
PHYSICAL REVIEW B 105, 115113 (2022)

Breakdown of the Wiedemann-Franz law at the Lifshitz point of strained Sr2RuO4
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Strain tuning Sr2RuO4 through the Lifshitz point, where the Van Hove singularity of the electronic spectrum
crosses the Fermi energy, is expected to cause a change in the temperature dependence of the electrical resistivity
from its Fermi liquid behavior ρ ∼ T 2 to ρ ∼ T 2log(1/T ), a behavior consistent with experiments by Barber
et al. [Phys. Rev. Lett. 120, 076602 (2018)]. This expectation originates from the same multiband scattering
processes with large momentum transfer that were recently shown to account for the linear in T resistivity of
the strange metal Sr3Ru2O7. In contrast, the thermal resistivity ρQ ≡ T/κ , where κ is the thermal conductivity,
is governed by qualitatively distinct processes that involve a broad continuum of compressive modes, i.e., long-
wavelength density excitations in Van Hove systems. While these compressive modes do not affect the charge
current, they couple to thermal transport and yield ρQ ∝ T 3/2. As a result, we predict that the Wiedemann-Franz
law in strained Sr2RuO4 should be violated with a Lorenz ratio L ∝ T 1/2log(1/T ). We expect this effect to be
observable in the temperature and strain regime where the anomalous charge transport was established.
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I. INTRODUCTION

Sr2RuO4 is a fascinating material that combines electronic
correlations and unconventional superconductivity whose
mechanism has yet to be understood [1,2]. Major progress
in our understanding of this material was achieved through
the application of uniaxial stress. This leads to a more than
twofold increase in the superconducting transition temper-
ature [3] to T max

c ≈ 3.5 K, a rich phase diagram [4,5], and
puzzling behavior of thermodynamic properties with regards
to time-reversal symmetry breaking [6]. The maximum in
the superconducting transition temperature occurs for strain
values ε∗

xx ≈ 0.45. This is at or very near the Lifshitz transition
[7] where a Van Hove singularity of the electronic spectrum
crosses the Fermi energy [5].

Evidence that the normal state of the system is equally
affected by this Lifshitz point was given by Barber et. al
[8] in measurements of the electrical resistivity as function
of strain εxx and is evident from recent measurements of
the elasto-caloric effect [5]. The main finding of the trans-
port measurements are as follows: For strain values below
and above ε∗

xx, the resistivity shows Fermi liquid behav-
ior with ρ ≈ ρ0 + AT 2, while for εxx ≈ ε∗

xx the resistivity
is more singular. The data between Tc and about 40 K are
consistent with ρ = ρ0 + AT 2log(T0/T ). Over most of this
temperature regime, the residual resistivity ρ0 is a small frac-
tion of the total resistivity. Hence, the system can be safely
analyzed in the clean limit. Similar results were obtained
by tuning the system to the Van Hove singularity by La3+

substituted Sr2−yLayRuO4 [9,10] or epitaxial strain [11], how-
ever with somewhat larger values for the residual resistivity
ρ0.

In this paper we determine the electrical and thermal
transport behavior due to electron-electron scattering of clean
Sr2RuO4 near the strain-induced Lifshitz point. Distinct scat-
tering processes, both impacted by the presence of a Van
Hove singularity at the Fermi energy, affect charge and heat
transport differently, leading to a violation of the Wiedemann-
Franz law [12]. Charge transport is determined by large
momentum transfer scattering that couples non-Van Hove
to Van Hove states. Heat transport is dominated by long-
wavelength scattering due to compressive modes that build
a broad continuum due to the saddle point in the energy
dispersion. For perfectly clean systems and ignoring the
onset of superconductivity or other ordered states this be-
havior should continue down to lowest temperatures. The
Wiedemann-Franz law should only be recovered once im-
purity scattering becomes dominant. As the two scattering
rates that govern electrical and thermal transport are both
caused by electron-electron interactions and the presence of
the Van Hove singularity, we expect that the violation of
the Wiedemann-Franz law occurs in the same temperature
regime 3.5 K · · · 20 − 40 K where the deviation from the T 2

behavior in the resistivity was observed [8]. Our results call
for thermal conductivity measurements under strain to verify
the importance of electron-electron interactions of the quasi-
two-dimensional sheet of the Fermi surface.

The existence of logarithmic corrections to the T 2 behav-
ior near Van Hove singularities was discussed in the past
with ρ ∼ T 2log2(1/T ) in Ref. [13] and ρ ∼ T 2log(1/T ) in
Ref. [14]. Including impurity scattering then changes the
behavior to ρ = ρ0 + BT 3/2, where the T -dependent term
is, however, a small correction to the residual resistivity. A
careful analysis of the transport processes in systems with
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impurity scattering was recently performed in Ref. [15]. Inter-
estingly, in this paper a drop in the Lorenz ratio near the Van
Hove singularity was found. As we will demonstrate in detail
below, ρ ∼ T 2log(1/T ) does indeed follow for Sr2RuO4, if
one goes beyond these previous investigations and includes
interband scattering events.

The above results are somewhat surprising as usually a
single, hot point on the Fermi surface does not influence
the transport properties of a system. A prime example is
the transport behavior near a density-wave instability where
hot spots are Fermi surface points connected by the order-
ing vector of the density wave [13,16]. While the scattering
rate at these isolated points on the Fermi surface is singular,
the transport is dominated by generic, cold regions of the
Fermi surface that short circuit the contribution from the hot
spots and lead to Fermi liquid behavior with ρ ∼ T 2 [13].
Only the inclusion of impurity scattering changes the be-
havior to ρ = ρ0 + AT d/2 [17,18]. However, in this case the
T -dependent term is a small correction to the dominant resid-
ual resistivity ρ0, in distinction to the experimental result of
Ref. [8].

An interesting exception to the rule that hot spots are
irrelevant for transport was recently presented in Ref. [19]
to explain the linear in T resistivity of the strange metal
Sr3Ru2O7. It was shown that scattering processes cc ↔ ch,
in which a cold electron (c) becomes hot (h) after colliding
with another cold electron, exists everywhere on the Fermi
surface, i.e., it cannot be short circuited. For Sr3Ru2O7 the
hot electrons are made up of an exceptionally sharp peak
in the density of states that crosses the Fermi surface. The
relevance of this scenario for Sr2RuO4 was already mentioned
in Ref. [19]. Below we show that for the specific Fermi sur-
face geometry of Sr2RuO4 the cc ↔ ch processes do indeed
yield the ρ ∼ T 2log(1/T ) of Ref. [14]. One has to be careful
however to include all bands that cross the Fermi surface, as
mere umklapp processes of a single band do not provide the
necessary phase space for cc ↔ ch processes down to lowest
temperatures. Hence, our analysis shows that the electrical
resistivity of strained Sr2RuO4 can be understood in terms of
the cc ↔ ch approach of Ref. [19].

As we discuss in more detail in Sec. II, the presence of a
Van Hove singularity gives rise to distinct enhanced scatter-
ing cross sections for large momentum and long-wavelength
scattering processes. This presence of distinct scattering
processes that do and do not contribute to the resistivity sug-
gests to analyze different transport properties. After all, the
Wiedemann-Franz law, according to which the Lorenz ratio

L = κ

σT
= ρ

ρQ
(1)

of the thermal conductivity κ = T/ρQ and the electronic con-
ductivity σ = 1/ρ approaches L0 = π2

3 ( kB
e )2, is caused by the

same scattering processes contributing to thermal and charge
transport [20]. This is certainly the case for disordered elec-
trons [21,22]. In clean Fermi liquids, charge current relaxation
requires umklapp scattering, while heat current relaxation
transport does not. Hence, there is no reason to expect that
L → L0. However, given that both scattering rates are propor-
tional to T 2 with τ−1

J,Q = AJ,QT 2 for charge (J) and heat (Q)

transport processes, one still expects a constant Lorenz ratio
L(T → 0) → L0

AJ
AQ

.
We show that the thermal transport at the Lifshitz point

is governed by a scattering rate τ−1
Q ∝ T 3/2 caused by the

continuum of density fluctuations, while the resistivity follows
the discussed τ−1

J ∝ T 2 log D
T with bandwidth D. As a result,

we obtain for the Lorenz ratio

L ∝ T 1/2 log
D

T
, (2)

which vanishes as T → 0. Hence, we expect a strong break-
down of the Wiedemann-Franz law at the Lifshitz point of
strained Sr2RuO4. These results are valid right at the Lifshitz
transition. As the chemical potential moves away from the
Van Hove point one expects to recover the usual Fermi liquid
behavior. Figure 1 shows an interpolation between the two
cases with

ρ(T ) ≈ AJT 2 log
D√

T 2 + T ∗2
(3)

and

ρQ(T ) ≈ AQT 2

(
D2

T 2 + T ∗2

)1/4

, (4)

where singular contributions are cut off by the temperature
scale T ∗. This scale is essentially the distance of the Van Hove
point to the Fermi energy and is sketched in the right inset of
Fig. 1 using realistic parameters for the electronic structure
of Sr2RuO4; see Appendix B for details. The left inset shows
the Lorenz number as function of temperature. Our prediction
for the violation of the Wiedemann-Franz law is consistent
with the numerical solution of the Boltzmann equation of
Ref. [15], where a suppression in the Lorenz number for
weakly disordered systems was seen near the Van Hove point.
This result can easily be generalized to a system with two Van
Hove points, e.g., Sr2RuO4 under c-axis compression, as long
as inter-Van Hove scattering does not lead to a density wave
instability.

It is of interest to contrast the behavior found here with the
one of two-dimensional Fermi liquids without Van Hove sin-
gularity. Then the single-particle scattering rate is enhanced
by a logarithmic term, compared to the usual T 2 behavior
τ−1

qp ∼ T 2 log(D/T ). As this enhancement is due to small
momentum transfer processes, it will not affect the resistivity
[23], i.e., ρ(T ) ∼ T 2. However, the thermal conductivity does
couple to forward scattering processes and acquires an ad-
ditional logarithmic contribution ρQ(T ) ∼ T 2 log(D/T ) [24].
Hence one also finds a violation of the Wiedemann-Franz
law L(T ) ∼ 1/ log(D/T ). This violation, however, is much
weaker than the one we predict at a Van Hove point and
therefore harder to observe experimentally.

In what follows we briefly discuss the electronic structure
of Sr2RuO4 within a three-band model. We then summarize
the behavior of long-wavelength density fluctuations near a
Van Hove point. Finally we present our results for the charge
and heat transport. In the appendices we comment briefly on
the relation to Matthiessen’s rule, summarize the tight-binding
parametrization of the band structure, determine the single-
particle scattering rate, and present our results for the current
relaxation rate τ−1

J (ω) in the regime τ−1
J (ω = 0) 
 ω 
 D.
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FIG. 1. Temperature dependence of the resistivity ρ(T ) ∼ T 2 log(D/T ) (left) and thermal resistivity ρQ(T ) ∼ T 3/2 (right) divided by the
Fermi liquid behavior T 2 at the Van Hove point (red curves). The more singular behavior of the thermal resistivity is clearly visible. D is
the effective bandwidth of the problem. As one moves away from the Van Hove point, one expects a temperature scale T ∗ below which both
transport coefficients recover ordinary Fermi liquid behavior following Eqs. (3) and (4). We use T ∗/D = 0.01 (green curves) and T ∗/D = 0.03
(blue curves). The inset shows the corresponding behavior for the Lorenz ratio L(T ). The right index shows the characteristic temperature scale
T ∗ for the crossover to Van Hove dominated scattering as the strain is varied. We used the parameters given in Appendix B. In this inset we
also indicate the regimes where the Lorenz number L tends to a finite value or vanishes as T decreases.

II. MODEL AND DENSITY RESPONSE

As we include multiband effects in our analysis we start
from the following three-band model with kinetic energy

H0 =
∑
kσ

ψ
†
kσ
H(k)ψkσ (5)

where ψkσ = (dk,xy,σ , dk,xz,σ , dk,yz,σ )T with annihilation oper-
ators for electrons in the Ru 4dxy as well as 4dxz and 4dyz

orbitals, respectively. For our analysis we use the single-
particle Hamiltonian

H(k) =
⎛
⎝εkxy 0 0

0 εkxz Vk

0 Vk εkyz

⎞
⎠, (6)

where we employ the dispersion relations obtained in
Ref. [11] from angular-resolved photoemission data for the
unstrained system. The dyz and dxz orbitals overlap and split
into the α band located at the corners of the Brillouin zone and
the β in the center. Both bands are moderately affected by a-
or b-axis stress without qualitative changes in the dispersion.
The γ band however, formed by the dxy orbitals, is highly
susceptible to strain and undergoes a Lifshitz transition under
uniaxial pressure. We follow Ref. [8] to account for these
changes in the dispersion at finite strain. Uniaxial strain εxx

lifts the degeneracy between states at momenta (π, 0) and
(0, π ) and splits the Van Hove singularity into two peaks. For
ε∗

xx = 0.45% the Van Hove singularity at

kVH = (0, π ) (7)

crosses the Fermi energy. The details of this analysis are
summarized in Appendix B. In Fig. 2 we show our results for
the strain dependence of the Fermi surface and the density of
states.

The modifications of the electrical resistivity at the strain-
tuned Lifshitz point are argued to be due to the divergent
density of states at the Van Hove singularity with large
momentum transfer in the involved scattering processes.

Sr2RuO4 is of course a three-dimensional material. Hence,
the logarithmic divergence in the density of states is cut
off at some energy scale t⊥ set by the interlayer hopping.
However, this energy scale was shown in experiments to be
only a few Kelvin [1]. This is consistent with the three-
dimensional electronic structure where the dispersion in the
c direction is particularly weak for in-plane momenta near
the Van Hove point [25,26]. With t⊥ comparable to Tc we
will ignore these effects in what follows. In addition to these
density of states effects, electrons near a Van Hove singularity
are also expected to yield singular negative corrections to the
compressibility or other elastic constants:

δC(T ) ∼ − D

v0
log

D

T
, (8)

FIG. 2. Density of states of the γ band at zero strain (blue) and
at the strain value ε∗ that corresponds to the Lifshitz point where one
of the strain-split Van Hove singularities crosses the Fermi energy
(red). The inset shows the Fermi energies at zero strain (left) and at
the Lifshitz point (right), where the hot parts of the Fermi surface are
indicated in red.
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FIG. 3. Scaling function P(x, y) (left) of Eq. (13) (solid lines) determining the frequency and temperature dependence of the charge
excitation spectrum near a Van Hove point as function of x = ω/|εVH,k|, in comparison with the simplified version of Eq. (11) together with
the substitution Eq. (14) (dashed lines) to include thermal effects. We used m = 1 and show results for y = 0.1 (red) y = 5 (green), and
y = 10 (blue), where y = T/|εVH,k|. The right panel shows the numerical result for the density excitation spectrum of the γ band at T = 0
for q = 0.08π (dark red), q = 0.06π (red), and q = 0.04π (light red). For small ω/|εVH,k| the curves show the expected scaling behavior. As
shown in the inset, the result deviates from the approximated result for large ω/|εVH,k|.

where v0 is the unit cell volume and D the band width. Unless
preempted by other states of order, such as superconductivity,
this should eventually give rise to a lattice instability at some
low temperature. These compressive modes are related to a
broad continuum in the long-wavelength density fluctuation
spectrum of systems with Van Hove singularity [27]. Such
fluctuations are known to give rise to singular single-particle
scattering rates, with frequency and temperature dependencies
that depend on the details of the band dispersion [27,28]. The
corresponding contribution to the resistivity is small, however,
since scattering of electrons from these fluctuations involves
a small momentum transfer. The details of the electronic
structure will be important when we analyze the kinematics of
umklapp scattering events that are crucial for the electrical re-
sistivity. In contrast, for the thermal transport long-wavelength
density excitations of a system with Van Hove singularity will
become important. The density excitation spectrum follows
from

Im�(q, ω) =
∫

d2 p

4π
( f (εp+q) − f (εp))

× δ(ω − εp+q + εp) (9)

where f (ε) is the Fermi distribution function. As the low-
momentum regime is dominated by states near the saddle
point of the dispersion, we approximate the so called γ band
with dispersion εkxy by

εkVH+p,xy ≈ εVH,p = p2
x − p2

y

2m
. (10)

At T = 0 the momentum integration can be performed easily,
yielding [27]

Im�(q, ω) = − m

2π

{ ω
|εVH,q| if |ω| < |εVH,q|

sign(ω) if |ω| > |εVH,q| . (11)

This result is valid for ω < vF |q|, where vF is the maximum
Fermi velocity away from the Van Hove point. The density
excitation spectrum vanishes for ω � vF |q|. This can be seen
by imposing a momentum cutoff of the order of the Fermi
momentum on the integration in Eq. (9). Comparing Eq. (11)

to the usual density response of a Fermi gas, in the Van Hove
case there is much more spectral weight at low frequencies.

At finite temperatures,

Im�(q, ω) = P

(
ω

|εVH,q| ,
T

|εVH,q|
)

, (12)

with scaling function

P(x, y) = √
y

m

4
√

π

(
Li1/2

( − e
1
4y (2x−1)2+ 2x

y
)

− Li1/2
( − e

1
4y (2x−1)2))

(13)

and polylogarithmic function Lis(z). As we show in Fig. 3,
the finite-temperature density response can be expressed to a
good approximation in the form Eq. (11) but with

|εVH,q| → �q(T ) =
√

ε2
VH,q + T 2. (14)

The corresponding real part of the density response yields
�(q, 0) = − m

π2 log D
�q(T ) , which leads to Eq. (8) for the com-

pressibility.
An important result that follows from this continuum of

density excitations is an anomalous single-particle scattering
rate [27,28]. To see this we analyze the imaginary part of
the single-particle self-energy coupled to the above density
fluctuations:

Im�(k, ω) = 2
U 2

N

∑
k′

( f0(ε(k′)) + n0(ε(k′) − ω))

× Im�(k − k′, ω − ε(k′)), (15)

where U is the electron-electron interaction and f0 and n0

are the Fermi and Bose distribution functions, respectively.
While the momentum transfer k − k′ is small, the individual
Fermi momenta k and k′ do not necessarily have to be lo-
cated in the vicinity of the Van Hove point. Indeed, the result
Im�(k, ω) ∝ |ω|ν for the single-particle self-energy depends
sensitively whether k and k′ are near or away from the saddle
point of the dispersion. In the former case the dispersion ε(k)
is given by Eq. (10). In this case follows ν = 1, which is
the result obtained in Ref. [28]. Alternatively we can analyze
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the self-energy for generic momenta. Now it is sufficient to
assume a parabolic spectrum for ε(k), which yields ν = 3/2
[27]. A third option for momenta with parabolic dispersion
and Fermi velocity parallel to the directions of zeros of
Eq. (10) yields a somewhat more singular behavior with ν =
4/3. We will show that the behavior with ν = 3/2 is the one
that determines the thermal conductivity. Further details of the
analysis of the single-particle self-energy are summarized in
Appendix D.

The nonanalytic result for the single-particle self-energy
is non-Fermi liquid like. Nevertheless a quasiparticle de-
scription of the transport behavior seems justified. Indeed,
a Kramers-Kronig transformation of this result yields that

the quasiparticle weight ZkF = (1 − ∂Re�kF (ω)
∂ω

)|ω=0 remains
finite.

III. ELECTRICAL RESISTIVITY

To calculate the resistivity we use the standard Boltzmann
ansatz

∂ fk,i

∂t
+ eE · ∂ fk,i

∂k
= −Ck,i[ f ] (16)

with band index i ∈ {α, β, γ } and scattering operator Ck,i[ f ],
and determine the charge current

j = − e

N

∑
k,i,σ

vk,i fk,i (17)

at given electrical field. Next we expand fk,i for small de-
viations from equilibrium, parametrized by a function ψk,i

(proportional to the electric field E):

fk,i = f0(εk,i ) − T
∂ f0(εk,i )

∂εk
ψk,i. (18)

The linearized collision operator due to electron-electron scat-
tering up to second order in U takes the usual form

Ck,i[ψ] = 2π

h̄

∑
jkl

|Ui jkl |2
∑

k2,k3,k4

Lεk1 ,i,εk2 , j ,εk3 ,k ,εk4 ,l

× δ
(
εk1,i + εk2, j − εk3,k − εk4,l

)
×

∑
G

δk1+k2−k3−k4−G

× (
ψk1,i + ψk2, j − ψk3,k − ψk4,l

)
. (19)

The sum over G goes over the entire reciprocal lattice. In
practice only a few terms contribute since four vectors of the
first Brillouin zone only reach a finite number of reciprocal
lattice vectors. Ui jkl refers to the intra- and interband matrix
elements of the interaction, which we assume roughly to be
of same order of magnitude ∼U . Below, we will discuss in
detail which bands are included in the analysis. The phase
space restrictions of degenerate fermions are included through

Lε1,ε2,ε3,ε4 = f0(−ε1) f0(−ε2) f0(ε3) f0(ε4). (20)

Obviously ψk,i ∝ const. is a zero mode of the collision opera-
tor due to charge conservation. Similarly, ψk,i ∝ εk,i is a zero
mode due to energy conservation. However, ψk,i ∝ kα is not
a zero mode as the momenta do not have to add up to zero.

Umklapp scattering processes spoil momentum conservation
and yield a finite resistivity.

When analyzing the resistivity we make the simplifying
assumption that

ψk,i ≈ ψ0eE · vk,i (21)

is determined by the velocity vk,i = ∂εk,i

∂k . This assumption
is only justified if a given scattering process is kinemati-
cally allowed everywhere on the Fermi surface. Otherwise
the coefficient ψ0 will depend strongly on the position on the
Fermi surface, effects that occur as corrections of the current
vertex in a diagrammatic treatment of transport. As a result
the longest scattering rate that is allowed on the entire Fermi
surface dominates the transport behavior; it short circuits
stronger scattering events that are kinematically only allowed
on a subset of the Fermi surface. While this hot spot reasoning
is well established [13,14,16–19], it appears at odds with the
expectation based on Matthiessen’s rule [29] where one has
to add scattering rates, not times; see Appendix A. With the
ansatz Eq. (21) we finally arrive at the following result for the
low-frequency (ω < τ−1

J ) conductivity:

σαβ (ω) = nD,αβ

−iω + τ−1
J

, (22)

with Drude weight nD,αβ = e2

N

∑
kσ

∂2εk
∂kα∂kβ

f0(εk) and scatter-
ing rate for charge transport

τ−1
J = 2πU 2e2

h̄

∑
i jkl

∑
k1,k2,k3,k4

Lεk1 ,i,εk2 , j ,εk3 ,k ,εk4 ,l

× δ
(
εk1,i + εk2, j − εk3,k − εk4,l

)
×

∑
G

δk1+k2−k3−k4−G

× (
vk1,i + vk2, j − vk3,k − vk4,l

)2
. (23)

Due to the velocity term, momentum conserving scat-
tering processes vanish in the single-band case and, as
expected, do not contribute to the resistivity. For multiple
bands momentum-conserving terms can, of course, change the
current.

We perform the momentum summation according to

1

N

∑
k

F (k) ≈
∑

S

∫
dερS (ε)

∫
S

dϕ

2π
F (ε, ϕ). (24)

In the last step we sum over segments of the Fermi surface
with essentially constant density of state ρS (ε) ≈ ρF or with
logarithmic density of state ρS (ε) ≈ ρF log(D/|ε|). Finally
we use

I =
∫

dε1 · · · dε4δ(ε1 + ε2 − ε3 − ε4)Lε1,ε2,ε3,ε4

×
4∏

i=1

ρSi (εi ) ≈ 2π3

3
T 3ρ4

F logn D

T
, (25)

where n = 0 · · · 4 is the number of electrons near a Van Hove
point that are involved in a given scattering process. For ex-
ample, for a cc → ch process, n = 1.
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Depending on the number of such hot electrons involved,
distinct scattering processes contribute differently to the resis-
tivity. At first glance, the contribution of a scattering process
with n hot electrons seems to be ρ (n) ∝ T 2 logn(1/T ), which
would be dominated by ρ (4) at low T , i.e., by the largest value
of n. However, as discussed above, we must (i) ensure the ex-
istence of umklapp scattering for given n, (ii) check that those
processes exist on the entire Fermi surface, and (iii) ensure
that some of the states involved have a finite velocity, needed
to carry the current. We will see that this yields n = 0 for a
single-band problem, while n = 1 if one includes additional
bands that cross the Fermi energy. Hence, including multiband
scattering events, the final result for the electrical resistivity
will be

ρ(T ) = AJT 2 log (D/T ), (26)

with AJ ∼ U 2ρ3
F /nD. Equation (22) also includes the low-

frequency Drude response of the system where τJ corresponds
to the zero-frequency limit of the charge transport rate. In
Appendix E we also discuss τ−1

J (ω) in the opposite limit
τ−1

J (0) 
 ω 
 D within a memory function approach and
obtain

τ−1
J (ω) ∼ ω2 log (D/|ω|), (27)

which determines the optical conductivity at these intermedi-
ate frequencies

σαβ (ω) = nD,αβ

−iω(1 + λ(ω)) + τ−1
J (ω)

. (28)

Here, λ(ω) = λ0(log 2 − ω
D arctan( D

ω
)) is the optical mass en-

hancement that follows from Kramers-Kronig transformation.
This frequency dependency parallels the temperature depen-
dency of the optical scattering rate at low frequencies.

For a problem with two Van Hove points at k(1)
VH = (π, 0)

and k(2)
VH = (0, π ), Eq. (26) was already obtained in Ref. [14].

Unlike in the former case, the full band structure, including
the α and β sheets of the Fermi surface, need to be included to
explain the anomalous resistivity down to lowest temperatures
in Sr2RuO4. In what follows we discuss the kinematics of the
single-band and multiband problems separately.

A. Resistivity for the γ band only

As we have seen, electron-electron scatterings yield differ-
ent contributions to the resistivity, depending on the number of
hot electrons involved. Which of these scattering processes are
possible depends on the geometry of the Fermi surface. For
simplicity, we start from a simplified model that includes only
the γ band. In principle, the Fermi surface allows scattering
processes with n = 0, 1, 2, and 4 hot electrons. Of these, only
cc ↔ cc (i.e., n = 0) and cc ↔ ch (n = 1) contribute to the
resistivity as they allow umklapp processes. Figure 4 shows
the possible scatterings schematically for zero, one and two
hot electrons.

The cc ↔ ch scattering dominates the resistivity if every
point on the cold Fermi surface can participate in such a scat-
tering process. These processes have to be umklapp processes
in order to contribute to the resistivity. It turns out that this
is not possible for the entire Fermi surface. For an electron
close to the Van Hove point the momentum transfer is not

FIG. 4. A cc → cc process, where two electrons scatter from
two cold initial states (purple) into two cold final states (orange)
with umklapp scattering, leads to a resistivity of ρ ∝ T 2. The solid
arrows indicate the momentum transfer for each electron. An arrow
starting at a cold momentum (blue end) can either end in another cold
state (blue arrowhead) or in a Van Hove point (red arrowhead). The
cc → ch process contributes by ρ ∝ T 2 log(1/T ) and dominates, if
every point on the Fermi surface participates in this scattering. The
cc → hh processes always conserve momentum, therefore they do
not contribute to the resistivity.

sufficiently large to surpass the gap between two neighboring
Fermi surfaces. For the tight-binding parameters relevant for
Sr2RuO4, we obtain that more than 10% of the Fermi sur-
face cannot participate in cc ↔ ch scattering processes. This
implies that our assumption of Eq. (21) for the distribution
function is not justified. Details on this calculations can be
found in Appendix C.

States on the Fermi surface relatively close to the Van Hove
point cannot participate in cc → ch umklapp scattering and
should at sufficiently low temperatures lead to a resistivity
that behaves as ρcc→cc ∝ T 2. One can qualitatively under-
stand the crossover at higher temperature by considering two
competing contributions to the resistivity with ρcc→cc and
ρcc→ch ∝ T 2 log(1/T ) that add up to the total resistivity

ρ−1
ee ∼ ρ−1

cc→cc + ρ−1
cc→ch. (29)

At lowest T the resistivity exhibits the usual relation ρ ∝ T 2,
while at higher temperatures the cc → ch process dominates
and the resistivity obtains the logarithmic correction ρ ∝
T 2 log(1/T ). The value of the crossover temperature can then
be estimated as T ∗ ∼ D exp(−c 1−x

x ) where x is the fraction
of the Fermi surface where cc ↔ ch scattering processes are
kinematically forbidden and c is a numerical coefficient of
order unity.

B. Resistivity with inter band scattering

So far we have restricted our analysis to the γ band. How-
ever, to explain the transport properties of Sr2RuO4, one has to
take the whole Fermi surface into account. Since current is not
conserved in interband scattering, no matter if it is umklapp or
not, these scattering events contribute to the resistivity. Since
the β band is convex and only includes cold regions (called
cβ), we can always find a cβ → cβ process, as long as the
momentum transfer is not too large. These processes fill the
kinematic gap of the single-band case such that now the entire
γ band can participate in cβcγ → cβhγ scattering, either by
umklapp or interband scattering, as shown in Fig. 5. A similar
argumentation can be made for the α band. Hence, additional
cold states on the Fermi surface that can couple via interband
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FIG. 5. When all bands are considered, every point on the cold
Fermi surface can participate in cc → ch scattering, either by umk-
lapp or inter band scattering.

collisions open up the phase space for singular scattering pro-
cesses. This yields the somewhat surprising result that more
cold states suppress the ability of these states to short circuit
the singular transport processes that involve Van Hove points.
Since all points on the α and β band can participate in cc ↔
ch scattering processes and no new forbidden areas emerge,
the resistivity follows Eq. (26) down to lowest temperatures.

IV. THERMAL TRANSPORT

Next, we analyze the thermal transport for a system at the
Lifshitz point. For the thermal transport we start again from
the Boltzmann equation

∂ fk,i

∂t
+ evk,i · ∂ fk,i

∂r
= −Ck,i[ f ] (30)

with the same collision operator given in Eq. (19) for the
electrical resistivity. The heat current

jQ = 1

N

∑
k,i,σ

(εk,i − μ)vk,i fk,i (31)

is then determined as function of the temperature gradient,
which enters the Boltzmann equation through

∂ fk,i

∂r
≈ −∂ f0(εk,i )

∂εk

(εk,i − μ)

T

∂T

∂r
. (32)

The crucial difference is of course that the momentum and
the thermal current do not couple, i.e., there is no need to
analyze whether umklapp scattering processes exist [30–35].
Hence, small momentum transfer collisions, where q = k3 −
k1 = k2 − k4 is small, contribute to the thermal resistivity. Of
course, the two incoming momenta k1 and k2 can be far from
each other, an issue that will be crucial when we determine the
correct temperature dependence of the thermal conductivity.

We hence ignore umklapp processes in the thermal trans-
port and perform one momentum sum using momentum
conservation for the reciprocal lattice vector G = 0. This
yields for time-independent thermal gradients, including band

FIG. 6. ch → ch process dominating the thermal transport with
two hot momenta near the Van Hove point (red) and two cold elec-
trons with generic dispersion (blue). For small momentum transfer,
this process is allowed everywhere on the Fermi surface.

indices i, j = α, β, γ ,

vk1,i · ∂ fk1,i

∂r
= 2πU 2

h̄

∑
jkl

∑
k2,q

Lεk1 ,i,εk2 , j ,εk1+q,k ,εk2−q,l

× δ
(
εk1,i+, εk2, j − εk1+q,k − εk2−q,l

)
× (

ψk1,i + ψk2, j − ψk1+q,k − ψk2−q,l
)
.

(33)

We consider a generic momentum k1 on the Fermi surface.
For small momentum transfer k1 + q will then be near k1.
For the other incoming momentum k2 we can, however, as-
sume that it is located in the vicinity of the Van Hove point,
which implies that k2 − q is also near that point; see Fig. 6.
Following our analysis for the charge transport, one might be
tempted to conclude that the resistivity has n = 2 states near
the Van Hove point, which would imply a scattering rate that
behaves as T 2 log2(1/T ). However, as we saw in the analysis
of the density fluctuation spectrum in Eqs. (11)–(13), small
momentum transfer processes have a much increased phase
space, which gives rise to a more singular behavior for the
thermal transport.

To proceed we first make the ansatz for the distribution
function

ψk,i = ψ0
εk,i − μ

T
vk,i · ∇T, (34)

which is analog to Eq. (21) for thermal transport. As before,
we have to demonstrate that a given scattering process is
present everywhere on the Fermi surface in order to justify
the assumption that the coefficient ψ0 is weakly dependent on
momentum. With Eq. (34) and given the vanishing velocity at
the Van Hove point, we can safely neglect ψk2,4 in Eq. (33).
If we use the identity f0(ε) f0(−ε′) = ( f0(ε) − f0(ε′))n0(ω)
for ε′ = ε + ω we can express the sum over k2, which runs
over states near the Van Hove point, in terms of the density
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FIG. 7. Self-energy diagram determining the thermal resistivity
with hot momenta k2 and k2 − q with hyperbolic dispersion (red)
and cold momenta k1 and k1 + q with parabolic dispersion (blue).

spectrum of Eq. (9)

vk1 · ∂ fk1

∂r
= −2πU 2T

h̄N

∂ f0(εk1 )

∂εk1

∑
q

(ψk1 − ψk1−q)

× (n0(εk1−q − εk1 ) + f0(εk1−q))

× Im�(q, εk1 − εk1−q). (35)

Here we have for simplicity dropped the band indices. We will
discuss the issue of interband processes below. In Eq. (35), we
explicitly see how the coupling to compressive fluctuations
affects the thermal conductivity. One now finds that, up to nu-
merical factors of order unity, the collision operator is merely
determined by the single-particle self-energy of Eq. (15):

vk1 · ∂ fk1

∂r
= τ−1

k1QT
∂ f0(εk1 )

∂εk1

ψk1 (36)

with the heat transport scattering rate

τ−1
k1Q ≈ −2Im�(k1, εk1

). (37)

This process is kinematically allowed everywhere on the
Fermi surface, and amounts to an analysis of the self-energy
diagram shown in Fig. 7. In Appendix D we summarize the
analysis of the self-energy, see also Refs. [27,28]. While there
exists more singular scattering in some parts of the Fermi
surface, a generic point obeys

τ−1
k,Q = 16U 2ρ2

F

3
√

D
T 3/2. (38)

This yields for the thermal conductivity

κ = 1

T N

∑
kσ

v2
kτk,Q

(
−∂ f0(εk)

∂εk

)
(εk − μ)2. (39)

Performing the integrals in the usual manner yields for the
thermal resistivity introduced in Eq. (1) the result

ρQ = AQD1/2T 3/2, (40)

where the coefficient AQ is of the same order of magnitude
as AJ that determines the charge transport in Eq. (26). The
momentum transfer that gives rise to the anomalous power
laws is small. However, we considered one initial state near
the Van Hove singularity and another one at a generic mo-
mentum anywhere on the Fermi surface, not even on the same
Fermi surface sheet. While both momenta change by small
amounts they can be far apart in the Brillouin zone. Hence we

include interband scattering. Had we restricted our analysis
to intraband scattering processes with all momenta near the
Van Hove singularity, a different, more singular power law
would have emerged, with ρQ ∝ T,. Thus processes that in-
clude the entire Fermi surface are included in our theory. The
anomalous power law for the thermal conductivity is therefore
independent on the details of the shape of the Fermi surface,
provided it includes the Van Hove point.

This finally yields the Lorenz number

L = AJ

AQD1/2
T 1/2 log

(D

T

)
(41)

and the concomitant violation of the Wiedemann-Franz law.

V. CONCLUSIONS

In conclusion, we analyzed the electrical and thermal trans-
port of clean Sr2RuO4 under strain near the Lifshitz point
where a Van Hove singularity of the γ sheet of the Fermi
surface crosses the Fermi energy. Based on the observation
of well defined quasiparticles in this material we perform a
quasiclassical Boltzmann transport theory. For larger frequen-
cies, we also present results for the optical conductivity within
a memory function approach. We find that both the electrical
and the thermal transport are affected by the vicinity to the
Lifshitz point. The known result for the electrical resistiv-
ity, discussed already in Ref. [14], is physically interpreted
in terms of scattering processes where an electron near the
Van Hove point collides with a cold electron away from
the Van Hove point and scatters into two other cold states.
This gives rise to a logarithmic enhancement of the charge
transport rate τ−1

J ∼ T 2 log(1/T ) and hence of the electrical
resistivity, consistent with observations of Refs. [8–11]. In
particular, the observation by Barber et al. [8], with a very
small residual resistivity ρ0, demonstrate that an understand-
ing of these results has to be achieved without resorting to
impurity scattering processes that usually increase the phase
space for singular electron-electron scattering [17]. For the
specific electronic structure of Sr2RuO4 we show that the log-
arithmic enhancement is present down to lowest temperatures
if one includes interband scattering processes. The reason is
that intraband scattering requires umklapp processes, which
have more stringent phase space requirements. Hence, the
anomalous transport behavior seen in Sr2RuO4 is particularly
robust as there are several bands that cross the Fermi surface.
The situation is drastically different if one analyses thermal
transport. Systems with Van Hove singularities are charac-
terized by a much enhanced phase space of long-wavelength
compressive modes. These compressive modes do not couple
to charge transport. However, they are able to relax the thermal
current and give rise to a thermal transport rate τ−1

Q ∝ T 3/2.
This result is valid in both the single- and multiband models,
as it is independent of the exact geometry of the Fermi sur-
face. As a consequence the Wiedemann-Franz law is violated
with a Lorenz number that vanishes with a power law plus
logarithmic corrections. The experimental confirmation of this
prediction would in particular demonstrate the importance of
the mentioned compressive modes for the low-energy excita-
tions of Sr2RuO4. This would also be of interest as it would be
curious to study whether these long-wavelength modes might
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enhance an existing or even cause an instability towards a
superconducting state. A related issue is clearly the role of
higher-order processes not included in our analysis. The fact
that the compressibility is guaranteed to vanish at a finite
temperature is clear evidence that the system will eventu-
ally undergo some kind of instability. Our transport theory
is however expected to be valid in the regime that leads up
to this instability. Finally, given the presence of 5d elements,
we should comment on the role of the spin-orbit coupling.
Given the inversion symmetry of the material, the electronic
states continue to be characterized by a Kramers pseudo-spin
label. In this sense is the inclusion of spin-orbit coupling in
our formalism rather straightforward. In fact, we do not expect
our results to be affected in a qualitative manner by spin orbit
effects. In addition, the weak dispersion along the c direction,
essential for the importance of effectively two-dimensional
Van Hove physics, was shown to be a consequence of by
spin-orbit effects [25].

Our prediction for a violation of the Wiedemann-Franz
law is only valid as long as one is in the clean regime.
At some low temperature, impurity scattering effects should
become important. Then we expect to recover at lowest
temperatures the Wiedemann-Franz law where L approaches
L0 = π2

3 (kB/e)2, even at the Van Hove point. For the leading
low-temperature corrections, still dominated by impurity scat-
tering events, one expects τ−1

Q,J = τ−1
imp + CQ,JT 3/2, i.e., both

transport rates should follow the same temperature depen-
dence. Here the constant CQ enters the rate for heat transport
and CJ for the charge transport, respectively. The result for
the temperature-dependent corrections of the charge scatter-
ing rate was obtained in Ref. [14]. An analogous reasoning
yields the corresponding result for the heat transport. Most
importantly, the leading terms are the impurity contributions
and those should be the same, even if one includes phenom-
ena such as weak localization corrections; see Ref. [21]. The
transition between the regimes with and without Wiedemann-
Franz law occurs when the charge scattering rate for clean
systems becomes comparable to the impurity scattering rate.
The temperature dependencies of scattering rates with impu-
rities and the crossover behavior between different regimes
could be relevant for the observations of La-substituted sys-
tems [10,11]. Again, its confirmation would give strong
evidence for the importance of compressive modes for the
low-energy electronic degrees of freedom.
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APPENDIX A: MATTHIESEN’S RULE AND HOT VERSUS
COLD CARRIERS

According to Matthiesen’ s rule, the total resistivity is the
sum of resistivities of different scattering mechanisms, ρtot =

ρimp + ρe−ph + ρe−e, meaning that the dominant contribution
to the resistivity comes from the shortest life time. This seems
in sharp contrast to what was discussed in Eq. (29) and to our
strategy to ensure that a given scattering mode is not short
circuited by scattering processes on the Fermi surface with
smaller rate. To clarify this issue we consider the linearized
Boltzmann equation in the operator form

Ĉ|ψ〉 = |S〉, (A1)

where Ĉ is the collision operator, ψk = 〈k | ψ〉 the correction
to the distribution function and Sk = 〈k | S〉 some external
source term. The source term due to an external electric field
is Sk ≡ − e

T E(q, ω) · vk. With the collision integral Ck that we
used in the main text, the operator is defined as

Ĉψk = 1

−T ∂ f (0) (εk )
∂εk

∫
k′

δCk

δψk′
ψk′ . (A2)

It is a Hermitian operator with respect to the inner product

〈φ | ψ〉 =
∫

k
wkφ

∗
kψk (A3)

with weight function wk = −T ∂ f (0) (εk )
∂εk

> 0. The entropy pro-

duction can then we written as ∂S/∂t = 〈ψ |Ĉ|ψ〉, i.e., the
operator is positive definite. The eigenvalues of the collision
operator are the scattering rates

Ĉ =
∑

λ

|λ〉τ−1
λ 〈λ|, (A4)

where λ labels distinct modes of the scattering process. For
a rotation-invariant problem they could for example describe
different angular momentum modes.

If the system is governed by several, distinct scattering
mechanism, such as impurity, electron-phonon, or electron-
electron scattering, the individual operators add up

Ĉ = Ĉimp + Ĉel−ph + Ĉel−el.

We write this as τ−1
λ = ∑

s τ−1
λ,s where the index s indicates the

scattering mechanisms. In order to determine the distribution
function we now have to invert the collision operator in the
subspace orthogonal to zero modes that indicate conserved
quantities such as particle number or energy. This is possible
as long as these zero modes are orthogonal to the source term
|S〉. It follows

|ψ〉 = Ĉ−1|S〉

=
′∑
λ

|λ〉 1∑
s τ−1

λ,s

〈λ | S〉, (A5)

where the prime in the sum indicates that the inversion
has been performed in the subspace orthogonal to the men-
tioned zero modes. In many instances, the scattering rates for
nonzero modes depend weakly on the eigenmode index λ.
Then one obtains the total scattering rate

τ−1
tot =

∑
s

τ−1
s . (A6)

This leads to Matthiesen’ s rule. However, if one considers a
system with one dominant scattering mechanism, e.g., a clean
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system with electron-electron scattering where phonons are
frozen out at low temperatures, as we assume in this paper,
then

|ψ〉 =
∑

λ

|λ〉τλ,el−el〈λ | S〉. (A7)

For systems where distinct eigenmodes of the scattering
process under consideration vary strongly, as happens for
strongly momentum dependent scattering rates, the largest
scattering time dominates and we obtain a relation like given
in Eq. (29).

To summarize, an electron that is exposed to different
scattering mechanisms must cope with all of them and the
rates add according to Matthiesen’ s rule; different scattering
mechanisms act like resistors in series. On the other hand, if
there are different modes of one dominant mechanism, the
longest scattering times dominate the conductivity; different
modes act like resistors that are in parallel where the weakest
scattering short circuits the transport.

APPENDIX B: TIGHT-BINDING PARAMETERS
AND STRAIN DEPENDENCE OF THE

ELECTRONIC STRUCTURE

We consider the electronic structure of Sr2RuO4 under
arbitrary in-plane strain. The Van Hove singularity near the
Fermi energy is due to the so called γ band, made of 4dxy

states. Its dispersion is given by the tight binding approxima-
tion

εk,xy = −2t1,x cos kx − 2t1,y cos ky − μ.

− 2(t4,+ cos (kx + ky) + t4,− cos (kx − ky)). (B1)

with nearest and next-to-nearest-neighbor coupling parame-
ters t1,x/y and t4,+/−, respectively. It is natural to assume that
for strained systems t1,x only depends on the change of the
nearest neighbor distance ax, t1,y only on ay, while t4,+ and
t4,− are functions of the diagonal distance d+ and counter-
diagonal distance d−, respectively. For simplicity we only
consider in-plane strain εi j . The nearest-neighbor distances of
the strained system are ai ≈ a0(1 + εii ) and d± ≈ √

2a0(1 +
1
2 (εxx + εyy ± 2εxy)). Following Ref. [8] it is reasonable to
use t1,i = t1(1 − αεii ) and t4,±/t4 = 1 − α

2 (εxx + εyy ± 2εxy),
where α is a tuning parameter. Assuming stress σxx along the
x direction follows εxy = 0 and εyy = −νxyεxx with Poisson
ratio νxy such that

t1,x = t1(1 − αεxx ),

t1,y = t1(1 + ανxyεxx ),

t4,± = t4
(

1 − α

2
(1 − νxy)εxx

)
. (B2)

Using the elastic constants of Ref. [36] yields νxy = 0.39.
From Ref. [11] we take t1 = 0.119 eV and t4 = 0.41t1 as well
as μ = 1.48t0.

The 4dxz and 4dyz orbitals form the so-called α and β sheets
of the Fermi surface. They are characterized by a dispersion

h =
(

εxz V
V εyz

)
(B3)

with

εk,xz = ε(0)
x − 2t2,x cos kx − 2t3,y cos ky − μ,

εk,yz = ε(0)
y − 2t2,y cos ky − 2t3,x cos kx − μ,

Vk = −2t5,+ cos (kx + ky) + 2t5,− cos (kx − ky) (B4)

with t2,3,i = t2,3(1 − βεii ) and t5,±/t5 = 1 − β

2 (εxx + εyy ±
2εxy). For the hopping elements of the unstrained system we
use the values given in Ref. [11]: t2 = 0.165 eV, t3 = 0.08t2,
and t5 = 0.13t2. Finally, for the unstrained system holds ε(0)

x −
μ = ε(0)

y − μ = −0.18t2.

APPENDIX C: THE KINEMATIC GAP IN THE
SINGLE-BAND MODEL

We can parametrize the momenta k = (kx, ky) of the γ

band according to

kx = ± f (ky) = ± arccos

(
− t1,y cos ky + μ

t1,x + 2t4,± cos ky

)
. (C1)

It holds that k1,y = −k3,y for the smallest possible momentum
transfer between Fermi surfaces of two neighboring Brillouin
zones. Using that momentum is conserved in each component
up to a reciprocal lattice vector, the momentum closest to
the Van Hove point that can still participate in a cc ↔ ch
scattering process is determined by

2 f

(
π − k2,y

2

)
+ f (k2,y) = 2π, (C2)

yielding k2,x = 0.887π . Every point closer to the Van Hove
point can not participate in cc ↔ ch scattering events since
the momentum transfer is not big enough to induce umklapp
scattering.

APPENDIX D: SINGLE-PARTICLE SELF-ENERGY

In this Appendix we analyze the single-particle self-
energy of Eq. (37) that describes the scattering of electrons
with momentum k1 with density fluctuations described by
Eqs. (11)–(13). We consider the imaginary part of the self-
energy as given in Eq. (15).

We want to analyze a generic point on the Fermi surface,
away from the Van Hove singularity. Given the small momen-
tum transfer we assume that k and k′ are points nearby on
the Fermi surface of similar length kF . Thus, we can safely
assume a constant density of states ρF for these states. As
follows from Eq. (12), the momentum dependence of the
density fluctuation spectrum is determined solely by εVH,k−k′

with saddle point dispersion εVH,k of Eq. (10). If we use
k = kF (cos θ, sin θ ) and k′ = kF (cos φ, sin φ), we obtain for
small ϕ = θ − φ that

εVH,k−k′ ≈ −εVH,kϕ
2 + kxky

4m
ϕ3. (D1)

We first analyze the self-energy at T = 0 as function of
frequency. Considering without restriction ω > 0 the condi-
tion coming from the Fermi and Bose functions is that 0 <
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εc(p) < ω. This yields

Im�(k, ω) = 2U 2ρF

∫ ω

0
dεc

∫ 2π

0
dϕIm�(k − p, εc).

(D2)
Let us first consider momenta k with εVH,k �= 0, i.e., θ �=
(2l + 1)π

4 . With s ≡ |εVH,k|ϕ2 ≈ Dϕ2 follows

Im�(k, ω) = −U 2ρF√
D

∫ ω

0
dε

∫ ∞

0

ds√
s

Im�(k − p, ε)

= −U 2ρF√
D

∫ ω

0
dε

(∫ ∞

ε

dsε

s3/2
+

∫ ε

0

ds

s1/2

)

= −8U 2ρ2
F

3
√

D
|ω|3/2. (D3)

For the special momenta with θ = (2l + 1)π
4 , where εVH,k =

0 one should use s ∝ ϕ3 and it follows Im�(k, ω) ∝ |ω|4/3.
Those results were earlier obtained in Ref. [27]. If, instead,
the dispersion εc(k) is assumed to be equal to εVH,k one finds
Im�(k, ω) ∝ |ω|. This result was obtained in Ref. [28].

At finite temperatures the analysis proceeds in an analo-
gous manner and one obtains

Im�(k, εk) ≈ −8U 2ρ2
F

3
√

D
(T )3/2 (D4)

for generic momenta and corresponding results for special
directions. This result is crucial for the thermal transport
behavior.

APPENDIX E: CHARGE TRANSPORT RATE WITHIN
THE MEMORY FUNCTION FORMALISM

The optical conductivity j(ω) = σ (ω)E(ω) obtained by the
Kubo formula is

σαβ (ω) = i

ω
(〈Tαβ〉 + χ jα jβ (ω)) (E1)

with inverse mass tensor Tαβ = e2

N

∑
kσ

∂2ε(k)
∂kα∂kβ

c†
kσ

ckσ and
current-current susceptibility χ jα jβ . If the current is conserved

this reduces to σαβ (ω) = i〈Tαβ 〉
ω

. Then the real part of the con-
ductivity diverges as ω approaches zero, making it impossible
to include a current-relaxing interaction by perturbation the-
ory in the low-frequency limit. This problem can be tackled
by introducing the memory matrix [37] Mαβ as a correction to
the ω−1-behavior and regain the low-frequency expansion of
the conductivity

σαβ (ω) = i〈Tαβ〉
ω + Mαβ (ω)

. (E2)

The imaginary part of the memory function determines the
scattering rate τ−1

J (ω). The memory function contains the
current-relaxing processes and can more easily be treated
within perturbation theory. By comparing with Eq. (E1) we
find that the memory function up to first order in the interac-
tion is

Mαβ (ω) ≈ ωχ jα jβ (ω)

〈Tαβ〉 . (E3)

This expansion is valid for ω � τ−1
J (0). We can rewrite this

as

Mαβ (ω) ≈ 〈[FαFβ ]〉 − χFαFβ
(ω)

ω〈Tαβ〉 , (E4)

where Fα = [ jα, H] follows from the equation of motion for
χ jα jβ (ω). The scattering rate is therefore given by

τ−1
J (ω) = −ImχFαFβ

(ω)

ω〈Tαβ〉 (E5)

with

χFαFβ
(ω) = e2U 2

∑
k1...k4

(vk1 + vk2 − vk3 − vk4 )2

× Lεk1 εk2 εk3 εk4

∑
G

δk1+k2−k3−k4−G

×
[

1

ω + εk1 + εk2 − εk3 − εk4

− 1

ω − εk1 − εk2 + εk3 + εk4

]
. (E6)

The imaginary part of the susceptibility can be evaluated
in analogy to τJ (0), where the external frequency replaces
temperature. Taking into account the proper phase space for
umklapp scattering, this yields a frequency depending scatter-
ing rate

τ−1
J (ω) = λ0

ω2

D
log

(
D

|ω|
)

. (E7)

This result, valid in the regime τ−1
J (ω = 0) 
 ω 
 D, gives

rise to the optical conductivity given in Eq. (28). The rate
is therefore determined by the same processes that give rise
to the temperature dependence of the resistivity. As was dis-
cussed in Refs. [38,39] for higher frequencies, shorter rates
that do not rely on the condition of momentum conservation
may also affect the frequency dependence of the optical con-
ductivity. Here, the shorter single-particle rate ∼ω3/2 could
become relevant. For our problem those would only become
relevant once ω becomes comparable to the band width D.
Thus is unclear whether such an intermediate regime will be
observable in experiment. At lowest frequencies the result
Eq. (E7) is however the dominant one.
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