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Harmonically confined N-electron systems coupled to light in a cavity
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The energy and wave function of a harmonically confined N-electron system coupled to light is calculated
by separating the wave functions of the relative and center-of-mass (CM) motions. The light only couples to
the CM variable, and the coupled equation can be solved analytically. The relative motion wave function has to
be numerically approximated, but the relative Hamiltonian is independent of the coupling strength and it only
gives a shift in the energy. The approach works for any coupling strength and the effective coupling strength
can be increased by increasing the number of electrons. This gives an extra degree of freedom to fine tune the
resonances and other properties of the light-matter coupled systems. Examples of wave functions of light-matter
hybrid states are presented.
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I. INTRODUCTION

Light-matter interactions in optical cavities have been
intensely studied in the last two decades. Strong coupling be-
tween cavity electromagnetic modes and atoms or molecules
can lead to a formation of hybrid light-matter states (po-
laritons), combining the properties of their ingredients. The
properties of these hybrid systems are significantly dif-
ferent from that of the original molecule or atom. The
coupling leads to the modification of potential energy
surfaces, charge states, reactivity, and structure. This pos-
sibility has attracted enormous experimental [1–11]. (See,
e.g., Ref. [12] for more references) and theoretical interest
[13–49].

Model systems with simple analytical solutions have
always played important roles in understanding complex
physical systems and in testing numerical methods. The in-
teraction of light and atoms, for example, can be described by
the Jaynes-Cummings model [50], which assumes a two-level
atom is weakly coupled to a single mode of a quantized elec-
tromagnetic field. For strongly coupled light-matter systems
[19–23,25,29,36,39,46,47,51–54] no simple approach exists
and the light-matter coupling cannot be treated perturbatively
either.

We will consider a harmonically confined system of elec-
trons. Quantum confinement is often modeled by a parabolic
quantum well [55], or by a harmonic trap [56–58]. Electrons
in magnetic fields are also subject to a harmonic confinement
[67]. The quadratic potential allows the separation of the
center-of-mass (CM) and relative motion and the electric field
only couples to the CM wave function (harmonic potential
theorem) [59–64].

In a previous paper [65], we developed an analytical
solution for a harmonically confined two-electron system
interacting with light in a cavity. In this system, the wave func-
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tion can be written as a product of the wave functions of the
relative and CM motion. The relative motion wave function
can be expanded into an infinite series. For certain oscillator
parameters, this infinite series can be reduced to a recursion
[66] giving an analytical solution. The wave function of the
center-of-mass motion can also be calculated analytically.

In this paper, we generalize the two-electron solution to
N electrons. The relative and the CM wave function can be
separated in the same way as in the two-electron case, but
the relative Hamiltonian can no longer be analytically solved.
This work, in some sense, is the generalization of the har-
monic potential theorem to quantized electromagnetic fields.
The photons are only coupled to the CM coordinate, and
the coupled CM photon system can be solved exactly using
shifted Fock states. The relative Hamiltonian can be solved
approximately using numerical approaches, two of which will
be presented and compared here.

The first one, stochastic variational method (SVM) [67,68]
can be used to solve few-electron problems [69–72] and it has
been recently generalized for light-matter coupled states [73].
The SVM generates optimized light-matter coupled wave
function using a product of explicitly correlated Gaussian
(ECG) basis [74] states and photon Fock states. The stochastic
parameter selection keeps the basis dimension and the com-
putational cost manageable by avoiding the high-dimensional
tensor product spaces. The advantage of the approach is that
the matrix elements are analytically available [67,75–77] and
it allows very accurate calculations of energies and physical
properties [69,78–80]. The SVM approach scales with N! for
an N-electron system and it can only be used to small number
of particles.

The second approach for the relative motion uses a density
functional theory (DFT) [81,82] Hamiltonian for the relative
part. Unlike SVM, the DFT is not limited to small systems,
but its accuracy is not as good as the correlated basis approach
used in SVM. DFT calculations have often been used to ana-
lyze the structure and energetics of confined electron systems
and Wigner crystals [81–89].
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II. FORMALISM

We assume that the system is nonrelativistic and the cou-
pling to the light can be described by the dipole approximation
(the wavelength of light is much larger than the size of the
system). The Pauli-Fierz (PF) nonrelativistic quantum electro-
dynamics (QED) Hamiltonian provides a consistent quantum
description at this level. The PF Hamiltonian in the Coulomb
gauge [21,25,38,46,51]: H = He + Hep where He is the elec-
tronic Hamiltonian and

Hep =
Np∑

α=1

[
ωα

(
â+

α âα + 1

2

)
− ωαqαλαD + 1

2
(λαD)2

]
(1)

describes the interaction of electrons and photons (atomic
units are used in this work). In Eq. (1) the photon fields are
described by quantized oscillators using raising and lowering
operators âα and â+

α , D is the dipole operator, and

qα = 1√
2ωα

(â+
α + âα ) (2)

is the displacement field. This Hamiltonian describes Np pho-
ton modes with photon frequency ωα and coupling λα . The
coupling term is usually written as [90] λα = √

4π Sα (r)eα ,
where Sα (r) is the cavity mode function at position r and eα is
the transversal polarization vector of the photon modes. The
first term in Eq. (1) is the Hamiltonian of the photon modes,
the second term couples the photons to the dipole and the last
term is the dipole self-interaction, Hd = 1

2

∑Np

α=1(λαD)2.

A. Electronic Hamiltonian

We consider an N-electron system confined in a harmonic
oscillator potential interacting with a Coulomb potential

He = 1

2

N∑
i=1

p2
i + 1

2
ω2

0

N∑
i=1

r2
i + 1

2

N∑
i< j

1

|ri − r j | , (3)

where ri are the position of electrons. By defining the relative
coordinates

xi = ri − R, R = 1

N

N∑
i=1

ri, (4)

the Hamiltonian can be written as

He = Hx + HR, (5)

with

Hx = 1

2

N−1∑
i=1

π2
i + 1

2

ω2
0

N

N∑
i< j

(xi − x j )
2 + 1

2

N∑
i< j

1

|xi − x j | ,

(6)
and

HR = 1

2N
P2 + 1

2
Nω2

0R2, (7)

where P is the canonically conjugate momentum to R and πi

are canonically conjugate momenta to xi (only N − 1 of these
are linearly independent).

B. Electron-photon coupling Hamiltonian

Assuming that we have only one photon mode and
define the coupling term as λ = λ(1, 1, 0) and the dipole
operator as

D =
N∑

i=1

ri, (8)

the electron-photon coupling term becomes

Hep = ω

(
â+â + 1

2

)
− NωqλR + 1

2
N2(λR)2. (9)

C. Decoupling the relative and center-of-mass Hamiltonian

Now the total Hamiltonian can be written as

H = Hx + ω

(
â+â + 1

2

)
− NωqλR +

(
HR + 1

2
N2(λR)2

)
.

(10)

The first term is the Hamiltonian of the relative motion and it
is not coupled to the center-of-mass motion or to the photon
space. The second term is the Hamiltonian of the photon,
which is coupled to the center of mass through the third term.
The last term in the parenthesis is the Hamiltonian acting on
the center-of-mass motion.

D. Decoupling the center-of-mass Hamiltonian

The center-of-mass part can be simplified further by
introducing

u =
√

N
X + Y√

2
, v =

√
N

Y − X√
2

, z =
√

NZ, (11)

where R = (X,Y, Z ). Now we have

HR + 1

2
N2(λR)2 = Hu + Hv + Hz, (12)

with

Hu = −1

2

∂2

∂u2
+ 1

2
ω2

uu2, (13)

and Hv and Hz are similarly defined harmonic oscillator
Hamiltonians with

ω2
u = ω2

0 + 2Nλ2, ω2
v = ω2

z = ω2
0. (14)

This gives three independent harmonic oscillators, and only
Hu is coupled to the light. This derivation can be easily gen-
eralized to any form of λ [65], and not limited to the present
λ = λ(1, 1, 0) choice.

The solution for Hv and Hz is trivial,

Hvφk (v) =
(

k + 1

2

)
ωuφk (v), (15)

and

Hzφl (z) =
(

l + 1

2

)
ωzφl (z), (16)

where φk (v) and φl (z) are harmonic oscillator eigenfunctions.
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E. Light-CM coupling

Now we can define a simplified coupling Hamiltonian in
the following form:

Hc = ω

(
â+â + 1

2

)
− ωqλ′u + Hu, (17)

where λ′ = √
2Nλ. The total Hamiltonian now becomes

H = Hx + Hv + Hz + Hc, (18)

with eigenenergies

E = Ex + Ev + Ez + Ec. (19)

The Hamiltonian is sum of four uncoupled terms and can
be diagonalized by using a product ansatz

�(x)φk (v)φl (z)�c(u), (20)

where �(x), φk (v), φl (z) and �c(u) are the eigenfunctions of
the four Hamiltonians. The last three are analytically solvable
while some approximation or numerical solution is needed for
the first Hamiltonian.

III. DIAGONALIZATION OF THE LIGHT-MATTER
COUPLED HAMILTONIAN

This section is a generalization of the two-particle case [65]
to N electrons. The extension to more than one photon mode
is straightforward and presented in the Appendix.

The Hamiltonian Hc can be diagonalized in two different
ways. In the first approach, new variables are introduced to
decouple the CM and photon harmonic oscillators. In the
second one, a product basis of the CM and photon harmonic
oscillators, φk (u)|n > is used, where φk (u) satisfies

Huφk (u) =
(

k + 1

2

)
ωuφk (u). (21)

The advantage of the first approach is that it is exact, while
numerical diagonalization is needed in the second approach.
The advantage of the second approach is that the solution is
directly obtained as a product of spatial and photon spaces.

A. Shifted Fock states

We first introduce the following coordinate rotations:

s = usin(α) + q cos(α), (22)

t = −u cos(α) + q sin(α), (23)

and choose α so that the coupling term of the Hamiltonian Hc

is eliminated and the Hamiltonian simplifies to a sum of the
uncoupled harmonic oscillators

Hc =
(

− 1

2

∂2

∂s2
+ 1

2
ω2

s s2

)
+

(
− 1

2

∂2

∂t2
+ 1

2
ω2

t t2

)
. (24)

1. Harmonic confinement

For arbitrary ω0, ω, and λ′ one can decouple s and t by
setting

tan(2α) = 2ωλ′

χ
, χ = ω2

u − ω2, (25)

and the harmonic oscillator frequencies are

ωs = | sin(α)|
√

ω2
0 +

(
λ′ − ω

tan(α)

)2

, (26)

and

ωt = | cos(α)|
√

ω2
0 + [λ′ + ω tan(α)]2. (27)

The value of ωs and ωt depends on ω0, ω and λ′. At ω =
ωu (χ = 0), tan(2α) becomes undefined and ωs and ωt are
switched. When χ → 0+ then α → π/4 and

ωs = ω
√

1 − λ′/ω, (28)

ωt = ω
√

1 + λ′/ω (29)

and the transition frequency between the two levels is

ωt − ωs = λ′ =
√

2Nλ. (30)

If χ → 0− then α → −π/4 and ωt and ωs are switched.

2. ω0 ≈ 0 case

This is a special case, which will always be reached when
the number of particles are increased for a given ω0. We will
refer this as ω0 ≈ 0 case, and we will call the previous case as
harmonic confinement. The harmonic potential can never be
exactly zero because at least a weak confinement is needed to
keep the relative motion bound. The ω0 ≈ 0 is introduced to
emphasizes that harmonic confinement does not play a role in
the CM coupling.

In this case ωu ≈ λ′ and one can derive simpler expressions
for ωs and ωt using Eqs. (22) and (23). If ω < λ′ then

ωs = 0, ωt = (λ′2 + ω2)1/2, (31)

s = λ′q + ωu

(λ′2 + ω2)1/2
, t = ωq − λ′u

(λ′2 + ω2)1/2
. (32)

If λ′ < ω then

ωs = (λ′2 + ω2)1/2, ωt = 0, (33)

s = ωq + λ′u
(λ′2 + ω2)1/2

, t = λ′q − ωu

(λ′2 + ω2)1/2
. (34)

The light q and the center-of-mass u coordinates are coupled
in coordinates s and t . For λ = 0, s = √

ωu and t = √
ωq and

the light and matter are decoupled as expected.
If ω < λ′, then as ωs = 0, the s coordinate does not play

a role, and the t coordinate is dominated by u. This will
always happen if for a given ω and λ one increases the
number of electrons, for large N the electronic u coordinate
becomes dominant due to the dipole self-interaction term and
the coupling to q. In this case the excitations to higher photon
numbers are suppressed.

On the other hand, if λ′ < ω, then ωt = 0 and the t coor-
dinate does not play a role, the eigenfunction is a harmonic
oscillator function depending on s only. In this case, the q
coordinate, the photon excitation will dominate. Examples for
this will be presented in the next section where we explicitly
diagonalize Hc and the photon q and CM u occupation proba-
bilities will be calculated.
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FIG. 1. Eigenenergies of Hc as a function of ω for harmonically confined electrons (N = 50) in the shifted Fock space case for λ = 0.1.
(a) ωs (bottom curve at ω = 0) and ωt (top curve at ω = 0) in the ω0 ≈ 0 case. (b) ωs (bottom curve at ω = 0) and ωt (top curve at ω = 0)
for ω0 = 1. (c) Ec for the ω0 ≈ 0 case with ns + nt � 5. If ω < λ′ then ωs = 0, and the lowest curve is nt = 0, the middle curve nt = 1,
and the top curve is nt = 2 for any ns for ω < λ′. If ω > λ′ then the lowest curve is ns = 0, the middle curve ns = 1, and the upper curve is
ns = 2 for any nt . (d) Ec = for the ω0 = 1 case with ns + nt � 5. In this case there is no degeneracy and one has six lines corresponding to
(ns, nt ) = (0, 1), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2).

3. Numerical examples

Figure 1 shows the eigenenergies of Hc as a function of ω

for N = 50 and λ = 0.1. The eigenfrequencies ωs and ωt as a
function of ω are compared in Fig. 1(a) for the ω0 ≈ 0 case.
The frequency ωs is zero when ω < λ′ =

√
2 · 50 · 0.12 = 1

and at that point ωs and ωt are switched and ωt becomes zero.
In the harmonic confinement case [Fig. 1(b)] using ω0 = 1, ωs

is smaller than ωt when ω < λ′ = √
1 + 2 · 50 · 0.12 = √

2
but it is not zero. At λ′ = √

2 the two frequencies are switched
as before.

Figure 1(c) shows the lowest eigenstates

Ec =
(

ns + 1

2

)
ωs +

(
nt + 1

2

)
ωt (35)

of Hc, where (ns, nt ) are integers, for the ω0 ≈ 0 case. For
ω < λ′ the energy only depends on nt , otherwise the en-
ergy only depends on ns. This leads to many degenerate
states. For example, any (ns, nt = 0) pair constitutes a ground
state if ω < λ′ and any (ns = 0, nt ) pair is a ground state if
λ′ < ω.

In the harmonic confinement case [Fig. 1(d)], this degener-
acy is removed, and the energies of the different (ns, nt ) pairs
are switched to (nt , ns) at ω = λ′, but (ns = 0, nt = 0) is the
ground state for all ω.

B. Exact diagonalization

The Hamiltonian in Eq. (17) can also be solved by exact
diagonalization using the product of center-of-mass eigen-
functions and photon Fock states as basis states

|nu, nq〉 = φnu (u)|nq〉. (36)

To diagonalize Hc, one needs the matrix elements of the
Hamiltonian, which are readily available. The operators Hu

and u act on the real space, and â + â+ acts on the photon
space. The matrix elements of q and u are

〈m|q|n〉 = 1√
2ω

Dmn, (37)

〈i|u| j〉 = 1√
2ωu

Di j, (38)

where

Dmn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√

1 0 0 0 . . .√
1 0

√
2 0 0 . . .

0
√

2 0
√

3 0 . . .

0 0
√

3 0
√

4 . . .

0 0 0
√

4 0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (39)
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Thus, the matrix elements of Hc are

〈i, m|Hc| j, n〉 = δmnδi j

(
j + 1

2

)
ωu

2

+ δmnδi j

(
n + 1

2

)
ω +

√
Nω

2ωu
λ DmnDi j .

(40)

After the diagonalization, we have the eigenenergies and
the eigenfunctions. The eigenfunction has the following form:

�c =
∑
nu,nq

cnu,nqφnu (u)|nq〉, (41)

where cnu,nq are the components of the eigenvector.
In the large N limit we have ωu ≈ √

2Nλ and the coupling
strength in the last term of Eq. (40) will be

√
ω(N/8)1/4, (42)

which is independent of λ. In this case, ωu is very large and
the lowest u harmonic oscillator state dominates

�c =
∑

nq

c0,nqφ0(u)|nq〉. (43)

Figure 2 shows typical occupation probabilities of the ba-
sis states obtained by diagonalization of Hc for the ω0 ≈ 0
case. If ω and λ′ are about the same then the diagonal of
the (nu, nq ) matrix dominates [Fig. 2(a)]. The checkerboard
pattern is due to the odd-even coupling between the u and
q coordinates in Eq. (40). If λ′ � ω then the q coordinate
dominates and the larger nq values are coupled with the lower
nu values [Fig. 2(b)]. On the other hand, for ω � λ′ the u
coordinate dominates and the nu couples with the lower nu-
values [Fig. 2(c)]. This agrees with the results of the previous
section.

IV. SOLUTION OF THE RELATIVE MOTION PART

We will use the SVM and the DFT approaches to calculate
the wave function of the relative motion. These approaches
are briefly described in the following.

A. SVM approach

In this approach the spatial part of the wave function is
expanded into explicitly correlated Gaussians

�k (x) = A
{
e− 1

2

∑N
i< j αk

i j (xi−x j )2− 1
2

∑N
i=1 βk

i (xi−sk
i )2

χS
}
, (44)

where A is an antisymmetrizer, χS is the N electron spin func-
tion (coupling the spin to S), and αk

i j, β
k
i and sk

i are nonlinear
parameters.

The necessary matrix elements can be analytically calcu-
lated [67,74]. The basis functions are optimized by selecting
the best spatial basis parameters using the SVM. In the SVM,
the basis functions are optimized by randomly generating a
large number of candidates and selecting the ones that give
the lowest energy [67,74]. The size of the basis can be in-
creased by adding the best states one by one. Once a basis is
generated it can be refined by replacing states with randomly
selected better basis functions. This approach is very efficient
in finding suitable basis functions.

FIG. 2. Occupation probabilities for different parameters for the
ω0 ≈ 0 case. (a) N = 50, λ = 0.1 and ω = 1, (b) N = 50, λ = 0.1,
and ω = 10. (c) N = 500, λ = 0.1 and ω = 1.

B. DFT calculation

The DFT Hamiltonian is defined as

HDFT
x = − 1

2∇2
r + VH [ρ(r)] + VEX [ρ↑(r), ρ↓(r)] + Vc(r),

(45)
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TABLE I. Comparison of the energy of the relative motion cal-
culated by SVM and DFT for different confinement strengths. S is
the spin and N is the number of particles.

N S ω0 DFT SVM

2 0 0.5 1.743 1.659
1.0 3.232 3.000
1.5 4.626 4.268

2 1 0.5 1.980 1.913
1.0 3.837 3.596
1.5 5.627 5.236

3 0.5 0.5 3.703 3.583
1.0 6.727 6.369
1.5 9.544 8.982

3 1.5 0.5 3.840 3.714
1.0 7.173 6.760
1.5 10.34 9.681

4 0 0.5 6.074 6.071
1.0 10.83 10.62
1.5 15.23 14.57

4 1 0.5 6.049 5.964
1.0 10.79 10.34
1.5 15.18 14.48

4 2 0.5 6.493 6.349
1.0 11.94 11.63
1.5 17.10 16.27

5 0.5 0.5 8.905 8.880
1.0 15.64 15.27
1.5 21.81 21.39

5 1.5 0.5 9.092 9.074
1.0 16.15 15.78
1.5 22.67 22.04

5 2.5 0.5 9.476 9.287
1.0 17.19 16.57
1.5 24.45 23.50

where VH is the Hartree, VEX is the exchange correlation, Vc is
the confining potential, and r is the single-particle coordinate
of the electron. The local density approximation (LDA) is
used for the exchange-correlation part and the system is spin
polarized, ρ = ρ↑ + ρ↓ with

ρ↑(r) =
∑

i

φ↑,i(r)2 ρ↓(r) =
∑

i

φ↓,i(r)2, (46)

where φ↑ and φ↓ are the Kohn-Sham orbitals of the spin-up
and spin-down electrons, respectively. The DFT equations are
solved on a numerical grid with finite difference representa-
tion of the kinetic energy operator and using a grid spacing of
0.2 a.u.

C. Numerical results

In this section we present numerical examples for the cal-
culation of the energies and wave functions of the relative
motion in two dimensions. The extension to three spatial di-
mension is straightforward. The energies calculated by SVM
and DFT show similar trends as a function of the number
of particles and spin symmetry (Table I). The SVM en-
ergies are accurate upper bounds of the exact energy and

are always found to be smaller than the DFT ones. The
DFT and SVM electron densities (see Fig. 3) are similar.
The SVM and DFT figures are rotated with respect to each
other because the ground state is rotationally invariant [due
to the choice of λ = λ(1, 1, 0)] and there is no preferred di-
rection. The SVM and the DFT finds different, but equivalent
rotated states.

The SVM energies are accurate and converged up to the
digits shown. A more sophisticated exchange-correlation po-
tential would perhaps improve the agreement between the
SVM and DFT energies. The energy of the relative motion
only adds a constant shift to the total energy for a given elec-
tron number, N , independently from λ and ω, and therefore
its accurate value is somewhat less important. The SVM and
DFT numbers follow the same trend as a function of spin
and electron numbers and the energy differences by adding
or removing an electron between appropriate spin states are
very similar.

Figure 4 shows the DFT energy as a function of the number
of electrons. The figure shows the energy for a spin 0 cases
and one can see a smooth increase of energy with the increase
of the number of electrons.

V. SUMMARY

We have shown that by decoupling the relative and the
center-of-mass motion the energy and wave function of a
confined N-electron system in an optical cavity can be
straightforwardly calculated. The relative Hamiltonian has to
be solved with a numerical approach, the light coupled CM
motion can be solved analytically or by exact diagonalization.
The advantage of the former is that the energy is analytical
and simple, but the eigenfunctions are shifted Fock states
depending on both the spatial and photon coordinates. The
advantage of the latter is that the eigenfunctions are defined
as products of spatial and photon basis states, which gives a
more explicit physical picture of the spatial and photon space
probability amplitudes in the wave function.

The relative wave function is completely decoupled from
the light and can be solved with suitable approximations or
numerical methods. In this work, we have used the SVM and
the DFT approaches. The SVM is limited to few-electron sys-
tems because it explicitly antisymmetrizes the trial functions
and the N! scaling becomes prohibitively expensive for larger
N . For few electrons, however, the SVM is very accurate,
providing benchmark results for DFT and other approaches.
The DFT can be easily used for larger systems, even for hun-
dreds of electrons. In the present work, we have considered
systems up to 100 electrons. The comparison of the energies
and densities of the DFT and SVM calculations shows that
the DFT predicts reasonable energies on the spin-polarized
LDA level. The energy of the relative Hamiltonian only
shifts the energy of the system, and it is independent of λ

and ω.
The effective coupling strength depends on the number of

particles and that offers an interesting possibility of tuning
the transition energies and resonance parameters by changing
the number of particles. The electron number also changes the
relative importance of ω and λ, and one can selectively excite
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FIG. 3. Electron density for three electrons (a) SVM, (b) DFT and five electrons (c) SVM, (d) DFT for ω0 = 0.5.

spatial or photonic components by changing the number of
electrons in the system.

The present approach can also be extended to a time-
dependent Hamiltonian to work out an analytical solution for
real-time dynamics as a possible benchmark for QED time-
dependent DFT calculations. We plan to work on that problem
in the future.
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FIG. 4. Energy per electron in harmonically confined N-electron
system calculated by DFT.
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APPENDIX: DECOUPLING THE PHOTONS
IN THE MULTIPHOTON MODES CASE

Hc = −1

2

∂

∂u2
+ 1

2
ω2

uu2 +
N p∑
i=1

(
− 1

2

∂

∂q2
i

+ 1

2
ω2

i q2
i −

√
2Nωiλiuqi

)
. (A1)

We can introduce the substitutions, u = ui√
N p

, ωui = ωu
N p

This simplifies our Hamiltonian into the following,

Hc =
N p∑
i=1

(
− 1

2

∂

∂ui
2

+ 1

2
ω2

ui
ui

2 − 1

2

∂

∂q2
i

+ 1

2
ω2

i q2
i −

√
2Nωiλiuiqi

)
, (A2)

which can be written in the form,

Hc =
N p∑
i=1

Hci , (A3)
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where

Hci = −1

2

∂

∂ui
2

+ 1

2
ω2

ui
ui

2 − 1

2

∂

∂q2
i

+ 1

2
ω2

i q2
i −

√
2Nωiλiuiqi. (A4)

We can then separate out each of the Hci and solve them
individually. We once again use the following shifted Fock
states,

si = uisin(αi ) + qi cos(αi ) (A5)

ti = −ui cos(αi ) + qi sin(αi ). (A6)

Setting

tan(2αi ) = 2
√

2Nωiλi

χi
, χi = ω2

ui
− ω2

i (A7)

we can ensure the coupling term of the Hamiltonian is elimi-
nated. As a result, the Hamiltonian simplifies to,

Hci = −1

2

∂

∂si
2

+ 1

2
ω2

si
si

2 − 1

2

∂

∂ti2
+ 1

2
ω2

ti ti
2, (A8)

where

ωsi = | sin(αi )|
√

ω2
ui

+ ω2
i

tan2(αi )
− 2

√
2Nωiλi

tan(αi )
(A9)

ωti = | cos(αi )|
√

ω2
ui

+ ω2
i tan2(αi ) + 2

√
2Nωiλi tan(αi ),

(A10)

where ω2
ui

= ω2
0+2Nλ2

N2
p

.
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