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Disorder-induced two-dimensional metal-insulator transition in moiré transition metal
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We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional
(2D) moiré multilayer transition metal dichalcogenides (mTMDs) using Coulomb disorder in the environment
as the underlying mechanism. In particular, carrier scattering by random charged impurities leads to an effective
2D MIT approximately controlled by the Ioffe-Regel criterion, which is qualitatively consistent with the
experiments. We find the necessary disorder to be around 5–10 × 1010 cm−2 random charged impurities in order
to quantitatively explain much, but not all, of the observed MIT phenomenology as reported by two different
experimental groups. Our estimate is consistent with the known disorder content in TMDs.
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I. INTRODUCTION

Extensive recent experimental [1–8] and theoretical [9–16]
works have established the half-filled (i.e., one electron
or hole per moiré unit cell) two-dimensional (2D) multi-
layer transition metal dichalcogenide (mTMD) systems to
be strongly correlated insulators with an interacting Mott-
Hubbard tight-binding description providing a reasonable
starting point. In particular, the half-filled system, in both
homo- and heterobilayer mTMDs, is insulating with a finite
charge gap in conflict with the noninteracting band description
predicting the half-filled case to be a metal. Theoretical de-
scriptions using Mott-Hubbard models based on realistic band
structures and electron-electron interactions appear to provide
a reasonable explanation for the correlated insulating ground
state and the associated charge gap [12]. Tunability of the
mTMD properties by doping or applying an external electric
field makes mTMD an attractive semiconductor platform for
studying correlation effects [1–8].

In the current paper, motivated by extensive recent experi-
mental transport measurements [7,8], we focus on half filling
and the region of doping around half filling, and ask what hap-
pens if the insulating phase is somehow suppressed, leading
to a transition to an effective metal. Recent experiments [7,8]
have investigated mTMD transport in the presence of doping
(i.e., slightly away from half filling) and in the presence of an
applied electric field at half filling normal to the 2D mTMD
layers which suppresses the Mott gap. This doping or field-
induced zero-temperature insulator-to-metal transition at half
filling is the subject of our paper.

Although the physics of doping and applied field should
be very different from a theoretical perspective, they lead to
a remarkably similar experimental transport phenomenology
with the insulator eventually becoming a metal at finite doping
and/or finite electric field, manifesting similar temperature-
dependent resistivity behavior in both cases (one case, where

the filling changes due to doping at a fixed field, and the
other case, where the filling is fixed at half, but the charge
gap is suppressed to zero by the applied field). In both cases,
there seems to be a continuous transition or a crossover from
the insulating activated temperature-dependent resistivity to a
metallic resistivity at some characteristic (sample-dependent)
doping or field. In fact, the two transport phenomenologies un-
der doping or electric field are qualitatively identical, although
the actual values of the crossover resistivity at the transition in
the two experiments differ. This crossover resistance loosely
separating the effective metal from the effective insulator is
not a sharp universal quantity, and indeed this characteristic
crossover resistance differs quite a bit between the homobi-
layer [7] and heterobilayer [8] mTMDs, although both are
parametrically of O(h/e2). The goal of the current work is to
provide a unified explanation for the observed 2D MIT using
the physically appealing picture that the insulator-to-metal
crossover happens because of disorder in the TMD envi-
ronment arising from the unintentional presence of random
charged impurities. The dominance of disorder in the exper-
imental mTMD samples [7,8] is obvious from the extracted
very low maximum experimental low-temperature mobilities
(<4000 cm2/V s) in the metallic regime.

We note that without disorder the system should be a
metal the moment it is very slightly doped away from half
filling [12], but experimentally the metallic behavior emerges
only at a finite filling of ∼1.1 electrons (or ∼0.9 holes)
per moiré unit cell, i.e., at a finite critical carrier density
∼5 × 1011 cm−2. Similarly, the half-filled system should be
a perfect metal at T = 0 the moment the Mott gap vanishes,
but experimentally the emergent metallic phase at the transi-
tion has a very high resistivity of ∼10 000–50 000 �, and
the metallic resistivity continues to decrease monotonically
as the applied field increases, which is not explicable using
the simple Mott-Hubbard picture since nothing should hap-
pen [17] once the Mott insulator has become a metal with
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zero gap. Both of these features, however, make sense if we
invoke disorder in the environment arising from the pres-
ence of random quenched charged impurities. In the doped
case, a small carrier density at a low filling away from half
filling is unable to overcome the impurity effects as the elec-
trons suffer from strong localization (or percolation) due to
the background disorder, and only when the carrier density
is approximately equal to the charged impurity density, is
metallic transport possible because the Coulomb disorder
then gets screened out by carrier screening. In the half-filled
case under an applied field suppressing the Mott gap, again
the system is unable to manifest metallic conduction until
the metallic carriers in the lower Hubbard band can screen
out the Coulomb disorder effect, which is very similar to
the situation in regular semiconductors (e.g., Si) where at
low doping of the conduction band, no metallic conduction
happens unless a threshold voltage is applied to overcome
strong localization (or percolation) effects. Thus, in both sit-
uations the nature of the insulator-to-metal transition in the
transport behavior is qualitatively similar as in both cases the
carriers (electrons or holes) must first screen out Coulomb
disorder overcoming strong localization (or percolation) in
order to produce metallic transport behavior. Thus, a finite
carrier density is necessary for the MIT to happen, leading to
a continuous crossover rather than an abrupt transition—just
the mere disappearance of the Mott gap is insufficient to pro-
duce metallic conduction because of the presence of quenched
disorder in TMDs.

In our theory, we assume a background random charged
impurity density ni in the system and calculate the metallic
resistivity at T = 0 for a carrier density of n, where n (but
not ni) is known experimentally. We employ the Boltzmann
transport theory for obtaining the metallic resistivity by cal-
culating the effective screened Coulomb scattering limited
transport relaxation time τ (n, ni ). Our comparison to the ex-
periments [7,8,18] involves an extrapolation of the measured
low-temperature metallic resistivity to T = 0. For some data
sets [Figs. 1(c) and 2(c)], the extrapolation is not reliable
due to large measurement errors at low temperatures. In
such cases, we alternatively present results obtained using
finite-temperature resistivities less prone to error in the Sup-
plemental Material [19], leading to the same conclusion.

We identify the 2D MIT crossover point by using three
different criteria, one on the insulating side and two on the
metallic side. The crossover point from the insulating side
can be determined simply by analyzing the experimental ac-
tivated resistivity on the insulating side, and extrapolating the
activation gap to zero. From the metallic side, we identify
the point where the Ioffe-Regel criterion for strong local-
ization (also for percolation [20]), h̄/2τ (n) = EF(n), where
EF(n) is the density-dependent Fermi energy of the metal, is
satisfied, defining the lowest carrier density allowed for the
metallic transport. We also identify the transition by directly
calculating the effective T = 0 resistivity of the system and
equating that to h/2e2, providing a second definition of the
MIT crossover from the metallic side. Amazingly, not only
do these three definitions of the MIT crossover density agree
with each other approximately, our theory also correctly re-
produces the full density dependence of the low-temperature
metallic resistivity in the experiments. Our Boltzmann theory
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FIG. 1. Plot of resistivity R, disorder-induced level broadening
� = h̄/2τ , and the activation gap Eg (extracted from the experimen-
tal activated transport) as a function of the filling factor f for (a),
(b) the electron-doped and (c), (d) hole-doped mTMD samples from
the Cornell group [18]. (a), (c) The low-temperature experimental
resistivity (blue, upward-pointing triangle) and the corresponding
� (red, downward-pointing triangle) along with the best-fit resis-
tivity curve (solid) obtained using the Boltzmann transport theory
with (a) ni = 8.71 × 1010 cm−2 for the electron-doped sample and
(c) ni = 1.01 × 1011 cm−2 for the hole-doped sample. The dashed
lines represent the resistance quantum h/2e2 (blue), and the Fermi
energy EF (red). (b), (d) The activation gap extracted from the
measured resistivity (dot) on the insulating side. The dashed line is
the best linear extrapolate of the activation gap. The values of the
critical filling factor fc are obtained from three independent criteria:
R( fc ) = h/2e2 (blue), �( fc ) = EF( fc ) (red), and Eg( fc ) = 0 (black).

is limited to the metallic regime and becomes gradually quan-
titatively worse approaching the MIT crossover point, but the
theory does not fail. It has been shown in the vast previous
literature on the MIT in semiconductors that the theory re-
mains qualitatively valid approaching the transition from the
metallic side [20–25]. Agreement between our theory and the
detailed experimental density-dependent metallic resistivity
is our most important result, establishing the disorder-driven
crossover to be the correct physics underlying the observed
MIT phenomena. We emphasize that our theory depends only
on just one parameter, the impurity density ni. It is therefore
particularly noteworthy that the impurity density necessary
for the agreement between our theory and experiment is
extremely reasonable, being close to the expected charged
impurity density in the TMD environment [18].

II. THEORY AND RESULTS

The zero-temperature resistivity is given by the simple
Drude relation R = m/neτ where τ is the scattering time at
the Fermi surface. Within the Boltzmann theory of transport
using the relaxation time approximation, the scattering time is
given by

1

τk
= 2πni

h̄

∫
d2k′

(2π )2

∣∣∣∣
v(c)

q

εq

∣∣∣∣
2

δ(Ek − Ek′ )(1 − cos θkk′ ), (1)
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FIG. 2. Same as Fig. 1 but for the (a), (b) electron-doped and
(c), (d) hole-doped mTMD samples from the Columbia group [7].
The experimental low-temperature resistivity data are extracted from
Fig. 2 of Ref. [7]. The best fit is obtained with ni = 6.20 × 1010 cm−2

and ni = 7.80 × 1010 cm−2 for the (a) electron-doped and (c) hole-
doped samples, respectively.

where ni is the background charged impurity density, q =
|k − k′|, θk,k′ is the scattering angle between k and k′, v(c)

q =
2πe2/κq is the matrix element of the Coulomb scattering
potential between an electron and a charged impurity, κ = 5
is the background lattice dielectric constant for TMD, εq

is the 2D screening dielectric function for TMD using the
appropriate effective mass which we set m = 0.45 (in units
of free-electron mass) [18] unless otherwise noted, and Ek =
h̄2|k|2/2m is the usual 2D parabolic energy dispersion. Note
that we use the effective mass approximation allowing us to
ignore the moiré band-structure complications which are cer-
tainly nonessential since we use the experimentally measured
effective mass. Here, the 2D screening function εq is given by
εq = 1 − v(c)

q 
0
q [26], where 
0

q is the noninteracting static
polarizability written as


0
q = − m

π h̄2

⎡
⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎦. (2)

We first consider the doped case, where the resistivity for
mTMD is measured as a function of the carrier density around
half filling f = 1. This is the situation where our theory ap-
plies in a straightforward manner since infinitesimal doping
away from f = 1 should produce a metal, but the experimen-
tal observation is that the system remains insulating up to a
critical finite filling away from f = 1. For the doped case,
we assume that only a partial number of carriers of n − nM

occupying the upper Hubbard band contribute to the transport,
where n is the carrier density and nM = 5 × 1012 cm−2 is the
moiré density corresponding to the half filling. In Figs. 1(a)
and 1(c), we plot the experimental resistivity from the group
at Cornell University on the metallic side as a function of
the filling factor [18] along with the best fit obtained from
our transport model. We emphasize that our fit is in excellent
agreement with the measured resistivity despite using only
one fitting parameter, the impurity density ni. We note that

the experimental � varies as a function of the filling factor,
implying that short-range disorder is not an important resis-
tivity limiting mechanism [18,27]. The figures also show that
the values of the crossover or critical filling factor fc evaluated
according to two independent criteria for predicting the MIT
crossover [R( fc) = h/2e2 and �( fc) = EF( fc)] differ by only
a few percent, which is a very good agreement considering
that the Ioffe-Regel criterion is only a crossover criterion
valid typically over a factor of 2–3 (note that the theoretical
equivalence between these two criteria is expected, but the
important point is that both lead here to agreement with ex-
perimental measurements). On the insulating side [Figs. 1(b)
and 1(d)], we assume that the transport is purely activated
with no metallic contribution, and extract the energy gap Eg

from this activation behavior manifested in the experimental
data. The activation gap gradually decreases as one moves
away from half filling, and eventually vanishes at some crit-
ical filling factor fc. Using the linear extrapolation of the
extracted activation gap (dashed line) from the experimental
data, we estimate the critical filling factor to be fc = 1.10
and fc = 0.89 (from the insulating side) for the electron- and
hole-doped samples, respectively. The values of fc somewhat
depend on the extrapolation scheme used, but we confirm that
the difference is not large enough to alter the conclusion.
We emphasize that these values of fc obtained using the
experimental data on the insulating side are approximately
equal to those obtained from the criteria for the calculated
metallic resistivity shown in Figs. 1(a) and 1(c). In Fig. 2, we
apply the same analysis to TMD samples from the Columbia
University group (Fig. 2 of Ref. [7]). Note that the fit using our
transport model reproduces well the experimental resistivity
with the best-fit impurity density ni being in an expected and
reasonable range (∼1010–1011 cm−2). Similar to the results
for the Cornell doped data, we find that the critical filling
factors fc obtained from the three different criteria, two on
the metallic side and one on the insulating side, are in good
agreement as well as being in agreement with the Columbia
data. Also it is noteworthy that the two best-fit impurity den-
sities for electron-doped and hole-doped mTMD samples are
in agreement.

In Fig. 3, we consider the mTMD transport experiment
from the Cornell group in the presence of the applied out-
of-plane electric field E at a fixed filling factor f = 1 (Fig. 2
of Ref. [8]). For the electric-field varying case, we assume
all nM carriers contribute to the transport unlike the doped
case since the applied electric field closes the Mott gap. Mo-
tivated by the similarity between the experimentally observed
transport phenomenologies under varying doping and electric
field, here we first assume that the carrier density n changes
with the applied electric field E in the metallic regime. With
a fixed impurity density ni = 8.71 × 1010 cm−2 already esti-
mated in the previous analysis for the electron-doped sample
from the Cornell group [Fig. 1(a)], we evaluate the carrier
density dependence on the electric field as shown in Fig. 3(b)
by fitting separately each of the experimental resistivities
measured at different electric fields to our transport model
with n being the only tuning parameter. It is worth noting
that, as in the doped case, we use only one fitting parameter
(the carrier density n), but the obtained best-fit carrier den-
sities are within a reasonable range, being smaller than the
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FIG. 3. Best-fit results to the low-temperature experimental re-
sistivity (triangles, extracted from Fig. 2 of Ref. [8]) of undoped (i.e.,
f = 1) mTMD samples under varying electric field from the Cornell
group. (a) Best fits obtained assuming that the carrier density n varies
with the applied electric field E , and (b) the corresponding estimated
n from the fitting. The theoretically calculated R and � plotted as
a continuous function of E (solid lines) are computed using the
linear interpolation (or extrapolation) of the estimated carrier density
n (dot) shown in (b). Ec is the critical electric field that satisfies
the following criteria: R(Ec ) = h/2e2 (blue), �(Ec ) = EF(Ec ) (red).
Here, we use the impurity density ni = 8.71 × 1010 cm−2, which is
obtained in the previous analysis for the resistivity of the electron-
doped sample from the Cornell group under varying doping density
[Fig. 1(a)]. (c)–(f) Best fits obtained assuming that the effective mass
m varies as a function of E but the carrier density remains fixed
at the moiré density (i.e., n = 5 × 1012 cm−2). Here, the impurity
density is set to ni = 2.05 × 1011 cm, which is obtained by fitting
the most metallic experimental resistivity deep in the metallic regime
(i.e., the one for E = 0.671 V/nm) using the same effective mass
as in the previous analysis for doped samples. (c) The solid line
represents the best theoretical fit, which fails in the regime R > Rmax

because in our Boltzmann model R is bounded from above by Rmax

as seen in (d). Here, me appearing in the horizontal axis is the bare
electron mass. (e), (f) Plot of (e) the estimated m from the fitting,
which rapidly increases approaching the MIT (i.e., E → Ec), and (f)
the level broadening � (solid) and the Fermi energy EF (dashed) as
a function of E in the regime where the fitting is successful (i.e.,
R < Rmax). This figure is for device 1 in Ref. [8]—the same results
for device 2 of Ref. [8] are given in Fig. S1 in the Supplemental
Material [19].

full moiré density (∼5 × 1012 cm−2). Using the interpolated
(or extrapolated) relation between the carrier density and the
electric field (dashed line), we plot in Fig. 3(a) R and � as
a continuous function of the applied electric field, which fit
very well the experimental data. Similar to the doped case,

we calculate the critical electric field satisfying the criteria
for predicting the MIT crossover on the metallic side, i.e.,
R(Ec) = h/2e2 and �(Ec) = EF(Ec). Remarkably, we find that
the values of Ec from the two different criteria are in very
close agreement within ±0.001 V/nm. This implies that the
MIT under varying electric field originates from the same
physical mechanism (i.e., disorder-driven MIT) as the doped
case. Note that the Rc we get in Fig. 3(a) is smaller than the
experimental Rc ∼ 45 k� in Ref. [8], which we attribute to
percolation effects beyond the Ioffe-Regel strong localization
physics [21]. Note that the carrier density rapidly decreases
further below the value of nM near the critical electric field in
contrast to the experimental observation [8] where the carrier
density is fixed to nM, implying that our theory neglecting
correlation effects is not sufficient for describing physics near
the MIT transition.

A more meaningful assumption [8,18] for the undoped
half-filled case under an electric field is, therefore, that the
carrier density beyond the MIT in the metallic regime remains
constant at the moiré density of n ∼ 5 × 1012 cm−2, but the
carrier effective mass varies with E because of correlation
effects and the modification of the moiré hopping induced
by the E field. In Figs. 3(c)–3(f), we show our theoretical
results for a varying mTMD mass at the fixed moiré carrier
density, comparing with the experimental results, getting good
agreement between the measured resistivity and the theory
using a fixed ni and a variable effective mass. There is, how-
ever, a serious difference between Figs. 3(a) and 3(b) (varying
carrier density) and Figs. 3(c)–3(f) (varying effective mass).
For varying mass and fixed density, the maximum possible
metallic resistivity is bounded from above in our Boltzmann
theory by Rmax = (πh/2e2)(ni/n) ∼ 1700 � [see Fig. 3(d)]
for our best-fit impurity density achieving agreement with the
experimental data. This limit exists in our theory by virtue
of the strong screening in the large “m” limit. This Rmax is
substantially lower (by more than a factor of 20) than the
nominal Rc ∼ 5 × 104 � observed in the experiment. The
existence of Rmax in the theory means that the Ioffe-Regel
criterion is not meaningful for the varying mass situation as
is obvious in Fig. 3(f). Our theory provides excellent agree-
ment with the experimental data for R < Rmax, but fails in
the regime R > Rmax [8]. Note that this discrepancy cannot be
fixed by arbitrarily enhancing ni by a factor >20 since such
a large ni would simply be inconsistent with the experimental
metallic resistivity for R < Rmax. We believe that our theory
fails in the high-resistivity metallic regime Rmax < R < Rc

where both insulating and metallic phases coexist near the
Mott transition, and the correct physical picture is a perco-
lation picture [20,21], rather than the Ioffe-Regel criterion
[see Fig. 3(f)]. We note that our finding of a divergent ef-
fective mass on the metallic side below the Mott transition
is consistent with the experiment [8] where the carrier ef-
fective mass diverges approaching the MIT from the metallic
regime.

III. CONCLUSION

We show that the reported metal-insulator transition in
mTMD layers is likely to be a screened Coulomb disorder-
driven Ioffe-Regel crossover where the free carriers are
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strongly localized at low densities. Increasing the carrier
density screens out the disorder, leading to the emergence
of a metallic resistivity. Our transport theory provides a
quantitatively accurate zeroth-order description of the transi-
tion at the correct carrier density and the appropriate critical
resistance for doped samples, but for undoped samples, our
theory fails close to the Mott transition where a percolation
picture applies. The qualitative difference between the MIT
for the half-filled (doped) case is that there is (not) a gap
involved in the crossover, and the Ioffe-Regel criterion strictly
applies in the absence of (or far away from) the gap. An im-

portant experimentally verifiable prediction is that increasing
(decreasing) random disorder in the sample would lead to
an increase (decrease) in the critical filling/field, suppressing
(enhancing) the metallic regime.
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