. This decomposition strongly suggests the following
thought experiment for measuring the quantum state of A:
one can first measure the charge QA with some outcome q,
collapsing the RDM to ρA(q), and only then measure the state
of subsystem A. Other entanglement measures can also be
refined, such as symmetry-resolved Rényi entropies

Sn(q) ≡ 1

1 − n
log Tr[ρA(q)n], n > 1. (5)

On general grounds, the total EE is expected to be distributed
evenly among different charge sectors [28]. Such an “equipar-
tition of EE” has been shown to hold in many 1D systems
[32,57,68], as well as some free 2D setups [52]. To be precise,
equipartition is only true for q − 〈QA〉 much smaller than the
standard deviation of QA; for large fluctuations, symmetry-
resolved entropy becomes arbitrarily small instead. We will
similarly encounter equipartition of entanglement in the QHE,
with suitable charge-dependent corrections.

The computation of symmetry-resolved entropies is facil-
itated by introducing generating functions that generalize the
characteristic function (2) of FCS:

Ẑn(α) ≡ Tr
(
eiαQAρn

A

)
. (6)

These quantities are known as charged moments [30], or
“charged Rényi entropies” in a different context [69–76].
They satisfy Ẑn(α + 2π ) = e2π iδẐn(α) when the spectrum of
QA lies in Z + δ, so we restrict attention to α ∈ ] − π, π [ from
now on. All symmetry-resolved entropies can be extracted
from such charged moments. Indeed, notice first that their
Fourier transform is

Zn(q) ≡
∫ π

−π

dα

2π
e−iαqẐn(α) = Tr

(
�q ρn

A

)
, (7)

where �q is the projector of (1), as follows from the operator
identity �q = ∫ π

−π
dα eiα(QA−q)/(2π ). The FCS defined below

(1) and the symmetry-resolved Rényi entropies (5) are then
recovered as

pq = Z1(q), Sn(q) = 1

1 − n
log

Zn(q)

Z1(q)n
, (8)

while the von Neumann entropy (3) in sector q reads

S1(q) = − d

dn

Zn(q)

Z1(q)n

∣∣∣∣
n=1

. (9)

In what follows we compute these objects in integer and
fractional QHEs (Secs. III–IV and V, respectively).

III. ENTANGLEMENT OF FREE FERMIONS ON A
CYLINDER

Here we recall how the entanglement spectrum of the
ν = 1 quantum Hall state can be found using standard free
fermion methods [62–65]. We then write down exact formulas
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FIG. 1. The geometric setup of this paper. Electrons live on an
infinite cylinder (with coordinates x, y) whose subregion A consists
of points with x < 0. The dimensionless flux � through the boundary
of A affects entanglement, since it changes the location of maxima of
LLL wave functions (10).

for charged moments (6). This is a key prerequisite for Sec. IV
on FCS and symmetry-resolved EE.

A. Entanglement spectrum of a filled LLL

Consider noninteracting spinless electrons confined to a
cylinder R × S1 whose points r are labeled by coordinates
(x, y), where y ∼ y + L in terms of a perimeter L (see Fig. 1).
The cylinder is flat (with line element ds2 = dx2 + dy2) and
supports a uniform magnetic field B = dx ∧ dy, where units
were chosen so that cyclotron frequency and magnetic length
are set to unity. Each electron is governed by the Landau
Hamiltonian H = (p − A)2/2, where A = x dy is the vector
potential in Landau gauge. The presence of an Aharonov-
Bohm flux � piercing through the cylinder implies that
eigenstates of the translation operator along y take the form
φk (x, y) = eiky f (x) with some momentum k ∈ 2π (Z + �)/L.
In particular, an orthonormal basis of the lowest Landau level
(LLL) is given by

φk (x, y) = 1√
L
√

π
eikye−(x−k)2/2, k ∈ 2π

L (Z + �). (10)

The ground state at filling fraction ν = 1 then is the Slater
determinant of the LLL: |
〉 = ∧

k∈ 2π
L (Z+�) |φk〉.

The full entanglement spectrum of the integer QHE can
be computed exactly [63,65] when the system’s bipartition
enjoys a spatial symmetry (e.g., rotations or translations).
Accordingly, we decompose the total (many-body) Hilbert
space as H = HA ⊗ HB by splitting the cylinder R × S1 into
two subregions A and B, where A = ] − ∞, 0[ ×S1 is the left
“half cylinder” x < 0 and B is its complement (see Fig. 1).
This choice of bipartition preserves the translational sym-
metry along y, thus allowing an analytical derivation of the
entanglement spectrum. For more generic bipartitions, exact
computations are out of reach and one can, at best, compute
the asymptotics of the entanglement spectrum in the thermo-
dynamic limit using semiclassical methods [77].

For noninteracting fermionic systems such as the integer
QHE studied here, powerful techniques are available to eval-
uate both FCS [78] and (symmetry-resolved) EEs [49,50,79].
Indeed, the RDM is a Gaussian state [79,80]

ρA ≡ 1

Z
e−HA , Z ≡ Tr e−HA , (11)

whose modular Hamiltonian HA is quadratic in terms of local
fermionic creation and annihilation operators in A, say �†(r)
and �(r) [62,80–82]. The problem of computing the RDM
thus reduces to a one-body exercise: diagonalizing the kernel

of HA. Since the latter is unknown a priori, one more trick is
required: starting from the correlation function [83]

C(r, r′) ≡ 〈
|�†(r′)�(r)|
〉 =
∑

k

〈r|φk〉〈φk|r′〉, (12)

one can reverse-engineer Wick’s theorem to reconstruct HA

from the knowledge of correlations in A [80,81]. To do so,
consider the self-adjoint operator

CA ≡
∫∫

A×A
d2r d2r′ C(r, r′)|r〉〈r′| = PAP
PA, (13)

acting on one-body states localized in A, where PA ≡∫
A d2r|r〉〈r| is the projector on region A and P
 ≡∑

k |φk〉〈φk| is the projector on occupied states (here the LLL).
CA then has some single-particle eigenstates |ψm〉 with eigen-
values λm say, which turn out to coincide with eigenstates of
the (kernel of the) modular Hamiltonian. Indeed, introducing
fermionic annihilation operators c†

m ≡ ∫
A d2r ψm(r)�†(r) for

|ψm〉′s, the tautological identity C(r, r′) = Tr[ρA �†(r′)�(r)]
for r, r′ ∈ A leads to Tr(ρAc†

mcn) = 〈ψn|CA|ψm〉 = δmnλm. The
rewriting (11) of the RDM as the exponential of a modular
Hamiltonian then yields the diagonal expression

HA =
∑

m

εm c†
mcm, εm ≡ log

(
1 − λm

λm

)
, (14)

with eigenvalues εm that we refer to as pseudoenergies. Note
that the eigenvalues λm of CA = PAP
PA belong to the interval
[0,1], with boundary values 0 and 1 that are irrelevant: they
correspond to infinite pseudoenergies that do not contribute to
the entanglement spectrum.

If one is interested in the spectrum without regard to
eigenstates, an alternative approach is to consider the overlap
matrix of occupied states (10) [63,84,85],

Mmn ≡
∫

A
d2r φ∗

km
(r)φkn (r), km ≡ 2π

L
(m + �), (15)

with m ∈ Z. The entries of (15) are matrix elements of the
operator OA ≡ P
PAP
. The point is that all nonzero eigen-
values of OA and CA coincide: they are the squares of singular
values of PAP
, as follows from CA = PAP
(PAP
)† and OA =
(PAP
)†PAP
. In our case, dealing with overlaps rather than
the correlation operator (13) turns out to be simpler, as this
trades the diagonalization of a continuous kernel for that of a
discrete matrix. Translation invariance along y actually trivi-
alizes the problem since the overlap matrix (15) of LLL states
(10) is automatically diagonal, with eigenvalues λm labeled by
momentum:

λm = λ(km), λ(k) ≡ 1
2 erfc(k), (16)

where erfc is the complementary error function. Note the
spectral flow (or charge pumping) that can be read off from
(16): the spectrum returns to itself when the flux � increases
by one unit, mapping λm 
→ λm+1.

The eigenvalues λm ∈ ]0, 1[ control the distribution of the
number of particles in region A, i.e., FCS. The latter is indeed
a sum of (infinitely many) independent Bernoulli random vari-
ables with parameters λm, m ∈ Z [77]. The overlaps (16) also
give access to the many-body entanglement spectrum, since
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FIG. 2. The pseudodispersion relation (17) (full line) compared
to its low-momentum approximation ε(k) ∼ 4k/

√
π (dashed line).

This linearization will be used in Sec. V B.

(14) relates pseudoenergies to overlap eigenvalues:

εm = ε(km), ε(k) ≡ log
erfc(−k)

erfc(k)
. (17)

This dispersion relation is plotted in Fig. 2, along with the
low-momentum linear approximation ε(k) ∼ 4k/

√
π that will

briefly be used at the end of Sec. V B.
At this stage a technical subtlety must be addressed: the

ground state energy of the modular Hamiltonian (14) diverges,
as does the normalization Z = Tr e−HA , due to the presence
of infinitely many modes with negative pseudoenergy. This is
easily cured with normal ordering: one may choose to write
HA as a sum of terms of the form c†

mcm, but some of these may
be recast as −cmc†

m up to constants that can be absorbed in Z .
Accordingly, let

HA ≡
∑
m∈Z

εm : c†
mcm :, (18)

where normal ordering is defined by [86]

: c†
mcm: ≡

{
c†

mcm, if m � 0,

−cmc†
m, if m < 0.

(19)

The normalization constant of (11) thus reads

Z ≡ Tr
[
e− ∑

m∈Z εm :c†
mcm:

] =
∏
m<0

1

λm

∏
m�0

1

1 − λm
(20)

and is finite as desired since overlaps (16) converge ex-
ponentially to 0 (resp. 1) for m → +∞ (resp. m → −∞).
The many-body entanglement spectrum then follows from
fermionic statistics. It is plotted in Fig. 3 as a function of
momentum, for several values of perimeter L. As the latter
increases, the spectrum starts to resemble that of a chiral
fermion, hinting that the modular Hamiltonian approaches
that of the 1D conformal field theory (CFT) on the edge of
region A [12,65,66]. We return to this in Sec. V, where the
Li-Haldane conjecture will be used to estimate symmetry-
resolved EE in fractional quantum Hall states.

B. Charge fluctuation operator

The entanglement spectrum of Fig. 3 contains the full
information needed to deduce symmetry-resolved entropies.
One may thus factorize the RDM in sectors (1) with fixed
numbers of particles, and investigate the probabilities pq and

FIG. 3. Many-body entanglement spectra of a filled LLL on half
cylinders at zero flux with perimeters L = 7, 15, 30. Pseudoenergies
are normalized with respect to m = 0 and obtained by adding up
one-body energies (17) in accordance with fermionic statistics. The
spectrum flattens and the CFT approximation improves as L in-
creases. Note the similarity with [65], Figs. 1–2] and [67], Figs. 7–8.

symmetry-resolved density matrices ρA(q). For convenience,
we let the U(1) charge measure fluctuations away from the
average:

QA ≡ :NA: −〈 :NA:〉, (21)

where 〈·〉 ≡ Tr(ρA ·) and normal ordering is required because
〈NA〉 is infinite. As a consequence, the allowed values q of
the charge in region A depend on the flux � and need not
be integers. Indeed, owing to 〈 :c†

mcm:〉 = λm for m � 0 and
〈 :c†

mcm:〉 = λm − 1 for m < 0, one has

〈 :NA:〉 =
+∞∑
m=0

λm −
−1∑

m=−∞
(1 − λm), (22)

which may take any real value (e.g., 〈 :NA:〉 = 1/2 for � = 0).
Writing the overlaps (16) in terms of an error function, one
explicitly finds [87]

〈 :NA:〉 = 1

2
− � −

∞∑
n=1

e− n2

4 L2

πn
sin(2πn �) ≡ −δ(�). (23)

This reduces to 〈 :NA:〉 = 1
2 − � + O(e−L2/4) in the thermo-

dynamic limit L → ∞. The eigenvalues q of the normalized
charge (21) thus belong to the set Z + δ(�); those are the
values that will eventually appear in the decomposition (1) of
the RDM. In particular, q takes half-integer values at zero flux,
and integer values for � = 1/2.

The interpretation of (23) becomes clear upon noting that
any change of flux � amounts to a translation of region A
along x. If the system were invariant under x translations, one
would have 〈 :NA:〉 = 1

2 − � without corrections; this occurs
in the strict limit L = ∞, where the filled LLL becomes
translation-invariant. By contrast, at finite L, the magnetic
field breaks translation symmetry along the cylinder: while
translations along x are classical symmetries (they preserve
the magnetic field and the metric), they cannot be lifted to
the prequantum line bundle because they are not Hamiltonian
diffeomorphisms [88]. Aside from (23), this lack of transla-
tion invariance is manifest in the exponentially small spatial
modulation of the particle density ρ(r) = C(r, r) that can be
read off from (12) with occupied states (10).
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C. Exact charged moments

As recalled in Sec. II, symmetry-resolved entropies are
Fourier transforms of charged moments (6). Using the normal-
ordered Hamiltonian (18) in the RDM (11) then shows that the
charged moment (6) reads

Ẑn(α) =
∏
m<0

tr
(
eiα(1−λm−cmc†

m ) enεmcmc†
m
)

(1 + eεm )n

×
∏
m�0

tr
(
eiα(c†

mcm−λm ) e−nεmc†
mcm

)
(1 + e−εm )n

,

(24)

where the λ′
ms are overlaps (16), pseudoenergies εm are given

by (17), and each lowercase trace is taken over a single
fermionic two-level system produced by cm, c†

m. Evaluating
such traces yields

Ẑn(α) =
∏
m∈Z

[
λn

meiα(1−λm ) + (1 − λm)ne−iαλm
]
. (25)

Expressions of this kind are well known in the literature
(see, e.g., [49]). The only modification here is a slight re-
arrangement due to normal ordering, leading to manifestly
finite expressions since λn

meiα(1−λm ) + (1 − λm)ne−iαλm → 1
exponentially fast when m → ±∞. This, so far exact, equa-
tion will be our starting point in Sec. IV to evaluate FCS and
symmetry-resolved Rényi entropies.

Incidentally, the failure of q to take integer values means
that charged moments are not 2π -periodic in α. They are
rather quasiperiodic, since Ẑn(α + 2π ) = e2π iδ(�)Ẑn(α) as
anticipated below (6). Also note that (25) enjoys the re-
lation Ẑ (�)

n (α) = Ẑ (−�)
n (−α), reflecting symmetry under the

exchange of regions A and B coupled to � 
→ −�. This
invariance is manifest from the relation λ(−k) = 1 − λ(k)
for overlaps (16). For symmetry-resolved entropy, it implies
S(�)

n (q) = S(−�)
n (−q), so Sn(q) is even in q when � is an in-

teger or a half integer. This symmetry is manifest in Figs. 7–8
and Fig. 12 below.

IV. FCS AND ENTROPIES

Section III provides the tools needed to compute
symmetry-resolved measures of entanglement in the thermo-
dynamic limit L � 1. Accordingly, we now evaluate charged
moments (6) at large L, then integrate over α to read off the
probabilities (8), and finally take logarithms to obtain Rényi
entropies whose derivative (9) yields von Neumann entropy.
As we shall see, fluctuations satisfy a Gaussian distribution
with deviation

√
L at leading order [see (29)], leading to

entropies (31) that become evenly distributed among different
charge sectors in the thermodynamic limit [28,32]. Equipar-
tition of entropy is thus reproduced up to charge-dependent
corrections of order O(1/L) that we derive explicitly. Sim-
ilar corrections will eventually affect the fractional QHE in
Sec. V.

A. Charged moments at large L

Consider as before a filled LLL of noninteracting elec-
trons, with the region A introduced in Sec. III A. The Fourier
transform of FCS is the charged moment (25) with n = 1
and overlaps λm given by (16); our task is to find its large L
asymptotics. We shall do this for arbitrary n to streamline the
presentation, as charged moments with n > 1 will be needed

FIG. 4. Comparison between the exact expression (25) for Ẑ1(α)
with � = 0 for perimeters L = 2, 4, 10, and its (dashed) integral ap-
proximation (26). Both log Ẑ1(α) and its approximation are divided
by L for readability. The approximation becomes more accurate
as L grows, save for the divergence at α = ±π [corresponding to
Ẑ1(±π ) = 0 when � = 0] that cannot be captured by the integral
(26). Around its maximum at α = 0, log Ẑ1(α) behaves as a concave
parabola, eventually giving the near-Gaussian behavior (27). See also
Fig. 5.

for Rényi entropies. Accordingly, rewrite the product (25) as
the exponential of a sum of logarithms and convert the sum
over m into an integral at large L (Euler-Maclaurin approx-
imation). Up to exponentially small corrections as L → ∞,
the charged moment for α ∈ ] − π, π [ becomes

Ẑn(α) ∼ exp

[
L

4π

∫
dk log(λ2n + λ̄2n + 2λnλ̄n cos α)

]
(26)

with λ̄(k) ≡ 1 − λ(k) ≡ λ(−k) ≡ 1
2 erfc(−k) as in (16) and

the integral over k runs over the whole real line. For n = 1,
this implies that all even cumulants of charge fluctuations
are O(L) while odd cumulants are exponentially small, in
accordance with [77]. More generally Ẑn(α) is real, positive,
and �-independent at leading order on the interval ] − π, π [,
with a maximum at α = 0. This is not true for other ranges of
α, as the integrand of the Euler-Maclaurin formula becomes
discontinuous and a nonzero phase appears, consistently with
Ẑn(α + 2π ) = e2π iδ(�)Ẑn(α). Furthermore, the asymptotic re-
lation (26) is false when � is an integer and α = π mod 2π ,
since one then has Ẑn(π ) = 0 owing to (25). See Fig. 4 for a
comparison between the exact function Ẑ1(α) and its integral
approximation (26).

Crucially, only the behavior for α ∈ ] − π, π [ is needed for
the Fourier transform (7). In fact, at large L, Ẑn(α) behaves
as a sharply peaked Gaussian at α = 0 (see Fig. 5): Taylor-
expanding the exponent of (26) yields

Ẑn(α) ∼ exp[−L(an + bnα
2 + cnα

4) + O(Lα6)] (27)

as L → ∞ and α → 0, with L-independent coefficients

an ≡ −
∫

dk

2π
log(λn + λ̄n),

bn ≡
∫

dk

4π

λnλ̄n

(λn + λ̄n)2
, (28)

cn ≡
∫

dk

8π

(
λ2nλ̄2n

(λn + λ̄n)4
− λnλ̄n/6

(λn + λ̄n)2

)
.
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FIG. 5. The charged moment (25) for n = 1, � = 0, α ∈
[−2π, 2π ], and L = 1, 10, 50. The Gaussian behavior (27) is man-
ifest at large L, as is the presence of similar Gaussian minima at
α = 2π mod 4π . Note that Ẑ1(α) is real and antiperiodic when
� = 0, since (23) yields δ(0) = 1/2.

Here a1 = 0 since Ẑ1(α) is the Fourier transform of a prob-
ability distribution; all other an, bn, c′

ns are strictly positive.
Note for future reference that these coefficients satisfy the
large n relations an = n f̃ − π3/2/(48n) + O(1/n3) with f̃ �
0.107483, bn = 1/(16

√
π n) + O(1/n3), and cn = O(1/n3)

[89]. We return to this behavior at the end of Sec. V B, where
it will provide a striking check of the Li-Haldane conjecture.

The expansion (27) turns out to be crucial. We will soon
use it to evaluate FCS and symmetry-resolved entropy for
noninteracting electrons, but essentially the same derivation
will apply to the fractional QHE in Sec. V B. Indeed, (27)
displays a universal scaling Ẑn(α) ∼ e−L f (α) that also holds in
interacting setups, up to Taylor coefficients of f (α) not being
given by (28).

B. Full counting statistics

The charged moment (25) and its approximations (26)
and (27) provide direct access to the probability distribution
(8) of charge fluctuations. Indeed, assuming q = O(

√
L), the

Fourier transform (7) applied to the exponential (27) readily
yields the large L expansion

Zn(q) ∼ 1√
4πLbn

e−Lan e−q2/(4Lbn )

× [
1 − cn

Lb2
n

(
3
4 − 3q2

4Lbn
+ q4

16L2b2
n

) + O(1/L2)
]
.

(29)

Since a1 = 0 and b1 = (32π3)−1/2, it follows that leading-
order FCS is a Gaussian whose variance is proportional to the
perimeter [84]:

pq ∼ 1√
2πσ 2

e− q2

2σ2 , σ 2 = L

(2π )
3
2

. (30)

(See Fig. 6.) Note that this holds regardless of the flux: in
the thermodynamic limit, � only affects FCS through the
allowed values q ∈ Z + δ of charge fluctuations [recall (23)],
otherwise leaving the distribution untouched.

We stress that (29) is valid for fluctuations q = O(
√

L),
meaning that terms of the form q2/L are really of order 1.
One can indeed verify that the distribution (29) is properly
normalized for n = 1 (up to and including order 1/L), pre-
cisely owing to the combination of constant, quadratic, and
quartic terms in q that appear in the 1/L correction. In fact,

FIG. 6. FCS (a) on a cylinder with perimeter L = 25 and its
comparison (b) with the approximate nearly Gaussian distribution
(29). The dots are exact values given by (7)–(25) with n = 1 and
fluxes � = 0 (red), � = 0.25 (green), � = 0.5 (blue), � = 0.75
(black). The approximation (29) seems indistinguishable from the
exact pq but it is unreliable for large fluctuations, where pq drops to
zero exponentially fast.

(29) displays a recurring pattern that will also affect en-
tropies, both in the integer QHE and in its fractional version:
symmetry-resolved quantities have a q-independent dominant
term at large L, followed by an O(1) correction involving
q2/L, followed by an O(1/L) correction involving both q2/L
and q4/L2, and so on. Large L expansions thus become tied
to polynomial approximations in q2/L. We will rely on this
insight in Sec. V C to choose “educated fits” for symmetry-
resolved entropies of fractional quantum Hall states.

C. Symmetry-resolved entropies

The large L expansion (29) can readily be used in (8) to
derive Rényi entropies. As a function of q2/L = O(1), the nth
symmetry-resolved Rényi entropy thus reads

Sn(q) ∼ Sn − 1
2 log L + An − Bn

q2

L
+ Cn

q4

L3
(31)

up to corrections of order O(1/L2). Here Sn = Lan/(n − 1) is
the total Rényi entropy and An, Bn,Cn are O(1) coefficients,
positive at large L, that each admit their own expansion in
powers of 1/L. Namely,

An ∼ log bn−n log b1

2(n−1) − log(4π )
2 − 3(nc1/b2

1−cn/b2
n )

4(n−1)L ,

Bn ∼ n/b1−1/bn

4(n−1) − 3(nc1/b3
1−cn/b3

n )
4(n−1)L , (32)

Cn ∼ cn/b4
n−nc1/b4

1
16(n−1)

for n > 1, in terms of constants an, bn, cn defined in (28)
and up to corrections of respective order O(1/L2), O(1/L2),
O(1/L). The behavior of symmetry-resolved von Neumann
entropy (9) is similar: (31) remains valid for n = 1, up to
the fact that coefficients A1, B1,C1 are not given by (32) but
stem instead from the derivative in (9). A straightforward
computation based on the integrals (28) then yields values of
A1, B1,C1 that are relegated to Appendix A for brevity.

The expansion (31) highlights different aspects of
symmetry-resolved EE: the leading term Sn(q) ∼ Sn is pro-
portional to L, exhibiting the usual area law. Its O(log L)
correction lowers the entropy per sector with respect to its
leading value, reflecting the fact that each charge sector now
carries some fraction of the total entropy while preserving
equipartition. In the von Neumann case n = 1, this logarith-
mic lowering may be interpreted as a contribution of the
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FIG. 7. Second Rényi entropy per sector on cylinders with
perimeter (bottom to top) L = 10, L = 30, L = 50 and flux � = 0
(red), � = 0.5 (blue). In each case, the solid line is the approxima-
tion (31) that includes constant, quadratic, and quartic terms in q with
coefficients (32). The matching is already fair for relatively small
systems (L = 10); it improves for larger ones. The area law is also
visible (the maximum increases linearly with L), as is equipartition
at large L.

entropy of charge fluctuations, in accordance with the decom-
position (4). Further charge-dependent corrections occur at
order O(1) = O(q2/L). However, for “small” fluctuations q =
O(1), q-dependent terms become negligible in the thermody-
namic limit L → ∞, leading to an equipartition of entropy
[28,32]. Figures 7 and 8 display the excellent fit between
the approximate expressions (31) and their exact numerical
values for several cylinder perimeters. The same polynomial
dependence of entropy on q2/L will occur in the fractional
QHE in Sec. V.

V. SYMMETRY-RESOLVED ENTANGLEMENT IN THE
FRACTIONAL HALL EFFECT

This section is devoted to FCS and symmetry-resolved EE
in Laughlin states. In contrast to Secs. III and IV, strong
interactions now invalidate the use of free fermion methods:
to the best of our knowledge, exact results are unavailable.

FIG. 8. Symmetry-resolved EE on cylinders with perimeter (bot-
tom to top) L = 10, L = 30, L = 50 and flux � = 0 (red), � = 0.5
(blue). As in Fig. 7, the solid line is the quartic approximation
(31), now with coefficients A1, B1,C1 whose values are written in
Appendix A. The area law and equipartition at large L are once again
manifest.

Instead we provide field-theoretic arguments based on the Li-
Haldane conjecture [66] to show that equipartition still holds
for fractional quantum Hall states in the thermodynamic limit
L � 1, up to corrections of order O(q2/L). This is supported
by strong numerical evidence based on matrix product state
(MPS) simulations for the ν = 1/2 Laughlin wave function.

A. Bulk-edge correspondence

In the seminal paper [66], Li and Haldane observed that
the entanglement spectrum of fractional quantum Hall states
is strikingly similar to the energy spectrum of edge modes in
the presence of a physical boundary. We already encountered
this behavior in Fig. 3 above for the integer QHE. The en-
suing Li-Haldane conjecture is a bulk-edge correspondence
for entanglement: it states that the modular Hamiltonian is
an effective gapless local Hamiltonian on the 1D boundary
of region A. In fact, hints of this relation already appeared
in [12], where it was used to derive topological EE. We now
show that the same assumption implies a strict equipartition of
EE. Corrections to equipartition are studied in Sec. V B, and
their presence is confirmed numerically in Sec. V C.

The most naive expectation for quantum Hall states (both
integer and fractional) is that the modular Hamiltonian equals
the conformal edge Hamiltonian:

HA = 2πv

L

(
L0 − c

24

)
. (33)

Here L is the length of the boundary of A, L0 is the zero mode
of the stress tensor, c is the central charge of edge modes, and
v is a nonuniversal velocity. For instance, the edge Hamilto-
nian of a ν = 1/p Laughlin state is L0 = 1

2 a2
0 + ∑

n>0 a−nan

in terms of the bosonic modes an of a U(1) current. In par-
ticular, the electric charge in region A is measured by the
zero mode a0 = √

p QA, which takes values in Z/
√

p. [We
assume for simplicity that � = 1/2; otherwise one must add
a shift δ(�), as in the integer QHE.] The Hilbert space con-
sists of p topological sectors, each having a definite value of
QA = a/p mod 1 with a = {0, 1, . . . , p − 1}. According to the
Li-Haldane conjecture in the conformal approximation (33),
the RDM in sector a reads

ρA = 1

Za
e− πvp

L Q2
A e− 2πv

L

(∑
n a−nan−1/24

)
, (34)

where the normalization Za is an unspecialized character that
can be written in terms of theta functions, but whose exact
form is unimportant for our purposes. The RDM (34) is man-
ifestly block-diagonal with respect to QA in the sense of (1).
Even more remarkably, its normalized blocks ρA(q) do not
depend on q, so equipartition of entanglement is guaranteed:

ρA(q) = 1

η(τ )
e− 2πv

L

(∑
n a−nan−1/24

)
, (35)

where η(τ ) is the Dedekind eta function. The corresponding
probability of having QA = q is Gaussian, with a normaliza-
tion that generally depends on the anyonic sector at finite
L. This dependence goes away at large L and FCS simply
becomes

pq ∼ e− q2

2σ2

√
2πσ 2

, σ 2 = L

2π pv
, q ∈ a

p
+ Z. (36)

This generalizes the Gaussian (30) of the integer QHE.
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B. Corrections to the conformal spectrum

While rather compelling, the above analysis rests on a
strong assumption: that the modular Hamiltonian is strictly
conformal. The actual situation is neither so simple nor uni-
versal: finite-size effects imply that (33) does not hold exactly,
as the entanglement spectrum is not strictly linear. For the
integer QHE, this is manifest in Figs. 2 and 3 above. One of
the profound insights of [67] is that the finite-size entangle-
ment spectrum can be recovered by adding irrelevant, local
perturbations to the CFT Hamiltonian (33):

HA = 2πv

L

(
L0 − c

24

)
+

∑
j

g j

∫ L

0
φ j (y) dy︸ ︷︷ ︸

≡
(

π
L

)� j −1
Vj

, (37)

where φ′
js are local fields with scaling dimensions � j > 2,

and Vj stands for the zero mode of φ j . On the cylinder geom-
etry we have adopted, symmetry under exchange of regions A
and B requires the φ′

js to be U(1) neutral, leading to � j �
4 [67]. For the fractional QHE, such finite-size corrections
mean that quantitative tests of the Li-Haldane conjecture are
challenging and require fine-tuning all the g′

js (see [67], Ap-
pendix E and the more recent [90]). Indeed, these coupling
constants are not universal: they depend not only on micro-
scopic details, but also on the shape of the boundary of A.

In the integer QHE with the geometry used in this pa-
per, the corrections can in fact be computed exactly. Upon
normal-ordering the quadratic modular Hamiltonian (14) and
expanding pseudoenergies as ε(k) = ∑

j�0 g jk2 j+1, one finds
an expression of the form (37) with Vj ∝ ∑

m m2 j+1 : c†
mcm :.

The term j = 0 is the usual conformal Hamiltonian of a chiral
fermion:

L0 =
∑
m∈Z

m : c†
mcm : = L

∫ L

0
: �†(y)(−i∂y)�(y) : dy, (38)

where the field �†(y) ≡ ∑
m ei 2πm

L yc†
m creates electrons at the

interface ∂A. Each perturbation Vj for j � 1 is manifestly
local and irrelevant, since it is proportional to the zero mode
of the local field : �†(y)(−i∂y)2 j+1�(y) : with scaling dimen-
sion � j = 2 j + 2.

Let us now return to Laughlin states. In order to under-
stand the effects of irrelevant deformations (37) on FCS and
symmetry-resolved EE, it is easier to first consider the charged
moments (6):

Ẑn(α) = 1

Zn
a

Tra
(
eiαQA e− 2πvn

L (L0−1/24)+···), (39)

where · · · stands for the perturbations in (37) and the trace
is taken in the topological sector a. The trick is to recognize
that the numerator is the partition function of a critical 1D
system on an open chain of length L at inverse temperature
βn = 2vn, with a twist eiαQA (see Fig. 9). This system is sub-
ject to irrelevant and neutral (bulk) perturbations. Openness
accounts for the fact that the Hamiltonian is chiral, and the
projection on sector a is achieved by imposing appropriate
boundary conditions (to be discussed below). The factor Za

in the denominator is a partition of the same kind, but at
temperature β−1

1 and with zero twist. The behavior of such

FIG. 9. The Euclidean space-time involved in the partition func-
tion (39) has the topology of an annulus threaded by a magnetic flux
α. The partition function can be interpreted in two ways: (i) as an
open system of size L, inverse temperature βn = 2nv, and complex
chemical potential iα/βn; (ii) upon interchanging space and imagi-
nary time, as a periodic system of size 2nv with boundary conditions
twisted by the magnetic flux α. From the second perspective, (39) is
the probability amplitude to be in the (boundary) state |B2〉 starting
from |B1〉, after an imaginary-time interval −iL.

partition functions at large L follows from the theory of finite-
size scaling. Interchanging space and imaginary time, one
obtains a periodic system of size 2nv, with periodic boundary
conditions twisted by a phase eiα . The partition function in
(39) can thus be recast as

〈B2

∣∣e−LHn
∣∣B1〉, (40)

where |B1〉 and |B2〉 are boundary states in the twisted sector
α. In the absence of boundary perturbations, they would be
conformal boundary states, whose exact form can be obtained
from [91] by performing an appropriate spectral flow to ac-
count for twisted boundary conditions:

|B〉 = 1

p1/4

p∑
a=1

e
2π iaB

p |a + α/2π〉〉, (41)

where the Ishibashi state |a〉〉 is

|a〉〉 ≡
∑

q=a mod p

exp

( ∞∑
j=1

a− ja− j

j

)∣∣∣∣ q√
p

〉
(42)

and |q/
√

p〉 is the highest-weight state in the sector a0 = a0 =
q/

√
p. Choosing B2 = B1 + a ensures the projection on the

topological sector a in the initial picture. As for the operator
Hn in (40), it is the Hamiltonian of a (perturbed) conformal
periodic system of length 2nv:

Hn = π

nv

(
L0 + L̄0 − 1

12

)
+

∑
j

g̃ j

(
π

nv

)� j−1

Vj, (43)

where g̃ j = g j/2v. Note that the periodic system becomes
large in the limit of large Rényi index n, so irrelevant
perturbations are negligible in that regime and the Hamilto-
nian (43) becomes conformal. We return to the large n limit at
the end of this subsection.

The rewriting (40) makes it clear that the large L limit
of the partition function 〈B2|e−LHn |B1〉 is dominated by the
lowest energy eigenstate |α〉 of Hn in the twisted sector α.
Thus

〈B2

∣∣e−LHn
∣∣B1〉 ∼ 〈B2|α〉〈α|B1〉 e−LEn (α), (44)

where En(α) is the energy of |α〉. Furthermore, the coefficient
〈α|B〉 is universal and thus robust to irrelevant perturbations
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[92], so (41) yields 〈α|B〉 = p− 1
4 for α ∈] − π, π [. It follows

that the charged moments (39) satisfy the large L relation

Ẑn(α) ∼ p
n−1

2 e−L(En(α)−nE1(0)). (45)

For α = 0, this reproduces the expected scaling of total Rényi
entropy:

Sn = 1

1 − n
log Ẑn(0) ∼ En(0) − nE1(0)

n − 1
L − γ , (46)

where γ = log
√

p is the topological EE of the ν = 1/p
Laughlin state [12]. For nonzero α, the irrelevant pertur-
bations (37) affect the form of En(α), which is generally
unknown. The best one can do is to rely on general principles:
symmetry under charge conjugation implies that En(α) is even
in α, and it is somewhat expected that twisting the boundary
conditions involves an energy cost, so En(α) should have a
minimum at α = 0. The large L limit is thus dominated by the
behavior of En(α) near α = 0, which yields

Ẑn(α) ∼ p
n−1

2 e−L(an+bnα
2+cnα

4+··· ). (47)

This reproduces the expansion (27) found in the integer
QHE—of course with different coefficients an, bn, cn. FCS
and symmetry-resolved entropies therefore behave in the
same way as what was described in Secs. IV B and IV C for
the integer QHE. In particular, the entropy expansion (31)
remains valid with coefficients An, Bn,Cn given by (32). This
coincidence is our key analytical conclusion for fractional
quantum Hall states, and it will be verified numerically in
Sec. V C.

To conclude, let us consider the limit of large Rényi in-
dices. As mentioned above, the irrelevant perturbations of (43)
become arbitrarily small at large n, so the eigenvalue En(α)
satisfies

En(α) = n f + 2π

vn

(
hα − 1

24

)
+ O(n1−�). (48)

Here f is some (nonuniversal) free energy density, hα ≡
1

2p ( α
2π

)2 is the conformal dimension of the primary state |α〉,
and � � 4 is the scaling dimension of the least irrelevant
perturbation. Plugging (48) back in (45) and comparing with
the large L behavior (47) then predicts the large n relations

an = n( f − E1(0)) − π

12vn
+ O(1/n3),

bn = 1

4πvpn
+ O(1/n3), (49)

cn = O(1/n3).

This can be compared with the exact results obtained for
the integer QHE in Sec. IV A: using p = 1 and v = 4/

√
π

owing to the linearized dispersion relation (17), Eqs. (49)
predict that the coefficients of charged moments satisfy
an = n f̃ − π3/2/(48n) + O(1/n3) for some constant f̃ , bn =
1/(16

√
π n) + O(1/n3), and cn = O(1/n3). These are in-

deed the asymptotics quoted below the definitions (28), thus
providing a highly nontrivial check of the field-theoretic argu-
ments presented here.

C. Numerical results

A large family of fractional quantum Hall model states
on the cylindrical geometry can conveniently be written as
exact MPSs [93,94], including spinful wave functions [95]
and states with quasihole [93,94,96] or quasielectron [97]
excitations. We now use this MPS description to test the
equipartition hypothesis in the fractional QHE. More pre-
cisely, we consider FCS and symmetry-resolved entropies,
and verify that an expansion of the form (31) still holds despite
strong correlations.

We focus on the Laughlin ν = 1/2 state since it has the
smallest correlation length in the Laughlin series [95]. For
a pedagogical derivation, technical details, and practical im-
plementation of MPSs for the Laughlin ν = 1/2 state on a
cylinder, we refer to the appendices of Ref. [95]. The MPS
auxiliary space for such model states is the Hilbert space
of the underlying CFT, and is therefore infinite-dimensional.
Fortunately, it can be efficiently truncated by restricting the
conformal dimension of CFT states to be lower than some
integer Pmax. This truncation caps the number of both mo-
mentum and charge sectors in the entanglement spectrum.
Chirality of the entanglement spectrum and the Gaussian
decay of FCS thus imply that large enough values of Pmax

allow one to faithfully capture a model state at finite cylinder
perimeter. (The calculation complexity grows exponentially
with Pmax, however.) Note that throughout this section, we
work with a rescaled charge q̃ ≡ QA/p (for a Laughlin ν =
1/p state). It is directly related to the electric charge up to a
factor e/p, i.e., the elementary excitation charge.

We first focus on FCS on a cylinder with perimeter L
between 10 and 20, using a truncation Pmax = 19. The mo-
tivation for this perimeter range and a discussion of CFT
truncation effects are provided in Appendix B. Figure 10
shows the corresponding FCS for different values of L. For
each size, we combine the two topological sectors of the
Laughlin ν = 1/2 state. These topological sectors can be
thought of as boundary conditions for the infinite cylin-
der, namely the number of unbalanced excitations at the
boundaries modulo p = 2. As such, each topological sec-
tor only gives access to q̃ values with a given parity. Still,
both sectors perfectly lay over the same Gaussian distribution
(36):

pq̃ = p√
2πσ 2

e− q̃2

2σ2 . (50)

Note that the prefactor p here stems from the fact that we work
with a rescaled charge q̃ = QA/p. Similarly to what we did
for the integer QHE in Sec. IV B, intermediate q̃ values are
reached by inserting a magnetic flux along the cylinder. Fitting
the numerical data with (50) where σ is the only parameter,
one can extract the L dependence of the Gaussian width. This
is shown in Fig. 11, exhibiting excellent agreement with the
linear behavior of the variance (36) derived in Sec. V A.

We now turn to charge-resolved EE. We consider both von
Neumann entropy and the second Rényi entropy, the latter
usually being less sensitive to finite-size effects. Figure 12
then is the analog of Fig. 10 for these two entanglement mea-
sures. More precisely, we consider the combination Sn(q̃) −
Sn + 1

2 log(L) to directly get access to the q̃-dependent
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FIG. 10. FCS for the bosonic Laughlin ν = 1/2 state for three
perimeters: L = 10 (black), L = 15 (blue), and L = 20 (red). We use
two different symbols for the different topological sectors (controlled
by boundary conditions), namely circles and triangles. Full symbols
indicate zero flux along the cylinder, while hollow symbols stand
for a half-flux insertion. The continuous lines are Gaussian fits (50)
whose width σ is the only fitting parameter. The data were obtained
using a truncation Pmax = 19. Inset: The logarithm of FCS for the
same data.

corrections summarized in (31), using this expression to fit
the data through parameters An, Bn, Cn. Despite good overall
agreement, some deviations occur due to finite-size effects at
low perimeter and truncation effects at large perimeter (see
also Appendix B). Figure 13 displays the L dependence of
these three parameters, all expected to be of order O(1) at
large L owing to (32). For An and Bn [Figs. 12(a) and 12(b)],
the agreement is fairly good. Note that error bars increase for
small and large perimeters, as expected from the deviations
observed in Fig. 12 and pointed out previously. As for Cn,
it should be a constant according to (32)—although this is
only true up to 1/L corrections. The data in Fig. 12(c) are

FIG. 11. Gaussian variance σ 2 of FCS [as defined in (50)] as a
function of the cylinder perimeter L for the Laughlin ν = 1/2 state.
Error bars are barely visible. The solid line is a linear fit with a slope
of 0.144(1) whose value measures the velocity v of (36).

FIG. 12. Charge-resolved von Neumann (a) and second Rényi
(b) entropies for the bosonic Laughlin ν = 1/2 state for three perime-
ters: L = 10 (black), L = 15 (blue), and L = 20 (red). The symbols
are identical to those of Fig. 10. The solid lines are quartic fits with
three parameters An, Bn, Cn as defined in (31), using |q| < 6 to ensure
reliable values (see Appendix B). Similarly to Figs. 7–8, the quartic
approximation (31) holds for q̃ = O(

√
L), so that its range of validity

grows with L.

indeed compatible with a nonvanishing constant value at large
perimeters, but Cn still depends on L over the range that we
consider. We emphasize that adding 1/L corrections to Cn

would also require higher q̃2/L terms in (31) for q̃ = O(
√

L).
Such terms would be hard to fit with the finite Pmax we have
access to, so we refrain from attempting to verify this finer
approximation.

VI. CONCLUSION

This work was devoted to symmetry-resolved entangle-
ment measures in the simplest integer and fractional quantum
Hall states. The main goal was to confirm equipartition of
entropies in the thermodynamic limit and to derive its least ir-
relevant charge-dependent corrections. The key result is (31):
it holds in both free and interacting setups, with coefficients
that satisfy specific scaling laws with the length L of the
entangling boundary. This ultimately stems from the simple
exponential behavior (27)–(47) of charged moments at large
L, valid indeed in both integer and fractional QHEs. In the first
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FIG. 13. Fitting parameters of charge-resolved EE [as defined
in (31)] versus the cylinder perimeter L for the Laughlin ν = 1/2
state. From top to bottom: An (a), Bn (b), and Cn (c) for both the von
Neumann entropy (n = 1 in black) and the second Rényi entropy
(n = 2 in red). For (a) and (b), the solid lines are the O(1) + O(1/L)
fit expected from (32).

case, all coefficients can be computed exactly from the known
entanglement spectrum of free fermions. In the second, one
has to rely instead on field-theoretic arguments such as the
bulk-boundary correspondence. As emphasized throughout,
the matching between analytical predictions and numerically
exact values is excellent.

It would be interesting to confirm the validity of an expan-
sion of the form (31) beyond the highly symmetric bipartition
considered here, roughly along the lines of what was achieved
in [77] for (total) EE in arbitrarily shaped subregions in the
integer QHE. A complementary issue also needs to be ad-
dressed: our approach systematically consisted in resolving
the RDM in sectors with definite electric charge, but it would
be equally consistent to resolve it in sectors with definite
momentum around the cylinder. Finally, it is natural to wonder
how the arguments of Sec. V apply to fractional quantum Hall
phases supporting non-Abelian anyons, such as the ν = 5/2
state. We hope to address some of these issues in the future.
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APPENDIX A: ASYMPTOTICS OF VON NEUMANN
ENTROPY

In Sec. IV, we glossed over the derivation of symmetry-
resolved von Neumann entropy since it follows from the
derivative formula (9) once Rényi entropies are expressed in
terms of explicit integrals (28). We now rectify this situation
and display the values of coefficients A1, B1,C1 that appear
in the thermodynamic expansion (31). This requires one more
bit of notation: we define L-independent, positive coefficients
stemming from the derivatives of (28) with respect to n at
n = 1,

a0 ≡ −
∫

dk

2π
(λ log λ + λ̄ log λ̄),

b0 ≡
∫

dk

4π
λλ̄(log λ − log λ̄)(λ2 − λ̄2), (A1)

c0 ≡
∫

dk

4π

(
λ2λ̄2 − λλ̄

12

)
[(2λ − 1) log λ

+ (2λ̄ − 1) log λ̄],

where λ(k) ≡ 1
2 erfc(k) as in (16) and λ̄(k) ≡ λ(−k); all in-

tegrals over k cover the entire real line. In these terms,
symmetry-resolved von Neumann entropy takes the form (31)
with n = 1, S1 = La0, and

A1 ∼ log(4πb1 )
2 + b0

2b1
+ 3(c0+1/c1−2b0c1/b1 )

4Lb2
1

,

B1 ∼ 1−b0/b1

4b1
− 3(c0+c1−3b0c1/b1 )

4Lb3
1

, (A2)

C1 ∼ 4b0c1/b1−c0−c1

16b4
1

,
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FIG. 15. FCS for the Laughlin ν = 1/2 state on a cylinder with perimeter L = 23 (this is slightly above the range shown in Fig. 10 for
pedagogical purposes) for CFT truncation parameters (a) Pmax = 17, (b) Pmax = 18, and (c) Pmax = 19. The symbols are identical to those of
Fig. 10. As can be observed, the asymmetry around q̃ = 0 is more pronounced at the lowest Pmax but is still visible at Pmax = 19.

up to neglected corrections of order O(1/L2), O(1/L2),
O(1/L), respectively. These are the coefficients used in Fig. 8
to compare exact symmetry-resolved von Neumann entropy
to its large L approximation for q = O(

√
L).

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

This Appendix provides additional numerical data to mo-
tivate our choice of parameters when studying the Laughlin
ν = 1/2 state in Sec. V C. For that purpose, we consider the
topological entanglement entropy (TEE) γ [12,13], i.e., the
first correction to the area law that only depends on the nature
of excitations:

Sn = αnL − γ + O(1/L), (B1)

where αn is some nonuniversal coefficient. For the Laugh-
lin ν = 1/p states, TEE is given by γ = log(

√
p). Be-

ing a subdominant contribution, its extraction provides
a simple and reliable proxy to validate a perimeter
range for a fixed truncation parameter Pmax of the MPS
calculation.

Figure 14 shows the extraction of TEE for the Laughlin
ν = 1/2 state. The value obtained by differentiating EE with
respect to L matches the theoretical prediction up to L � 16.
Beyond that point, deviations appear and are more severe for
von Neumann EE than the second Rényi EE (as mentioned in
Sec. V C). This is why we restrict attention to values L � 20.

As mentioned in the main text, the finite truncation in the
MPS leads to deviations in both FCS and charge-resolved

FIG. 16. Charge dependence of EE for the Laughlin ν = 1/2 state on a cylinder with perimeter L = 23 (again slightly larger than those
of Fig. 10 for pedagogical purposes) for CFT truncation parameters (a) Pmax = 17, (b) Pmax = 18, and (c) Pmax = 19. For each truncation, we
provide both the von Neumann entropy (n = 1 in black) and the second Rényi entropy (n = 2 in red). The symbols are identical to those
defined in Fig. 10. A strong asymmetry around q̃ = 0 is observed at the lowest Pmax and steplike effects plague large |q̃| values, both effects
disappearing when Pmax increases.
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EE. In Fig. 15, we show the FCS at fixed perimeter for
three different values of Pmax. Asymmetries around q̃ = 0
occur when this truncation is not large enough. Note that the
charge fluctuation is a dominant contribution as opposed to
the q̃2/L corrections to the charge-resolved EE considered,
e.g., in Fig. 12. As such, the former is more robust than

the latter. Figure 16 exemplifies this difference. It shows the
q̃2/L corrections to the charge-resolved EE at fixed L and
different Pmax. The insufficient truncation manifests itself as
an asymmetry around q̃ = 0 and steplike effect at larger q̃,
and is more prominent for von Neumann EE than the second
Rényi entropy.
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