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Multipartitioning topological phases by vertex states and quantum entanglement
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We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids into three (or
more) spatial regions that are adjacent to each other and meet at points. By considering the reduced density matrix
obtained by tracing over a subset of the regions, we compute various correlation measures, such as entanglement
negativity, reflected entropy, and associated spectra. We utilize the bulk-boundary correspondence to show that
such multipartitions can be achieved by using what we call vertex states in (1+1)-dimensional conformal field
theory: these are a type of state used to define an interaction vertex in string field theory and can be thought of
as a proper generalization of conformal boundary states. This approach allows an explicit construction of the
reduced density matrix near the entangling boundaries. We find the fingerprints of topological liquid in these
quantities, such as (universal pieces in) the scaling of the entanglement negativity, and a nontrivial distribution
of the spectrum of the partially transposed density matrix. For reflected entropy, we test the recent claim that
states the difference between reflected entropy and mutual information is given, once short-range correlations are
properly removed, by (c/3) ln 2 where c is the central charge of the topological liquid that measures ungappable
edge degrees of freedom. As specific examples, we consider topological chiral p-wave superconductors and
Chern insulators. We also study a specific lattice-fermion model realizing Chern insulator phases and calculate
the correlation measures numerically, both in its gapped phases and at critical points separating them.
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I. INTRODUCTION

“Quantum entanglement is not one but the characteristic
trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought” [1]. Entanglement
also plays a central role in understanding various phenomena
and phases in many-body quantum physics. For example,
the scaling of the entanglement entropy defined for a given
subregion is a useful probe to understand different phases
of matter and renormalization group flows connecting them
[2–8]. Modern approaches to many-body quantum problems,
such as the density matrix renormalization group and tensor
networks, are based on the concept of quantum entanglement
[9–13].

Quantum entanglement is particularly useful for character-
izing topological phases of matter, which lack conventional
order parameters. One of the simplest settings to consider is a
bipartition of the ground state of a topological liquid into two
spatial subregions A and its complement Ā, say. We can then
study the scaling of the entanglement entropy as a function
of the size of the subregion A, which allows us to extract the
topological entanglement entropy of the topologically ordered
ground state [4,5]. One can also study the entanglement spec-
trum, which also serves as a probe of different topological
orders and symmetry-protected topological phases [14–16].

In this paper, we move beyond bipartitions and consider
multipartitions of the ground states of (2+1)-dimensional
[(2+1)D] topological liquids. Specifically, we consider a tri-

partition (multipartition) in which the boundaries between the
three subregions A, B, and C meet at a junction, as shown
in Fig. 1. We note that this partitioning is analogous to the
one first considered in Ref. [5]. A similar setup was also used
recently in [17,18] to derive a formula for the chiral central
charge in terms of the modular commutator.

This multipartition setting allows us to define and compute
various correlation measures. For example, when one of the
three subregions, say C, is traced out, we are left with the
reduced density matrix for A ∪ B, which is now mixed. We
can then discuss mixed-state correlation measures, such as the
entanglement negativity [19–25] and reflected entropy [26].
We can also study the associated spectra, such as the spectrum
of the partially transposed density matrix. These entanglement
measures may capture universal data related to multipartite
entanglement of topologically ordered ground states, which
are not accessible in bipartition settings. (For previous stud-
ies on multipartite correlations in topological liquid, see, for
example, [27].)

The entanglement negativity and reflected entropy have
been previously studied in the context of topologically ordered
phases in setups different from ours [28–33]. We give a brief
overview of the previous results in Sec. II. As for the re-
flected entropy, for the tripartition setup above, it was recently
claimed [34] that the difference between the reflected entropy
and mutual information is given by (c/3) ln 2 + O(e−�/ξ )
where c is the central charge of the topological liquid, ξ

is the correlation length, and � is the length scale for the
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FIG. 1. Tripartition of topological liquid on a two-dimensional
plane (a) and two-dimensional square lattice (b).

three regions. [To obtain the above universal value, nonuni-
versal short-range correlations must be removed by a proper
local unitary (see Sec. II).] As this multiparty entanglement
quantity may capture the central charge, the vanishing of this
quantity may be a prerequisite of having a PEPS (projected en-
tangled pair state) representation of the topological liquid with
finite bond dimension. (Or, nonvanishing of this quantity may
be an obstruction to having a PEPS representation with finite
bond dimension.) We will review this claim in Sec. II. These
observations suggest that there is much yet to be understood
regarding topological phases from the lens of entanglement.

We study the tripartition of topological phases using two
different approaches. First, we employ the edge theory or
“cut-and-glue” approach for computing the entanglement of
topological phases [30,35–38], in which one approximates
the entanglement between the bulk regions as arising purely
from entanglement of the gapped chiral edge modes along the
entanglement cuts between the bulk regions. This approach
is not limited to noninteracting phases (e.g., integer quantum
Hall or Chern insulator phases) but rather is also applicable
to generic topologically ordered phases. We recall that for the
case of bipartitioning a topological liquid, the entanglement
entropy (and other related quantities) can be obtained from
conformal boundary states (Ishibashi states) [30,35,39,40].
(see Sec. III A 1). In this work, we will extend this approach to
the case of a multipartition (tripartition) by considering what
we call “vertex states,” which will be introduced in Sec. III A.
What the vertex states do for the case of tripartitioning is quite
analogous to what Ishibashi states do for the case of biparti-
tioning. We emphasize that the construction of these vertex
states is a nontrivial extension of the corresponding compu-
tation for a bipartition, even for the case of free fermions.
Indeed, with some minor differences, states similar to ver-
tex states have been considered in the context of string field
theory [41–44]. They also resemble open boundary states or
rectangular states in conformal field theory [45–48]. We will
construct these vertex states using two methods: the Neumann
coefficient method, which makes use of conformal mappings
to fix the form of the vertex state, and a direct calculation
method, in which we directly diagonalize the boundary con-
ditions defining the vertex state. We check their equivalence
numerically.

In the second approach, we consider the tripartite entangle-
ment of a specific noninteracting lattice-fermion model that
realizes a Chern insulator phase. The many-body ground state
is given by a Gaussian state (namely, a Slater determinant
state), which allows us to make use of the “correlator method”
developed in Refs. [49,50] to compute various correlation
measures. In contrast to the edge theory calculation, which

is only applicable for a system deep in the topological phase,
here we can study how the correlation measures of interest
change as we tune across the phase transition between the
topological and trivial phases.

This paper is organized as follows. In Sec. II, we introduce
the correlation measures of interest and the correlator method.
In Sec. III A, after reviewing the edge theory approach to
computing entanglement in bipartition settings, we introduce
vertex states for multipartition. We demonstrate how to obtain
the vertex state using the Neumann coefficient method for
both a Chern insulator and a chiral superconductor. As a
warmup, in Sec. III B we compute the entanglement entropy
for a bipartition and obtain a topological contribution in the
sector with nontrivial topological flux piercing the entangle-
ment cut. In Sec. IV, we present the tripartite vertex state
solutions in different sectors, namely, in the presence of non-
trivial topological fluxes, and extract new fingerprints of the
underlying topological state in entanglement. In particular, we
discuss the scaling of the entanglement negativity, the spec-
tra of the entanglement negativity, and partially transposed
density matrix. We also test the conjecture on the reflected
entropy in Ref. [34]. In Sec. V, we study the entanglement
measures numerically in the lattice Chern insulator model.
By comparing the results between vertex state and Chern
insulator ground state, we demonstrate the bulk-boundary cor-
respondence for tripartitioned topological states. We also gain
access to the spatial structure of entanglement by calculating
negativity contour.

We collect the technical details in the Appendixes. In Ap-
pendix A, we give the detailed derivation of the vertex states
by the direct calculation method, which is complementary to
the Neumann coefficient method. In Appendix B, we pro-
vide the technical details of the Neumann coefficient method.
Finally, in Appendix C, we show how to apply the correla-
tor method to vertex states to compute various entanglement
measures.

II. CORRELATION MEASURES OF INTEREST

In this section, we introduce the correlation measures that
will be discussed in this paper. Some of the correlation mea-
sures, the entanglement entropy for the case of pure states,
and the entanglement negativity for generic mixed states, are
also entanglement measures, while others such as mutual in-
formation and reflected entropy are not. Here, entanglement
measures are those quantity that capture quantum correlations
and monotonically decrease under local operations and clas-
sical communications (LOCCs).

a. Entanglement entropy. When bipartitioning the total
system into two subregions A and Ā, after tracing out sub-
region Ā, the reduced density matrix on A is ρA := TrĀ ρ. The
(von Neumann) entanglement entropy is defined as

S(ρA) := SA := −Tr(ρA ln ρA). (1)

The entanglement entropy is also given by the n → 1 limit
of the Rényi entropies, defined as S(n)

A := ln Tr (ρn
A)/(1 − n).

We recall that for gapped ground states of two-dimensional
Hamiltonians, ρ = |GS〉〈GS|, the entanglement entropy sat-
isfies an area law SA = αL − γ , where α is a nonuniversal
constant, L the length of the entanglement cut, and γ the
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topological entanglement entropy. Since the topological
phases we consider (chiral p-wave superconductor and Chern
insulator) are not topologically ordered (i.e., do not support
anyon excitations), we will have γ = 0 in the absence of
nontrivial fluxes. We can also combine entanglement entropy
in different regions to form other correlation measures in-
cluding the mutual information IA:B = SA + SB − SA∪B and
the tripartite mutual information I3 = SA + SB + SC − SAB −
SBC − SAC + SABC . Note that tripartite mutual information is
directly related to topological entanglement entropy.

b. Entanglement negativity. Let us now consider sub-
Hilbert spaces A and B, and the density matrix ρA∪B supported
on A ∪ B. For mixed states, the entanglement entropy is not
a proper entanglement measure in that it does not decrease
monotonically under LOCCs. Instead, one can consider the
entanglement negativity

EA:B = ln Tr
∣∣∣∣ρTA

A∪B

∣∣∣∣
1 = ln Tr

(√
ρ

TA
A∪B

(
ρ

TA
A∪B

)†)
(2)

with TA being the partial transpose on subregion A. When
ρA∪B is pure, EA:B = S(1/2)

A . For bosonic systems, the partial
transpose is defined as〈

eA
i eB

j

∣∣ρTA
A∪B

∣∣eA
k eB

l

〉 = 〈eA
k eB

j

∣∣ρA∪B

∣∣eA
i eB

l

〉
, (3)

where {|eA/B
i 〉} are complete bases of states for subregions

A/B, respectively. We note that by introducing the normalized
composite density operator as ρ× = ρ

TA
A∪B(ρTA

A∪B)
†
/Z×, we can

express the negativity as

EA:B = ln
[
Z1/2

× Tr
(
ρ

1/2
×
)]

= ln Tr
(
ρ

1/2
×
)+ 1

2 ln Tr
(
ρ2

A∪B

)
, (4)

where Z× := Tr [ρTA
A∪B(ρTA

A∪B)
†
] = Tr (ρ2

A∪B).
On the other hand, for fermionic systems, the definition of

the partial transpose has to take Fermi statistics into account
properly [51]. If we use the Majorana basis and expand a
density matrix ρA∪B in terms of Majorana fermion operators
a and b defined on HA and HB, respectively,

ρA∪B =
k1+k2=even∑

k1,k2

ρp1,...,pk1 ,q1,...,qk2

× ap1 . . . apk1
bq1 . . . bqk2

, (5)

then the partial transpose of ρA∪B with respect to subregion A
is defined as

ρ
TA
A∪B =

k1+k2=even∑
k1,k2

ρp1,...,pk1 ,q1,...,qk2
ik1

× ap1 . . . apk1
bq1 . . . bqk2

. (6)

Entanglement negativity in fermionic systems, when for-
mulated by using the fermionic partial transpose above, is
monotone under LOCC preserving the local fermion-number
parity [52,53].

The entanglement negativity has been previously studied
in the context of topologically ordered phases in setups dif-
ferent from ours [28–33]. The entanglement negativity for
topologically ordered ground states has been shown to obey
an area law with subleading, universal corrections that are

nonzero for topologically ordered ground states, much like
the entanglement entropy. However, unlike the entanglement
entropy, the entanglement negativity appears to exhibit dis-
tinct behavior between Abelian and non-Abelian topological
phases when computed in superpositions of topologically de-
generate states on manifolds with nonzero genus for certain
tripartitions [30,32]. The entanglement negativity was also
studied for topological phases of matter at finite temperatures,
and shown to detect finite-temperature transitions [54,55].

In the same way that the entanglement spectrum provides
more information than the entanglement entropy, also of in-
terest to us is the spectral decomposition of the entanglement
negativity. Specifically, we will study two types of spectra,
one associated with ρ× = ρ

TA
A∪B(ρTA

A∪B)†/Z× and the other with
ρ

TA
A∪B. We note that for fermionic systems, ρ

TA
A∪B may not be

Hermitian. For conformal field theories and nontrivial SPT
phases in (1+1) dimensions, the spectrum of ρ

TA
A∪B shows

an interesting pattern and is sensitive to the spin structure
[51,56].

c. Reflected entropy. Finally, the reflected entropy RA:B also
provides a correlation measure for tripartite Hilbert spaces.
Given a reduced density matrix ρA∪B supported on A ∪ B,
we can obtain its canonical purification |√ρ〉〉 in the doubled
Hilbert space (A ∪ B) ∪ (Ã ∪ B̃), where Ã and B̃ are identical
copies of A and B, respectively (with complex conjugation).
The reflected entropy RA:B is defined as the entanglement en-
tropy of the purified state |√ρ〉〉 when tracing out the degrees
of freedom in B, B̃:

RA:B = S(ρA∪Ã), ρA∪Ã = TrB∪B̃(|√ρ〉〉〈〈√ρ|). (7)

The reflected entropy has been studied in various many-body
quantum systems. For example, in (1+1)D CFT, the reflected
entropy has been studied for the ground state [26], and for
time-dependent states after quantum quench [57–59]. The re-
flected entropy was also computed for multisided thermofield
double states in (nonchiral) (1+1)D CFT (which has some
similarly to vertex states that we will introduce later) [60].
The reflected entropy is a more sensitive probe of multipartite
entanglement than the von Neumann entropy [61,62]. The dif-
ference between the reflected entropy and mutual information

hA:B = RA:B − IA:B (8)

is bounded from below, hA:B � 0 [26], and called the Markov
gap in Ref. [63] as it is related to the fidelity of a particular
Markov recovery process on the canonical purification. The
difference hA:B is proposed as a non-negative universal tripar-
tite entanglement invariant [62]. It was also shown that for the
ground states of one-dimensional (1D) lattice quantum sys-
tems at conformal critical points when the subregions A and B
are adjacent to each other, hA:B takes a universal value hA:B =
(c/3) ln 2, where c is the (nonchiral) central charge [62].

For the ground states of (2+1)-dimensional [(2+1)D]
topological liquids, it was recently conjectured in Ref. [34]
that hA:B, when computed for the tripartite setting in Fig. 1,
captures the chiral central charge of the topological liq-
uid. Specifically, from the topological ground state |�〉, we
consider a state U |�〉 where a local unitary U acts near the
junction. This unitary U can be optimized such that it removes
nonuniversal, short-range correlation near the junction. Then,
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the claim in [34] is that the optimized version of hA:B,

hIR
A:B = minU hA:B(U |�〉), (9)

takes the universal value

hIR
A:B = c

3
ln 2 + O(e−�/ξ ), (10)

where ξ is the correlation length, � is the length scale for the
three regions, and c is the central charge of the topological
liquid that measures ungappable edge degrees of freedom,
i.e., cL + cR where cL/R is the left/right central charge. This
conjecture was tested in Ref. [34] for string-net models, for
which c = 0, and for a noninteracting Chern insulator model
with proper optimization over U .

Fermionic Gaussian states

When the (reduced) density matrix of interest is Gaussian,
the above correlation measures can be efficiently com-
puted by using the correlator (or covariance matrix) method
[49,51,64,65]. A Gaussian state ρA∪B is fully characterized
by the correlation matrices C and F or, equivalently, by the
covariance matrix �,

CIJ := Tr (ρA∪B f †
I fJ ),

FIJ := Tr (ρA∪B f †
I f †

J ),

�JK := 1
2 Tr (ρA∪B[cJ , cK ]). (11)

Here, { f †
I , fI} is a set of fermion creation and annihilation

operators where the indices I, J run over all relevant degrees
of freedom, site, spin, orbital, etc., cI is the Majorana oper-
ator, and we adopt the convention c2J−1 = ( fJ + f †

J ), c2J =
i( fJ − f †

J ). � can be expressed in terms of C, F as

� = (C − CT ) ⊗ 1 + (1 − C − CT ) ⊗ σy

+ (F + F †) ⊗ σz − i(F − F †) ⊗ σx, (12)

where the Pauli matrices act on the space of odd and even
indices of the Majorana fermions.

d. Entanglement entropy and negativity. The von Neumann
entropy for the density matrix ρA∪B is obtained from the
eigenvalues γk of the covariance matrix �A∪B for the degrees
of freedom in region A ∪ B:

SAB = −
′∑
k

[(
1

2
+ γk

2

)
ln

(
1

2
+ γk

2

)

+
(

1

2
− γk

2

)
ln

(
1

2
− γk

2

)]
. (13)

Here, the prime on
∑

means we only sum over one of the
eigenvalues in the ±γk pairs. Keeping only the degrees of
freedom in region A ∪ B has the effect of tracing out region
C. In particle-number-conserving systems, the eigenvalues γk

are related to the eigenvalues εk of the quadratic entanglement
Hamiltonian HE , defined as ρA∪B ∝ exp [−∑I,J f †

I (HE )IJ fJ ],
by εk = ln [(1 − γk )/(1 + γk )]. For ηk being eigenvalues of C,
εk can be expressed equivalently as εk = ln [(1 − ηk )/ηk]. We
call the set of eigenvalues {εk} the (single-particle) entangle-
ment spectrum (ES) of ρA∪B.

Similar to the entanglement entropy, the entanglement neg-
ativity for a fermionic Gaussian state can also be computed
from the covariance matrix. In particular, the covariance ma-
trix associated to ρ× can be constructed as follows. Upon
bipartitioning the Hilbert space HA∪B = HA ⊗ HB, we can
write the covariance matrix in a block-matrix form

�A∪B =
(

�AA �AB

�BA �BB

)
. (14)

Here, �AA and �BB denote the reduced covariance matrices of
subsystems HA and HB, respectively, whereas �AB and �BA

contain the expectation values of mixed quadratic terms. The
covariance matrix for the partially transposed density matrix
ρ

TA
A∪B and its conjugate (ρTA

A∪B)† can be constructed as

�± =
(−�AA ±i�AB

±i�BA �BB

)
, (15)

respectively. Using the algebra of the product of Gaussian
operators [66], the covariance matrix �× associated with the
normalized composite density operator ρ× is given by

�× = 1 − (1 − �−)(1 + �+�−)−1(1 − �+). (16)

In terms of the eigenvalues {γk} and {γ×k} of the covariance
matrices � and �×, using Eq. (4), we can write

EA:B =
′∑
k

[
h(γ×k; 1/2) + 1

2
h(γk; 2)

]

where h(λ; q) = ln

[(
1 − λ

2

)q

+
(

1 + λ

2

)q]
. (17)

Again, only one eigenvalue in each of the ±γk and ±γ×k

pairs needs to be summed over. Analogous to the entangle-
ment spectrum, the negativity spectrum (NS) is defined as
ln [(1 − γ×k )/(1 + γ×k )].1

e. Spectrum of �+. The spectrum of ρ
TA
A∪B can be con-

structed from the eigenvalues of �+, which appear in pairs
{±ζk}. We will also study the distribution of the eigenvectors
associated with the eigenvalues ζk .

f. Negativity contour. The negativity contour is a spatial
decomposition of the negativity. While the negativity asso-
ciates a number to two extended spatial regions, the contour
eA:B(r) is a function of the spatial coordinates of the re-
gions which can be interpreted as the contribution of each
degree of freedom to the negativity. The contour is constructed
such that when summed over all positions it reproduces EA:B,∑

r eA:B(r) = EA:B. This elucidates where the entanglement is
coming from. For example, in ground states of gapped Hamil-
tonians, the contour is concentrated at the entangling surface,
decaying exponentially in space, representing the area law. In
critical systems, the contour instead decays away from the
entangling surface as a power law. For highly excited (ther-
mal) states, the contour is finite and approximately constant,
representing the thermal entropy.

1In other literature, the spectrum of a partially transposed density
matrix is also called the negativity spectrum.
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For Gaussian states, the negativity contour is defined using
the eigenvectors of the covariance matrices

eA:B(r) = v1(r) + v2(r),

v1(r) = 1

2

∑
k

|Uk (r)|2h(γk,×; 1/2),

v2(r) = 1

4

∑
k

|Vk (r)|2h(γk; 2), (18)

where Uk (r) and Vk (r) are eigenstates of �× and � with
eigenvalues γk,× and γk , respectively. [For the particle-
number-conserving case, Eq. (18) reduces to Eq. (A61) of
[65].]

g. Reflected entropy. Finally, the reflected entropy can
also be computed conveniently using the covariance matrix
method [67]. Using the orthogonal transformation O to bring
ρ and � to canonical forms

ρ =
∏

k

1

2
(1 + γkc′

2k−1c′
2k ) where c′ = Oc,

� = OT

[
⊕k

(
0 iγk

−iγk 0

)]
O. (19)

The purified state is given by

|√ρ〉〉 =
∏

k

[√
1 + γk

2
|0〉k|0̃〉k +

√
1 − γk

2
|1〉k|1̃〉k

]
, (20)

where |0̃〉k, |1̃〉k are states in the second copy of the Hilbert
space for the kth mode. The associated covariance matrix for
|√ρ〉〉 is

�√
ρ = O

⎡
⎣⊕k

⎛
⎝ γkσ

y −i
√

1 − γ 2
k 1

i
√

1 − γ 2
k 1 −γkσ

y

⎞
⎠
⎤
⎦OT . (21)

The reflected entropy RA:B is then computed as the von Neu-
mann entanglement entropy using the A, Ã blocks in �√

ρ .

III. EDGE-THEORY APPROACH

We now proceed to compute the correlation measures in-
troduced in the preceding section from the perspective of the
boundary edge theories. We perform these computations for a
chiral superconductor and Chern insulator (or integer quantum
Hall state), the edge theories of which consist of single chiral
Majorana and Dirac fermions, respectively. As we will review
in more detail below, in the edge-theory or “cut-and-glue” ap-
proach [30,32,35–38], we compute the entanglement between
subregions of a topological phase by first physically cutting
the system along the entanglement cut, which gives rise to the
aforementioned chiral edge states. We then “glue” the system
back together by introducing a tunneling interaction to gap out
the edge states. Since the correlation length vanishes in the
bulk, we can approximate the entanglement between the bulk
subregions as arising solely from entanglement between the
gapped edge modes. The first step in this computation is then
to determine the ground state of this gapped interface along
the entanglement cut.

For the case of a simple bipartition, this ground state is
known to take the form of a conformal boundary state or, more

precisely, an Ishibashi state [30,35]. For the tripartitions of
interest to us, in which the entanglement cut involves a tri-
junction, a generic form for the ground state of the interface is
not known and is difficult to compute, even in the present case
of free fermions. Fortunately, similar interface configurations
have appeared in the string field theory literature, in which
the conformal boundary states for such trijunctions are known
as vertex states. In the following, we will use the Neumann
coefficient method from string field theory [41–44,68] to com-
pute the appropriate boundary or vertex states. We introduce
boundary and vertex states and outline the essential steps of
the Neumann coefficient method in Sec. III A. With the vertex
state in hand, we can then proceed to compute all desired
entanglement measures.

As a warmup, in Sec. III B we will first compute the entan-
glement for a topological phase on a cylinder and a bipartition
cutting the cylinder in two, as shown in Fig. 2(a). We use the
Neumann function method to compute the boundary state, as
an introduction to the technique. In particular, we compute
the entanglement when we introduce a π flux either passing
through the cycle of the cylinder, or entering the cylinder
through one end and exiting through the entanglement cut.
For the chiral superconductor, these configurations are topo-
logically equivalent, respectively, to computing the bipartite
entanglement on a sphere, with a single Ising anyon (σ anyon)
in each subregion and an Ising anyon in one subregion and
the other on the entanglement cut, as depicted in Fig. 2. At
the level of the edge theory, this amounts to computing the
boundary state |B〉 with three different choices of boundary
conditions for the chiral and antichiral fermions: NS-NS, R-
R, NS-R [69]. Here, NS (Neveu-Schwarz) and R (Ramond)
denote antiperiodic and periodic boundary conditions, respec-
tively. We note that the entanglement in the NS-R case, in
which an anyon lies on the entanglement cut, has not been
considered before. Remarkably, we find a quantized contri-
bution to the entanglement in this configuration. With this
framework in hand, we will move on to the focus of this work,
the tripartitioning of a topological liquid, in the following
section.

A. Cut-and-glue approach and vertex states

We begin with a more detailed exposition of the cut-and-
glue approach and explain the role of conformal boundary and
vertex states, as well as how to construct them. For concrete-
ness, we focus first the case of a chiral p-wave superconductor
and then outline the simple extension of these methods to the
case of a Chern insulator.

1. Bipartition and Ishibashi boundary states

The case of a bipartition was first considered in Ref. [35],
which we review here. Let us consider a chiral superconductor
on an infinite spatial cylinder with an entanglement cut, parti-
tioning the total system into two regions A and Ā [Fig. 2(a)].
As described above, we physically cut the system along the
entanglement cut, resulting in gapless edge modes on the
boundaries of regions A and Ā, respectively. For the case of
the chiral p-wave superconductor, they are described by chiral
real (Majorana) fermion theories with opposite chiralities,
denoted by γL and γR. Their dynamics at low energies can
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FIG. 2. Flux insertion configurations considered in computation of the bipartite entanglement on the cylinder geometry. (a) No fluxes are
inserted. All edge fermions obey NS boundary conditions. (b) A single π flux, corresponding to the insertion of a σ anyon flux, through the
cylinder. All edge fermions obey R boundary conditions. (c) A single π flux is inserted through the right half of the cylinder, but exits through
the entanglement cut. The edge fermions on the left (right) cylinder obey NS (R) boundary conditions. In (b) and (c), the zero modes on the
inner (outer) edge are χ 1

0 , χ 2
0 (χ̄ 1

0 , χ̄ 2
0 ).

be described by

H0 =
∫ 2π

0
dσ [γLi∂σ γL + γR(−i∂σ )γR]. (22)

Here, we take the circumference of the cylinder to be L =
2π for simplicity. The Majorana fermion fields obey either
antiperiodic (Neveu-Schwarz, NS) or periodic (Ramond, R)
boundary conditions. For later purposes, it is convenient to
introduce

ψ1(σ ) ≡ γL(σ ), ψ2(σ ) ≡ γR(2π − σ ). (23)

The edge-state Hamiltonian is then written as

H0 =
∫ 2π

0
dσ

∑
I=1,2

ψ I i∂σψ I . (24)

The chiral Majorana fermion field ψ (σ ) can be Fourier ex-
panded as

ψ (σ ) =
∑

s∈Z+1/2

e−iσ sψs

where ψ−s = ψ†
s , {ψs, ψs′ } = δs,−s′ (25)

in the NS sector. The vacuum of the NS sector is defined by

ψs|0〉 = 0 for s > 0. (26)

We have a similar expansion for the R sector with integer
moding.

In order to “glue” the system back together, we introduce
a tunneling term which gaps out the chiral edge degrees of
freedom. Explicitly, we describe the gapped edge with the
Hamiltonian H0 + Hint , where

Hint = im
∫ 2π

0
dσ γLγR = im

∫ 2π

0
dσ ψ1(σ )ψ2(2π − σ ).

(27)

As described above, we identify the entanglement between A
and A as arising purely from the entanglement between the
chiral and antichiral Majorana fermions in this gapped state
(i.e.. the “left-right” entanglement [70]).

The gapped ground state is in fact related to a conformal
boundary state or, more precisely, an Ishibashi state |B〉 of
the gapless theory described by H0. For a general CFT, |B〉
is defined by the relation

[Ln − L̄−n]|B〉 = 0 (∀ n ∈ Z), (28)

where Ln (L̄n) is the Fourier component of the energy-
momentum tensor T (σ ) [T̄ (σ̄ )] of the edge theory. For the
case of the free-fermion theory, the Ishibashi state is defined
by

[γL(σ ) ∓ iγR(σ )]|B〉 = 0. (29)

In terms of ψ I ,

[ψ1(σ ) ∓ iψ2(2π − σ )]|B〉 = 0, (30)

which is valid for the whole region 0 � σ � 2π (this leads
to [ψ2(σ ) ± iψ1(2π − σ )]|B〉 = 0). Indeed we see that |B〉
is the ground state of H in the limit |m| → ∞. From the
Ishibashi boundary state, we can approximate the ground
state of the (2+1)D topological phase near the entanglement
boundary for large but finite m with the regularized state

|G〉 = N e−εH0 |B〉. (31)

Here, the regulator ε is inversely proportional to the bulk en-
ergy gap. The reduced density matrix can then be constructed
from |G〉 by tracing over Ā, ρA = TrĀ |G〉〈G|. We emphasize
that, while we took the noninteracting fermion theory as an
example, essentially the same construction of the reduced
density matrix using the Ishibashi boundary state can be done
for a much broader class of theories.

The condition (30), (ψ1
r ∓ iψ2

−r )|B〉 = 0, for the free-
fermion boundary state can explicitly be solved. For example,
for the NS sector (the NS boundary condition), it is given in
the form of a fermionic coherent state as

|B〉 = exp

(
i
∑

r�1/2

ψ1
−rψ

2
−r

)
|0〉, (32)

which has the form of Ishibashi state, as expected. Here |0〉 is
the Fock vacuum defined by ψ I

r |0〉 = 0 for r > 0.

2. Multipartition and vertex states

The bipartite setup and the cut-and-glue method of the
reduced density matrix presented above can be extended to
a multipartition. In this section, we focus on a tripartition,
but the following discussion can readily be extended to an
N partition (N > 3). We first note that the configuration in
Fig. 1(a) is topologically equivalent to the one obtained by
first considering three cylinders, corresponding to the regions
A, B,C, and then gluing these cylinders together [Fig. 3(a)].
As in the case of a bipartition, we cut open the system along
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FIG. 3. (a) Gluing three cylinders from edge-theory point of view. (b) The conformal map used to define vertex states for tripartition. One
disk (0 � σ � 2π, τ < 0) is mapped to the one-third of the whole plane. The past infinity point τ = −∞, denoted by the black filled circle,
is mapped to ω1,0 = eiπ/3, ω2,0 = e−iπ/3, ω3,0 = e−iπ for I = 1, 2, 3 by Eq. (40).

the cut, resulting in an edge theory comprising three free
Majorana fermions, as described by the Hamiltonian

H0 =
∫ 2π

0
dσ

3∑
I=1

ψ I i∂σψ I . (33)

We again heal the cut by introducing tunneling terms of the
form

Hint = im
∫ π

0
dσ
∑

I

ψ I+1(σ )ψ I (2π − σ ), (34)

such that the total Hamiltonian is H0 + Hint. (Here and hence-
forth, we use the convention ψ4 ≡ ψ1.) Analogously to the
Ishibashi boundary state satisfying the condition (30), the
ground state in the limit |m| → ∞ is given by a conformal
boundary state |V 〉, which satisfies

[ψ I+1(σ ) − iψ I (2π − σ )]|V 〉 = 0, 0 � σ � π. (35)

Solving the constraint, the state |V 〉 is given in the form of a
fermionic coherent state. These types of states, which we will
refer to as vertex states, have been considered in the context of
string field theory [41–44] where they describe the interaction
among strings. As before, we regularize this state and consider
|G〉 = N e−εH0 |V 〉, which provides an approximation to the
ground state of H for large but finite |m|. Once |G〉 is obtained,
we can compute the reduced density matrices ρA∪B, ρB∪C , and
ρC∪A as well as the entanglement measures.

Although Eq. (35) uniquely defines the Majorana fermion
vertex state, an equivalent and more general definition of
vertex states, which also motivates the so-called Neumann co-
efficient approach to constructing them, proceeds as follows.
In the interest of generality, we consider the most general
case of an N junction, such that N edge theories meet at a
single point. Hence, we start with N copies of chiral CFTs
(edge theories) defined on a spatial circle parametrized by
0 � σ � 2π . Their Hilbert spaces are denoted by H1,2,...,N ,
respectively. Together with the (imaginary) time direction τ ,
we have a cylindrical space-time. As usual, we can map
each theory to the conformal plane through the coordinate
transformation z = eτ+iσ , such that the half of the cylinder
−∞ � τ � 0 is mapped to the unit disk |z| � 1. We next
consider conformal maps ωI from the Ith unit disk to the
complex plane C that are analytic inside the unit disk. In
particular, they map each disk to a separate wedge of the
complex plane C, with the requirement that the edges of each
wedge are flush with one another so that the desired boundary

conditions are implemented. This sequence of maps for one
disk is illustrated for the case N = 3 in Fig. 3(b). We will
elaborate more on this after we present the explicit form of
the conformal maps momentarily. Then, we define a vertex
state |V 〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN by requiring it reproduce
correlation functions on the complex plane as follows [44]:

〈V | (Oα|0〉1 ⊗ Oβ |0〉2 ⊗ · · · ⊗ Oγ |0〉N )

= 〈ω1[Oα] ω2[Oβ] . . . ωN [Oγ ]〉C, (36)

where |0〉I is the vacuum in HI , Oα,β,...,γ represents an arbi-
trary (primary) operator acting on H1,2,...,N , ωI [O] represents
the transformation of a primary operator O by ωI , ωI [O(z)] =
[ω′

I (z)]hO(ωI (z)), where h is the conformal dimension of O.
In order to fix the form of the conformal transformations
ωI which define the vertex state, we must impose additional
constraints on |V 〉. First, it is clear that, since the N Hilbert
space copies are equivalent, the vertex states must invariant
under their cyclic permutation. That is to say, focusing on
N = 3,

〈V123| = 〈V231| = 〈V312|, (37)

where the subscripts label the Hilbert space indices. Physi-
cally, this is just the statement that the trijunction is invariant
under 120◦ rotations. A second, less obvious requirement is
given by, again focusing on N = 3,

〈V125|〈V5†34| = 〈V235|〈V5†41|. (38)

The two sides of this expression correspond to gluing together
two N = 3 vertex states to obtain N = 4 vertex states. This
constraint expresses the fact that this N = 4 vertex state must
also be invariant under cyclic permutations of the Hilbert
spaces (i.e., under 90◦ rotations of the “tetrajunction”).2 En-
forcing these constraints restricts the choice of conformal
transformations ωI , which in turn define the vertex state |V 〉.
We next describe choices of the ωI satisfying these con-
straints, which then lead to vertex states satisfying Eq. (35).

For N = 2, we can choose the following conformal maps
[69]:

ωI (z) = ωI,0
1 + z

1 − z
; ωI,0 = −ieiπI , I = 1, 2. (39)

2In the original string field theory context in which these vertex
states first appeared, these cyclicity constraints follow from demand-
ing gauge invariance of the string interaction vertex.
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FIG. 4. (a) The σ -anyon flux insertion in the R-R-R sector. One
σ anyon is forced to be exited at the junction. (b) The choice of the
branch cuts for the R-R-R sector tripartition vertex state. The branch
cuts connect ωI,0 to ∞.

In this way, the first disk is mapped to the upper-half plane
and the second to the lower-half plane. Note also that the
infinite past τ = −∞ is mapped to ±i, respectively. Here, we
note that a quantum state at τ = 0 or |z| = 1 can be obtained
by a path-integral from τ = −∞ or |z| = 0 with possibly an
insertion of an operator. By the conformal maps ω1,2, the
τ = 0 slices of the disks are both mapped to the real axis.
Hence, the field configurations for ψ1 and ψ2 are subject to
the constraint in (30); we will show this more explicitly in the
following subsection.

Likewise, for N = 3, we can choose ω1,2,3 as

ωI (z) = ωI,0

(
1 + z

1 − z

) 2
3

; ωI,0 = e
4π iI

3 −iπ , I = 1, 2, 3.

(40)

Note that ωI (2π − σ ) = ωI+1(σ ) for 0 � σ � π . These con-
formal maps bring three disks (0 � σ � 2π, τ < 0) to the
whole plane, such that each unit disk is mapped to a separate
120◦ wedge of the conformal plane, as shown in Figs. 3(b)
and 4(a). Here, the points at infinity are identified. We note
that this construction is similar to, but slightly different from,
the conformal maps used in open string field theory by Witten
[68]; the CFTs we consider obey (potentially twisted) periodic
boundary conditions. Although this alternative definition of
the vertex states seems obtuse at first glance, we will see in
the following that it provides an elegant way of deriving the
explicit form of said states.

3. The Neumann coefficient method

Let us now move on to the methods of constructing vertex
states. On the one hand, the overlap condition (35) can be
solved directly, and the vertex state can be constructed as
a coherent state. We will discuss the direct construction in
Appendix A and show the two methods give consistent results
numerically.

On the other hand, the definition of vertex states (36) sug-
gests the following strategy to construct vertex states, which
we call the the Neumann coefficient method. For now, we fo-
cus on the NS sector for simplicity. We postulate the following
Gaussian ansatz for |V 〉:

|V 〉 = exp

( ∑
r,s�1/2

1

2
ψ I

−rKIJ
rs ψJ

−s

)
|0〉. (41)

(Here and henceforth, we adopt the convention in which re-
peated flavor indices I, J, . . . are summed over implicitly,

unless otherwise stated.) The coefficients KIJ
rs are chosen to

reproduce the correlation function on the right-hand side of
(36). Since |V 〉 is Gaussian, it is sufficient to consider the
two-point functions of the fermion fields. We then consider,
at τ = 0, the Neumann function3

KIJ (σ, σ ′) ≡ 〈ωI [ψ
I (σ )] ωJ [ψJ (σ ′)] 〉C

=
(

dωI (σ )

idσ

)1/2(dωJ (σ ′)
idσ ′

)1/2

× 1

ωI (σ ) − ωJ (σ ′)
. (42)

(Note I, J are not summed on the right-hand side.) The Neu-
mann coefficients KIJ

rs are related to the mode expansion
ansatz of KIJ (σ, σ ′) as

KIJ (σ, σ ′) =
∑

r,s�1/2

eirσ eisσ ′
KIJ

rs + δIJ

∑
r�1/2

e−ir(σ−σ ′ ). (43)

Note that there are two contributions to KIJ : the regular piece
that contains KIJ

rs and the singular piece δIJ
∑

r�1/2 e−ir(σ−σ ′ ).
The presence of the singular piece is nontrivial, and needs to
be verified case by case.

We now show the ansatz solution indeed satisfies the
boundary condition (35). We first note that, with a proper
choice of a branch in the conformal factor (dωI/idσ )1/2, the
Neumann function satisfies

iKIJ (2π − σ, σ ′) = KI+1,J (σ, σ ′), 0 � σ � π (44)

which reflects the cyclic constraint of Eq. (37). Using the
mode expansion ψ I (σ ) =∑r ψ I

r eirσ , ψ I (σ )|V 〉 can be ex-
pressed as

ψ I (σ )|V 〉 =
∑

r�1/2

ψ I
−re−irσ |V 〉 +

∑
r,s�1/2

eirσ KIJ
rs ψJ

−s|V 〉 (45)

=
∫

dσ ′

2π
KIJ (σ, σ ′)ψJ

cr.(σ
′)|V 〉, (46)

where ψ I
cr.(σ ) =∑r�1/2 ψ I

−re−irσ . Using the cyclic property
of the Neumann function given in Eq. (44), we find

ψ I (2π − σ )|V 〉 =
∫

dσ ′

2π
KIJ (2π − σ, σ ′)ψJ

cr.(σ
′)|V 〉

= (−i)
∫

dσ ′

2π
KI+1,J (σ, σ ′)ψJ

cr.(σ
′)|V 〉

= −iψ I+1(σ )|V 〉. (47)

This completes the proof. Note that it was crucial to carefully
take into account the singular part of the Neumann function.
The proof presented here applies for the NS sector, and we
leave the more complicated case of the R sector (Sec. IV A 2)
to Appendixes B 1 and B 2.

3KIJ is the two-point correlation function after the conformal trans-
formation. The name “Neumann function” is adopted from open
bosonic string field theory [41], where it refers to the Green’s func-
tion of the Laplacian operator with Neumann boundary condition on
the upper-half plane. We follow this terminology although we are not
considering open bosonic strings.
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The direct and Neumann coefficient methods complement
one other. When both methods can be applied, they give
rise to the same (consistent) vertex states. We demonstrate
the equivalence of these methods in the NS-NS-NS sector
in Appendix A. In other sectors, because of the presence of
zero modes, and because of the branch cuts, sometimes one
method has an advantage over the other method. In general,
vertex states obtained from these two methods are consistent,
but may differ by an extra operator insertion at the junction
[45,46].

4. Complex fermion

We close this subsection by commenting on the case of
complex fermions, which parallels the treatment for real
fermions. Indeed, the desired vertex state is obtained by com-
bining two copies of real fermions. We consider complex
fermion fields f I (σ ), f I,†(σ ). In the NS sector, they can be
expanded as

f (σ ) =
∑

s∈Z+1/2

e−iσ s fs, f †(σ ) =
∑

s∈Z+1/2

eiσ s f †
s ,

with { fs, f †
s′ } = δs,s′ . (48)

We have a similar mode expansion in the R sector. We con-
sider a vertex state obeying the overlap condition

[ f I+1(σ ) − i f I (2π − σ )]|V 〉 = 0,

[ f I+1,†(σ ) − i f I,†(2π − σ )]|V 〉 = 0. (49)

The complex fermion field f , f † can be decomposed into two
real fermion fields ψ and ϕ as f = (ψ − iϕ)/

√
2, f † = (ψ +

iϕ)/
√

2. Correspondingly, the Fourier modes of f † and f ,
f (σ ) =∑r eirσ fr ({ f †

r , fs} = δr,s), are related to the Fourier
modes of ψ and ϕ as fr = (ψr − iϕr )/

√
2, f †

r = (ψ−r +
iϕ−r )/

√
2. The ansatz solution is then

|V 〉 = exp

(
1

2

∑
r,s�1/2

ψ I
−rKIJ

rs ψJ
−s + ϕI

−rKIJ
rs ϕJ

−s

)
|0〉

= exp

( ∑
r,s�1/2

f I†
r KIJ

rs f J
−s

)
|0〉. (50)

The treatment of the R sector follows similarly, although we
need to take into account the presence of zero modes properly,
as we shall see in the following subsections.

B. Bipartition

In this subsection, we consider the bipartitions of a chi-
ral p-wave superconductor and a Chern insulator, using the
Neumann coefficient method described above. As mentioned
at the beginning of this section, we investigate the effect
of inserting nontrivial π fluxes through the cylinder on the
entanglement. As shown in Fig. 2, we consider the insertion
of (a) no flux, (b) π flux through the cylinder, and (c) a π

flux through one end of the cylinder, which exits through the
entanglement cut. For the chiral superconductor, a π flux is an
extrinsic defect which traps a Majorana zero mode, forming
an Ising anyon. Thus, (b) can be viewed as creating a pair of
Ising anyons in the bulk and dragging them to opposite ends

of the cylinder, while (c) results from dragging only one Ising
anyon to an edge and leaving the other in the bulk. In the bulk
language, the creation and manipulation of the Ising anyons
leaves behind a Wilson line on the cylinder or, equivalently,
an anyon flux through the cylinder. At the level of the edge
theories, the braiding of the Majorana fermions around the
Ising anyon flux results in a phase of −1. Hence, the three
configurations in Fig. 2 are described by the boundary con-
dition sectors of the edge theories: (a) NS-NS, in which all
fermions obey antiperiodic boundary conditions, (b) R-R, in
which all fermions obey periodic boundary conditions, and (c)
NS-R, in which the fermions on the left (right) cylinder obey
antiperiodic (periodic) boundary conditions. We compute the
entanglement in each sector in turn. As is well established, we
obtain an area law for case (a) and an area-law term plus a
subleading ln

√
2 correction from the Ising anyons for case

(b), which requires a careful treatment of the zero modes
[32,38,71]. The case (c) has not been considered before and
we find a subleading correction to the entanglement.

1. The NS-NS sector

The setup of the calculation for the NS-NS sector is al-
ready outlined above; all that remains is to explicitly evaluate
the Neumann functions. Noting dωI

idσ
= 2zωI,0

(1−z)2 and choosing

the branch cuts carefully (
√

ω1,0 = √
i,

√
ω2,0 = i

√
i, which

leads to
√

ω1,0ω2,0 = −1), we obtain

K11 = K22 =
√

zz′

z − z′ =
∑

r�1/2

e−ir(σ−σ ′ ),

K12 = −K21 = i
√

zz′

1 − zz′ = i
∑

r�1/2

eir(σ+σ ′ ). (51)

Note that K11 = K22 yields the expected singularity. We also
note that under σ → 2π − σ (z → 1/z,

√
z → −1/

√
z), the

Neumann function satisfies K1J (2π − σ, σ ′) + iK2J (σ, σ ′) =
0 and K2J (2π − σ, σ ′) − iK1J (σ, σ ′) = 0 for 0 � σ � 2π .
From the expansion of K12, we conclude K12

rs = −K21
rs = δrs.

Plugging this into Eq. (41), we obtain the Ishibashi state (32)
as expected.

2. The R-R sector

Let us now consider the vertex state in the R-R sector. We
denote the fermion fields with the R boundary condition as
χ I (σ ). As before, the vertex state satisfies

[χ1(σ ) + iχ2(2π − σ )]|V 〉
= [χ2(σ ) − iχ1(2π − σ )]|V 〉 = 0 (52)

for 0 � σ � 2π . In the bulk, this situation corresponds to a
flux or, Ising anyon Wilson line, threading the hole of the
cylinder [Fig. 2(b)]. From the edge-theory point of view, we
need to include suitable twist operators to introduce branch
cuts, which enforce periodic boundary conditions for the
fermions. This will modify the Neumann function, which we
now denote as RIJ . It is related to the Neumann function in the
NS sector via

RIJ (σ, σ ′) = KIJ (σ, σ ′)gIJ (σ, σ ′), (53)
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where gIJ is the factor arising from the branch cuts. (Here, the
summation convention does not apply in the right-hand side.)
We work with the following choice of the branch cuts:

gIJ = 1

2

[√
(ωI − ω1,0)(ω′

J − ω2,0)

(ω′
J − ω1,0)(ωI − ω2,0)

+ (ωI ↔ ω′
J )

]
, (54)

where we recall ω1,0 = i, ω2,0 = −i. Other choices are also
possible and give an identical vertex state, as we demonstrate
in Appendix B1. Using the conformal map in Eq. (39), the
explicit form of gIJ is

g11 = g22 = 1

2

(√
z

z′ +
√

z′

z

)
,

g12 = g21 = 1

2

(√
zz′ + 1√

zz′

)
. (55)

These functions satisfy g1J (σ, σ ′) = −g2J (2π − σ, σ ′) (using
z → 1/z,

√
z → −1/

√
z). The Neumann function is

R11 = R22 = 1

2

z + z′

z − z′ = 1

2
+
∑
n�1

e−in(σ−σ ′ ),

R12 = −R21 = i

2

1 + zz′

1 − zz′ = i

2
+ i
∑
n�1

ein(σ+σ ′ ). (56)

They satisfy R1J (2π − σ, σ ′) − iR2J (σ, σ ′) = R2J (2π −
σ, σ ′) + iR1J (σ, σ ′) = 0. Again, the correct singular terms
show up in R11 and R22. The solution for |V 〉 for real fermions
in the R-R sector is then

|V 〉 = exp

(
− i
∑
n�1

χ1
−nχ

2
−n

)
|�〉, (57)

with an additional requirement [χ1
0 + iχ2

0 ]|�〉 = 0. One can
verify that they satisfy the boundary condition (52). The re-
quirement that |V 〉 has definite parity for the zero mode can
also be understood from the i/2 term in R12.

The zero modes χ1
0 , χ2

0 of the real fermion need to be
handled with extra care. χ1

0 , χ2
0 live on the inner edges of

the cylinders. To have a well-defined Hilbert space, we also
need to include the zero modes on the outer edges of the
cylinders, which we denote as χ̄1

0 , χ̄2
0 , as shown in Fig. 2(b).

Indeed, we recall that before making a physical cut along
the entanglement cut, the cylinder with an Ising anyon flux
passing through it is topologically equivalent to a sphere with
a pair of Ising anyon defects. The anyons yield a double
degeneracy, as each has quantum dimension

√
2. This cor-

responds to choosing whether the complex fermion formed
from the corresponding zero modes, χ̄1

0 + iχ̄2
0 , is occupied or

unoccupied. We must make a choice of which state in this de-
generate subspace we wish to compute the entanglement for.
For concreteness, we choose the state in which this fermion is
unoccupied, which amounts to imposing the boundary condi-
tion [χ̄1

0 + iχ̄2
0 ]|�〉 = 0 for the outer-edge zero modes. If we

define the complex fermion

gi = 1√
2

(
χ1

0 + iχ2
0

)
, go = 1√

2

(
χ̄1

0 + iχ̄2
0

)
, (58)

the zero-mode vacuum state is |�〉 = |0i, 0o〉. This completes
the construction of the boundary state.

Note that gi and go mix the Hilbert spaces of the left and
right cylinders. When we compute the entanglement we must
trace out one of these cylinders, and so it is necessary to per-
form a change of basis to complex fermion modes localized on
either the left or right cylinder: gA = (χ1

0 + iχ̄1
0 )/

√
2, gB =

(χ2
0 + iχ̄2

0 )/
√

2. In this basis, the vacuum is a maximally
entangled state:

|�〉 = |0i, 0o〉 = (|0A0B〉 − i|1A1B〉)/
√

2. (59)

Below, we will see this gives a contribution of ln 2 to the
entanglement entropy.

3. The NS-R sector

Finally, we consider the NS-R sector which, as described
above, describes a configuration in which we insert an anyon
flux through one end of the cylinder which then exits through
the entanglement cut. From Fig. 2(c), we see that the fermions
on the right cylinder braid around the anyon flux and so
obey R boundary conditions, whereas the fermions on the left
cylinder do not and hence are in the NS sector. In order to
describe the gapped edge state at the entanglement cut, we
must impose a modified boundary condition:

[ψ (σ ) + i sgn(π − σ )χ (2π − σ )] |V 〉 = 0, (60)

for 0 � σ < 2π . Here, ψ (χ ) obeys NS (R) boundary con-
ditions. Formally, the sign function is needed to ensure the
above expression is well defined under shifts of σ → σ + 2π .
Physically, it represents the fact that an anyon flux is piercing
the entanglement cut. Indeed, the Ising twist field is precisely
the operator at the level of the edge CFT which introduces
such a “kink” for the Majorana fields.

To the best of our knowledge, the vertex state in this case
was first constructed in [69]. In the NS-R sector, we only need
to introduce the branch cut for the second string. The branch-
cut factor gIJ is chosen as [69]

gIJ (σ, σ ′) = 1

2

[√
ωI − ω2,0

ω′
J − ω2,0

+
√

ω′
J − ω2,0

ωI − ω2,0

]
. (61)

Explicitly,

g11 = 1

2

(√
1 − z′

1 − z
+
√

1 − z

1 − z′

)
,

g12 = i

2

(√
1 − z′

1 − z

1√
z′ − √

z′
√

1 − z

1 − z′

)
,

g22 = 1

2

(√
1 − z′

1 − z

√
z

z′ +
√

1 − z

1 − z′

√
z′

z

)
. (62)

RIJ satisfies RIJ (σ, σ ′) = −iRI+1,J (2π − σ, σ ′) for 0 � σ �
π . The mode expansion of RIJ needed to extract the RIJ

rs in the
definition of the vertex state takes a more complicated form
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than that of the preceding two cases:

R11
rs = r − s

2(r + s)
u2r−1u2s−1,

R12
rn = −R21

nr = n + r

2(n − r)
u2r−1u2n,

R22
nm = n − m

2(n + m)
u2nu2m,

(63)

where un are the expansion coefficients of u(x):

u(x) =
√

1 + x

1 − x
=

∞∑
n=0

unxn. (64)

Making use of this mode expansion and separating the oscil-
lator and zero-mode contributions, we can write out the vertex
state of Eq. (41) as

|V 〉 = exp

( ∑
r,s�1/2

1

2
ψ−rR11

rs ψ−s +
∑

m,n�1

1

2
χ−nR22

nmχ−m

+
∑

r�1/2,n�1

ψ−rR12
rnχ−n +

∑
r�1/2

2ψ−rR12
r0χ0

+
∑
n�1

2χ−nR22
n0χ0

)
|�〉. (65)

Now, as in the R-R sector, to fix the form of the vacuum
|�〉, we must treat the zero-mode sector carefully. Indeed,
due to the π flux through one half of the cylinder, we have
another zero mode, χ̄0, on the outer edge of the left cylin-
der [Fig. 2(c)]. We can combine them to define the complex
fermion operator g0:

g0 = 1√
2

(χ0 − iχ̄0), g†
0 = 1√

2
(χ0 + iχ̄0). (66)

Now, prior to making the entanglement cut, this flux configu-
ration is again topologically equivalent to a sphere supporting
a pair of Ising anyons, corresponding to the χ0 and χ̄0

zero modes, yielding a double degeneracy associated with
the occupation of g0. (Note that, in contrast to the R-R
case, cutting the system along the entanglement cut does
not introduce additional zero modes.) We must again make
a choice of which state in which to compute the entan-
glement. We can fix the state by choosing a value for the
occupation number of g0 of the reference state |�〉; for
simplicity, we take g0 to be unoccupied, so that |�〉 =
|0〉. Finally, to simplify the expression for the vertex state,
we observe that X ≡ √

2(
∑

r�1/2 ψ−rR12
r0 +∑n�1 χ−nR22

n0)g†
0

and Y ≡ √
2(
∑

r�1/2 ψ−rR12
r0 +∑n�1 χ−nR22

n0)g0, commute
[X,Y ] = 0, and hence eX+Y = eX eY . The vertex state thus
takes the form

|V 〉 = exp

[ ∑
r,s�1/2

1

2
ψ−rR11

rs ψ−s +
∑

m,n�1

1

2
χ−nR22

nmχ−m

+
∑

r�1/2,n�1

ψ−rR12
rnχ−n

+
√

2

( ∑
r�1/2

ψ−rR12
r0 +

∑
n�1

χ−nR22
n0

)
g†

0

]
|0〉. (67)

4. Entanglement entropy

Having constructed the relevant boundary states for the
NS-NS, R-R, NS-R sectors, we now proceed to compute
the entanglement entropy SA after tracing out one half of the
cylinder. Let us start with the NS-NS sector. We recall that
the ground state of the entanglement interface is given by a
regularized version of the boundary state, as stated in Eq. (31);
this amounts to replacing ψ I

−r → ψ I
−re−εr in Eq. (32). The

entanglement entropy can directly be evaluated as

S =
(

1 − ε
d

dε

)
ln

[ ∏
r�1/2

(1 + qr )

]
, (68)

where q = e2π iτ = e−4ε and τ = 2iε
π

. We can write the argu-
ment of the logarithm in terms of the Dedekind η function and
a Jacobi θ function:

∏
r�1/2

(1 + qr ) = q1/48

√
θ3(τ )

η(τ )
. (69)

Under the modular S transformation and taking the limit ε →
0 limit (which corresponds to taking the bulk gap to be very
large), we have

θ3(τ )

η(τ )
= θ3

(− 1
τ

)
η
(− 1

τ

) → 1(
e− 2π i

τ

)1/24 = e
π2

24ε . (70)

We thus find

Sreal
NS-NS → π (1/2)

24

L

ε
as

L

ε
→ ∞, (71)

as expected. Here, we reinstated the IR length scale L (which
has been set to 2π for simplicity) to make the area-law form
of the entropy more explicit and so that the dimensions are
correct. We also make the chiral central charge c = 1

2 depen-
dence explicit.

The entanglement entropy in the R-R sector can be com-
puted similarly. However, the presence of the zero modes
make the calculations slightly more subtle. Let us first com-
pute the contribution from the oscillator modes n � 1. With
the regulator ε, it can be computed as

Soscil =
(

1 − ε
d

dε

)
ln

[∏
n�1

(1 + qn)

]
. (72)

The product can be identified with θ2 function

∏
n�1

(1 + qn) = 1√
2

√
θ2(τ )

η(τ )
q−1/24. (73)

Under the modular S transformation and again taking the limit
ε → 0, we have

θ2(τ )

η(τ )
= θ4

(− 1
τ

)
η
(− 1

τ

) → 1

(e− 2π i
τ )1/24

= e
π2

24ε . (74)

This gives

Soscil = π (1/2)

24

L

ε
− 1

2
ln 2. (75)

For the zero-mode part, after the basis transformation, the
vacuum takes the form of a maximally entangled state |�〉 =
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TABLE I. Sreal
R-R and Sreal

R-NS for various choices of ε. For each
fixed ε, we increase cutoff N until S saturates. We observe that the
difference �S = Sreal

R-R − Sreal
R-NS is a constant.

ε 0.005 0.008 0.01 0.02

Sreal
R-R 82.5933 51.7508 41.4699 20.9082

Sreal
R-NS 82.3433 51.5008 41.2199 20.6582

�S 0.2500 0.2500 0.2500 0.2500

|0i, 0o〉 = (|0A0B〉 − i|1A1B〉)/
√

2, which gives a contribution
of ln 2. Summing up these two terms, the total entanglement
entropy is

Sreal
R-R = π (1/2)

24

L

ε
+ ln

√
2. (76)

Compared with Sreal
NS-NS, the extra contribution ln

√
2 is exactly

the topological entanglement entropy from the σ anyon, as
expected [71].

We now proceed to the NS-R case. Since the entanglement
entropy in this case is not amenable to analytical calculations,
we will perform a numerical computation using the correla-
tion matrix method introduced in Sec. II A with a cutoff of
mode Nc. For a given value of ε, we take Nc to be sufficiently
large such that SA does not appreciably change with further
increases in Nc. We collect the results in Table I. We observe
that the area-law contributions [O(L/ε)] to Sreal

R-R and Sreal
NS-R

cancel out exactly, and the difference

�S = Sreal
R-R − Sreal

R-NS = 0.2500 (77)

appears to be remarkably well quantized. Now, we recall that,
in the R-R sector, the presence of the anyon flux passing
through the cylinder (i.e., the presence of Ising anyons on
the ends of the cylinder) led to a contribution of �S0 =
Sreal

R-R − Sreal
NS-NS = ln

√
2 = 0.3466 to the entanglement entropy

over the NS-NS case, in which there was no flux. We see
that 0 < �S < �S0. This seems reasonable, as one expects
the two halves of the cylinder in the present NS-R case
where one Ising anyon straddles entanglement cut to some-
how be less entangled than the R-R case, where the Ising
anyons are located deep in the bulks of the two subregions.
Evidently, �S0 − �S = 0.0966 corresponds to a contribution
to the entanglement from the anyon flux which pierces the
entanglement cut. We should, however, perhaps be careful
in identifying this as a universal contribution, as this cut-
and-glue approach likely corresponds to a particular choice
of regularization of how the anyon flux pierces the cut. The
value of this topological contribution may depend on this reg-
ularization. Additionally, we note that the examination of the
entanglement spectrum in the NS-R sector shows that levels
are all equally spaced with no degeneracy. The equal-spacing
structure encodes the CFT signature.

Finally, we consider the entanglement entropy for the case
of complex fermion, i.e., the edge theory of a Chern insulator
with unit Hall conductivity, and make a comparison with the
above results. In the NS-NS sector, the entanglement entropy
for the complex fermion is simply twice as large as the real

fermion case

Scplx
NS-NS = 2Sreal

NS-NS = π

24

L

ε
. (78)

In the R-R sector, we need to include the effect of the fermion
zero modes properly, while the treatment for the oscillator part
is essentially the same. For the zero-mode part, since χ0 is
already a well-defined degree of freedom, paired with χ

†
0 , we

can only consider the inner edges. The vacuum |�〉 needs to
satisfy (χ1

0 − iχ2
0 )|�〉 = 0, (χ1,†

0 − iχ2,†
0 )|�〉 = 0, which can

be chosen as |�〉 = (χ2,†
0 + iχ1,†

0 )|0〉. This is a maximally
entangled pair state and gives S0 = ln 2 contribution to S. To
sum up,

Scplx
R-R = 2Soscil + S0 = π

24

L

ε
. (79)

There is no topological contribution for the complex fermion.
Furthermore, the numerical calculation of the NS-R case
shows Scplx

NS-NS = Scplx
NS-R = Scplx.

R-R . This is desired since we ex-
pect Scplx.

NS-R to lie between Scplx
NS-NS and Scplx

R-R . Once again, the
NS-R entanglement spectrum shows equal spacing behavior
with no degeneracy.

IV. TRIPARTITE VERTEX STATES AND ENTANGLEMENT

Having illustrated how the Neumann coefficient method
reproduces the expected boundary states and entanglement
entropy for a bipartition on the cylinder with and without
flux threading it, as well as having derived a result for the
entanglement in the case where a flux pierces the cut, we turn
to the main focus of this work, namely, the entanglement for
a tripartition [Fig. 1(b)]. We will again focus primarily on the
case of a chiral p-wave superconductor and consider the effect
of inserting π fluxes through the cylinders. In particular, we
investigate the entanglement when no fluxes are inserted and
when two fluxes are inserted through two cylinders such that
one flux exits through the remaining cylinder and the other
flux through the entanglement cut [Fig. 4(a)]. At the level
of the edge theories, these correspond to the NS-NS-NS and
R-R-R sectors, respectively. We construct the vertex states for
each case next before discussing the tripartite entanglement
measures introduced in Sec. II.

As a complement to the Neumann coefficient approach, we
also introduce a direct calculation method for computing the
vertex state in Appendix A. We show these two methods give
identical results for the vertex state solution numerically.

A. Vertex states

1. The NS-NS-NS sector

We first consider the simplest case in which no fluxes are
inserted through the cylinders. The required vertex state |V 〉
is given by the Gaussian ansatz of Eq. (41), the construction
of which is outlined in Sec. III A 3. All that remains is to
determine the explicit form of the Neumann coefficients from
the correlation function (42). The conformal factor in Eq. (42)

is given explicitly as ( dωI
idσ

)1/2 = 1
ω

1/4
I

( (ω3
I +1)
3 )1/2. We choose

the branch such that ω
1/4
I (2π − σ ) = iω1/4

I+1(σ ). This can be
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achieved by the following choice:

ω
1/4
I (σ ) = ω̃I

(
1 + eiσ

1 − eiσ

)1/6

with ω̃1 = eiπ/12, ω̃2 = e−i7π/12, ω̃3 = ei3π/4. (80)

The explicit form of the Neumann coefficients KIJ
rs is tech-

nically involved and not particularly physically illuminating,
and so we relegate it to Appendix B 3.

2. The R-R-R sector

Next we consider the case in which all fermions are in
the R sector. Similar to the NS-R sector discussed for the
case of a bipartition, in the R-R-R sector, the conservation of
topological charge enforces the presence of an Ising anyon at
the junction where all three entanglement boundaries meet.
From the edge-theory point of view, we must again compute
the Neumann functions for periodic fermions, which take the
form in Eq. (53) with the factor gIJ accounting for the branch
cuts. We choose to work with the branch-cut configuration in
Fig. 4(b).

To determine the branch-cut factor gIJ (σ, σ ′), the follow-
ing general properties should be satisfied [72]: (i) ω and ω′ are
symmetric in gIJ (thus antisymmetric in RIJ ). (ii) The branch
points include ω1,0, ω2,0, and ω3,0. (iii) g reduces to 1 when
ω′ → ω, so RIJ reduces to KIJ in this limit. Furthermore, for
our specific problem, RIJ should also satisfy. (iv) The singular
term in RIJ must be δIJ

∑
n�1 e−in(σ−σ ′ ) to ensure the boundary

condition is properly satisfied, as we show in Appendix B 2.
This extra requirement is nontrivial, and may rule out some of
the candidates that satisfy (i)–(iii).

We propose to use the following branch-cut factor:

gIJ (σ, σ ′) = 1

2

[(
(ωI − ω1,0)(ωI − ω2,0)(ωI − ω3,0)

(ω′
J − ω1,0)(ω′

J − ω2,0)(ω′
J − ω3,0)

)1/2

+
(

(ω′
J − ω1,0)(ω′

J − ω2,0)(ω′
J − ω3,0)

(ωI − ω1,0)(ωI − ω2,0)(ωI − ω3,0)

)1/2]
,

(81)

where ω1,0 = eiπ/3, ω2,0 = e−iπ/3, ω3,0 = e−iπ , and
ωI (σ ), ω′

J (σ ′) are defined in Eq. (40). It is easy to check
that this candidate fulfills the requirements (i)–(iii). The
branch points also include ∞. The branch cuts can be chosen
from ω1,0 to ∞, ω2,0 to ∞, and ω3,0 to ∞, as shown in
Fig. 4(b). We will compute the singular terms explicitly later,
which verifies requirement (iv). It turns out that gIJ is the
same for any I, J , and the mode expansion of gIJ in powers of
z = eiσ is given by

gIJ = 1

2

[(
1√
z′ − √

z′
) ∑

r�1/2

zr +
(

1√
z

− √
z

) ∑
r�1/2

z′r
]

= 1

2

∞∑
m=0

[
eiσ ( 1

2 +m)−i σ ′
2 − eiσ ( 1

2 +m)+i σ ′
2

+ eiσ ′( 1
2 +m)−i σ

2 − eiσ ′( 1
2 +m)+i σ

2
]
. (82)

It is worth noting that this expression is valid for the vertex
state of an N junction with arbitrary N and the insertion of

N twist operators. As an example, we give the construction
of the vertex state for N = 2 using this branch-cut factor in
Appendix B 1, which reproduces the result for the R-R sector
bipartition calculation of the preceding section.

We are now ready to examine requirement (iv). Combining
the singular term of the Neumann coefficient in the NS-NS-
NS sector KIJ

sing = δIJ
∑

r�1/2 e−ir(σ−σ ′ ) with the branch-cut
factor gIJ , we obtain

KIJ
singgIJ = δIJ

∞∑
r�1/2

e−i(r+1/2)(σ−σ ′ )

+ δIJ

2

[ ∞∑
m=0

eimσ −
∑
m�1

eimσ ′
]
. (83)

The first term gives the correct singular term in the R-R-R
sector, RIJ

sing = δIJ
∑∞

m�1 e−im(σ−σ ′ ), and the second term con-
tributes to the zero-mode parts R0,m, Rm,0, R0,0. This shows
that our choice of gIJ is indeed a valid one. We thus verified
the Neumann function has the following expansion:

RIJ (σ, σ ′) =
∑

m�0,n�0

eimσ RIJ
mneinσ ′ + δIJ

∑
n�1

e−inσ einσ ′
.

(84)

The nonsingular terms can be worked out easily in a similar
way. We summarize the expansion coefficients below:

RIJ
r′+1/2,s′+1/2 = 1

2

[
r′∑

r=1/2

(
KIJ

r,s′+1 − KIJ
r,s′
)

+
s′∑

s=1/2

(
KIJ

r′+1,s − KIJ
r′,s
)]

,

RIJ
0,s′+1/2 = 1

2

s′∑
s=1/2

KIJ
1/2,s − 1

2
δIJ ,

RIJ
s′+1/2,0 = 1

2

s′∑
s=1/2

KIJ
s,1/2 + 1

2
δIJ ,

RIJ
00 = 1

2
δIJ . (85)

Finally, using the Neumann coefficients, the vertex state
can be constructed as

|V 〉 = exp

(∑
m,n�1

1

2
χ I

−mRIJ
mnχ

J
−n +

∑
m�1

2χ I
−mRIJ

m0χ
J
0

)
|�〉.

(86)

We show this state satisfies the boundary condition explicitly
in Appendix B 2.

As discussed in Sec. III B 2, to have a well-defined Hilbert
space, we need to combine the χ I

0 zero modes with χ̄ I
0 at the

outer edges. Indeed, physically speaking, prior to physically
cutting the system along the entanglement cut, the R-R-R
sector configuration is topologically equivalent to a sphere
with one Ising anyon placed on the entanglement cut and
three Ising anyons in the three regions A, B, and C. These
correspond to the three outer-edge Majorana fermion zero
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modes and one of the zero modes that appears at the inner
edge when we physically cut along the entanglement cut. This
results in a fourfold degeneracy and we must choose one
of these states for which to compute the entanglement. To
do so, we define the complex fermion as in Eq. (66), χ I

0 =
(gI

0 + gI,†
0 )/

√
2. Denoting X = √

2
∑

m�1 χ I
−mRIJ

m0g†,J
0 , Y =√

2
∑

m�1 χ I
−mRIJ

m0gJ
0, one can show [X,Y ] = 0 and hence

eX+Y = eX eY . In order to fix a state within the fourfold-
degenerate subspace, we must fix the occupations of the zero
modes. For simplicity, we choose the reference state |�〉 to
be one of definite fermion parity take |�〉 = |000〉, which
is annihilated by all gI

0. Under this choice, the solution is
simplified to

|V 〉 = exp

( ∑
m,n�1

1

2
χ I

−mRIJ
mnχ

J
−n +

∑
m�1

√
2χ−mRIJ

m0g†,J
0

)
|0〉.

(87)

Finally, by combining two copies of real fermions, we can
construct the complex fermion vertex state as

|V 〉 = exp

(∑
m,n�1

gI
−mRIJ

mng†,J
n

+
∑
m�1

2RIJ
m0

(
gI

−mg†,J
0 + g†,I

m gJ
0

))|�〉. (88)

Again, we postpone the verification of boundary condition
in Appendix B 2. We choose |�〉 to be the vacuum that is
annihilated by gI

0. Identifying X = 2
∑

m�1 RIJ
m0gI

−mg†,J
0 , Y =

2
∑

m�1 RIJ
m0g†,I

m gJ
0, and [X,Y ] = 4

∑
m,n�1 RIJ

m0RI ′J
n0 g†,I ′

n gI
−m,

the solution is simplified to

|V 〉 = exp

(∑
m,n�1

gI
−mR̃IJ

mng†,J
n +

∑
m�1

2gI
−mRIJ

m0g†,J
0

)
|0〉,

with R̃IJ
mn = RIJ

mn − 2RIK
m0RJK

n0 . (89)

B. Entanglement entropy, negativity, and reflected entropy

With the tripartite vertex states in hand, we now proceed
to the calculations of the correlation measures, namely, the
entanglement entropy SA and spectrum when tracing out B
and C, and negativity EA:B and the spectra when tracing out
C, and the reflected entropy RA:B when tracing out C. Once
again, the regularization |V 〉 → |G〉 = N e−εH0 |V 〉 amounts
to multiplying the Neumann coefficients by an exponential
factor, e.g., RIJ

mn → RIJ
mne−ε(m+n). As the resulting state |G〉

is Gaussian, we can use the correlator method to compute
various entanglement measures, as described in Sec. II. The
technical details are left to Appendix C. To evaluate the corre-
lators (covariance matrices) numerically, we need to introduce
a cutoff Nc to truncate the Neumann coefficients. The cor-
relation measures (for a given L/ε) are then computed for
different Nc and the results are extrapolated to Nc → ∞. We
typically take Nc � 200–800.

We first present our results for the entanglement entropy
and negativity. For both cases, we find that they scale with

L/ε as

SA = a−1
L

ε
+ a0 + a1

ε

L
+ · · · ,

EA:B = b−1
L

ε
+ b0 + b1

ε

L
+ · · · ,

(90)

for both the NS-NS-NS and R-R-R sectors. The numerically
extracted coefficients are summarized in Table II. The co-
efficients a−1 and b−1 are the same for the NS-NS-NS and
R-R-R sectors. The numerical result for a−1 is consistent with
a−1 = πc/24 (see Sec. III B 4). On the other hand, the numer-
ically computed b−1 is consistent with b−1 = 3πc/96. These
may be understood as commonly appearing coefficients in the
entanglement entropy and negativity in topological liquids.
For example, for the mutual information and negativity on the
torus, when A, B,C are noncontractible and A and B are ad-
jacent, the area-law terms of these quantities are proportional
to (1/n + 1)(πc/12) (n → 1) and (4/ne − ne)(cπ/48) (ne →
1) [30]. We also note that the area-law terms should can-
cel in E3 = 2EA:B − EA∪C:B, and we know EA∪C:B = S(1/2)

A∪C:B ∼
(3πc/48)(L/ε). The constant term a0 in the NS-NS-NS sector
is small compared with ln 2 ∼ 0.693, and may be consistent
with a0 = 0, the result we expect from the calculation for a
bipartition. On the other hand, in the R-R-R sector, a0 is an
order of magnitude larger. We may attribute it to the extra σ

anyon positioned at the junction. We recall that we obtained a
similar result in the NS-R sector for a bipartition.

In Fig. 5 we plot the entanglement and negativity spec-
tra. Here, we focus on the NS-NS-NS sector (as the R-R-R
sector shows the same features). Both the entanglement and
negativity spectra exhibit an equal-spacing structure. For the
entanglement spectrum, this is expected as it is given by
the spectrum of the CFT realized on a physical edge [15].
Similarly, the equal-spacing structure of the negativity spec-
trum may suggest that it is described by some CFT. For the
Majorana fermions, the entanglement spectrum is nondegen-
erate while the negativity spectrum is twofold degenerate. For
the complex fermions, the degeneracy of the entanglement
spectrum is twofold, while that for the negativity spectrum is
fourfold. We will see in the next section that the degeneracy
matches with the lattice calculation result deep in the topolog-
ical region.

Plotted in Fig. 5(b) is the single-body spectrum {ζ } of ρ
TA
A∪B

(the spectrum of the correlation matrix �+). The eigenvalues
appear to come in various branches: those that are circularly
distributed and those that are clustered near the real axis. The
nontrivial distribution of the spectrum over the complex plane
can be regarded as a smoking gun of topological nontriviality
of the bulk. As a comparison, we note that for a simple product
state the spectrum {ζ } consists of just two eigenvalues, ζ = 1
and ζ = −1. We also note that such nontrivial distribution of
the eigenvalues {ζ } was found previously in (1+1) dimensions
[(1+1)D] fermionic CFTs [51], and (1+1)D SPT phases (the
Kitaev chain) [56]. In these examples, the many-body spec-
trum of ρ

TA
A∪B has an eightfold rotation symmetry. On the other

hand, we do not find such a symmetric pattern for the case of
our (2+1)D topological liquids. In the next section, we will
see that a similar distribution of {ζ } is also found in the lattice
Chern insulator calculation.
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TABLE II. The scaling of the entanglement entropy and negativity with respect to L/ε from the numerical analysis.

a−1 a0 a1 b−1 b0 b1

Majorana (NS-NS-NS) 0.0654 0.0299 −0.0232 0.0491 0.0310 −0.4021
Majorana (R-R-R) 0.0654 0.6227 −5.3746 0.0491 0.3341 −0.2984
Dirac (NS-NS-NS) 0.1309 0.0597 −0.0119 0.0982 0.0600 0.3657
Dirac (R-R-R) 0.1309 −0.1139 22.9493 0.0982 0.0025 15.1538

Finally, we turn to the reflected entropy and the conjecture
(10). We study this difference for the four aforementioned
cases and show the results in Fig. 6. For the Majorana
and Dirac fermion edge theories in the NS-NS-NS sector,
and the Majorana fermion edge theory in the R-R-R sec-
tor, hA:B does not change with ε, with the values being
0.1172, 0.2344, 0.2850, respectively. The results for the NS-
NS-NS sector are consistent with the prediction (c/3) ln 2 =
0.1155, 0.2310 for c = 1

2 and 1, respectively. (Alternatively,
if we extract the central charge from our numerics, we ob-
tain c = 0.5073, 1.0145, 1.2335, respectively.) For the R-R-R
sector, the numerics suggests that hA:B is slightly bigger than
(c/3) ln 2, which once again may be attributed to the Ising
anyon at the junction. Finally, for the Dirac fermion in the
R-R-R sector, hA:B changes with ε and the polynomial fit
up to second order gives the intercept 0.5698. Notice that
0.2344 is twice as large as 0.1172, and 0.5698 is (almost)
twice as large as 0.2850. We note that to get the universal
result in the edge-theory calculations, we do not have to
consider a local unitary that removes short-range correlations
(UV effect) at the junction(s), which is required in the bulk
calculation [34]. This is because our boundary calculation is
performed in the continuum limit (Nc → ∞) with large gap-
ping term (large L/ε), which detects the entanglement in the
IR limit.

FIG. 5. (a) The evolution of SA and negativity EA:B with different
regulator ε at Nc → ∞ limit, in the NS-NS-NS sector for the Ma-
jorana fermion. (b) Distribution of the eigenvalues of �+, at Nc =
500 and ε = 0.02 for the complex fermion. (c), (d) Entanglement
spectrum and negativity spectrum for Nc = 200 at different ε, which
shows equal-spacing behavior.

V. LATTICE-MODEL APPROACH

Although the edge theory, or “cut-and-glue” approach,
provides a theoretically appealing way of computing entangle-
ment measures in the thermodynamic limit, it is limited by the
fact that it is only applicable to systems deep in the topological
phase. It is natural to ask how the entanglement properties
of a system change closer to and across a topological phase
transition.

To that end and as a check on the conclusions we have
drawn from the edge-theory approach, in this section we study
a tight-binding model on the square lattice that realizes a
Chern insulator phase. The Hamiltonian is given by

H = −i

2

∑
r

∑
μ=x,y

[
f †
r τμ fr+aμ

− f †
r+aμ

τμ fr

]

+ 1

2

∑
r

∑
μ=x,y

[
f †
r τz fr+aμ

+ f †
r+aμ

τz fr

]

+ u
∑

r

f †
r τz fr, (91)

where the two-dimensional integer vector r labels sites on the
square lattice, and ax = (1, 0) and ay = (0, 1); f †

r / fr are two-
component fermion creation and annihilation operators at site
r, and τμ=x,y,z are the Pauli matrices. In momentum space, the
corresponding Bloch Hamiltonian is

h(k) = sin kxτx + sin kyτy + (u + cos kx + cos ky)τz, (92)

with kx,y ∈ [−π, π ]. The parameter u tunes the model across
insulating phases with different Chern numbers: the Chern
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Cplx.

0 0.02 0.04
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FIG. 6. The difference between reflected entropy and mutual in-
formation hA:B = RA:B − IA:B. (a) The NS-NS-NS sector for Majorana
fermion and complex fermion. The intercept (0.2344) is twice of
that of the Majorana fermion (0.1172). (b) The R-R-R sector for
Majorana fermion and complex fermion. Using a power-two poly-
nomial fit, the intercept (0.5698) is almost twice that of the Majorana
fermion (0.2850). In (a) and the real fermion case of (b), hA:B does
not change with ε.
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number Ch = 0 for |u| > 2, Ch = 1 for 0 < u < 2, and
Ch = −1 for −2 < u < 0. The many-body ground state
|GS〉 is obtained by filling the lower band. On an N × N
square lattice, the correlation matrix elements are given by
〈GS| f †

r,s fr′,s′ |GS〉 = N−1∑
k v∗

(k,s,−)v(k,s′,−)e−ik·(r−r′ ), where
s = 1, 2 and vk,s,− is the sth component of the Bloch
eigenvector of the lower band. Since it is a particle-number-
conserving model, the correlation matrix � is simply given
by � = (1 − 2C) ⊗ σy.

We consider tripartitioning a 20 × 20 square lattice (1 �
x � 20, 1 � y � 20) into three regions A, B,C (A: 1 � x �
10, 1 � y � 10; B: 11 � x � 20, 1 � y � 10; C:1 � x �
20, 11 � y � 20), and trace out the region C, as shown in
Fig. 1(b). Since this is a noninteracting system, the reduced
density matrix ρA∪B is Gaussian. We can then use the cor-
relator method reviewed in Sec. II to construct the partially
transposed density matrix ρ

TA
A∪B. The entanglement spectrum

of this model was first studied in Ref. [14].
a. Entanglement entropy and negativity. The numerically

computed entanglement entropy SAB and negativity EA:B, and
the corresponding spectra {γ } and {γ×}, are shown in Fig. 7.
We first verify that both SAB and EA:B obey area-law scaling
with the size of lattice l , as expected (not shown in the figure).
In addition, we see that the phase transition at u = 2 appears
to manifest as a small “bump” in EA:B. A similar though less
pronounced change in the slope of SAB as a function of u at
u = 2 is somewhat visible.

Clearer signatures of this phase transition, as well as the
topological nature of the phases, are provided by the entan-
glement and negativity spectra. Indeed, for periodic boundary
conditions (PBC), both the entanglement spectrum and neg-
ativity spectrum exhibit discontinuous behavior at the phase
transition point u = 0,±2, as we can see in Figs. 7(e) and
7(f). For antiperiodic boundary conditions, the spectra are no
longer discontinuous across the phase transition. However, the
transition still appears to manifest in the spectra by lifting
of low-lying modes and change in the degeneracy (see the
discussion below) when crossing from the topological phase
to the trivial phase. The discontinuous behavior also does not
exist for more general twisted boundary conditions.

Moving on to the properties of the phases themselves,
we see that deep inside the topological phase, around u = 1
where the bulk gap is the largest, the entanglement spectrum
is evenly spaced, at least for the “low-energy” regime. This
is consistent with the expectation that the low-energy part
of the reduced density matrix is well described by ρA∪B ∼
exp (−ξHCFT), where HCFT is the (physical) CFT Hamiltonian
for the edge state, namely, the free complex fermion CFT
with c = 1. Here, ξ is a nonuniversal parameter, controlled
by the bulk correlation length, for example. We expect more
levels will be described by CFT as we increase the system
size l . Similarly, around u = 1, the negativity spectrum is also
evenly spaced. This likewise suggests that ρ×,A∪B is given
by ρ×,A∪B ∼ exp (−ξH ′

CFT), where H ′
CFT is a Hamiltonian of

CFT, which may differ from HCFT.
Moreover, the degeneracy of the entanglement and neg-

ativity spectra reveal signatures of the two phases and the
boundary conditions. One the one hand, every eigenvalue γ is
fourfold degenerate in the ES for SAB and twofold degenerate
in the ES for SA. On the other hand, the negativity spectrum

FIG. 7. The von Neumann entanglement entropy and logarithmic
negativity for the Chern insulator model on a 20 × 20 lattice (l =
20) for (a)–(c) antiperiodic boundary condition and (d)–(f) periodic
boundary condition. The lattice partition is shown in Fig. 1(b) where
lA = 10; both A and B are 10 × 10 blocks. (a), (d) The von Neumann
entanglement entropy SAB and logarithmic negativity EA:B. (b), (e)
Entanglement spectrum ln( 2

1+γ
− 1). γ is fourfold degenerate for

both topological and trivial regions, which is observed for both of the
boundary conditions. For the periodic boundary condition (e), there
exist fourfold-degenerate zero modes. (c), (f) Negativity spectrum
ln( 2

1+γ× − 1). Note at u = 1, the low-lying spectrum shows equal
spacing pattern, which is a CFT signature. γ× is fourfold degenerate
in the topological region and becomes eightfold degenerate in the
trivial region, which is observed for both the boundary conditions.

γ× is fourfold degenerate in the topological region and be-
comes eightfold degenerate deep in trivial region, which is
observed for both of the boundary conditions. We thus see that
the degeneracy of the NS provides a signal for the topology of
the ground state, in contrast to the ES . The degeneracies deep
in the topological region (twofold for ES and fourfold for
NS) match up with the edge-theory results presented earlier
in Sec. IV B.

To compare with the results from the conformal field
theory calculation, let us compare the entanglement entropy
and logarithmic negativity at u = 1 for antiperiodic boundary
condition (i.e., the N-N-N sector) and periodic boundary con-
dition (i.e., the R-R-R sector).

When taking AB as the subsystem to compute the entangle-
ment entropy, the entanglement spectra for PBC and APBC
are different (due to the zero mode), but they give the same
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FIG. 8. Single-particle spectrum {ζ } of ρ
TA
A∪B’s correlation matrix

�+ for various values of u on 20 × 20 lattice with anti-PBC. Note
that the ζ spectrum is complex, with real and imaginary parts.

entanglement entropy. This is similar to our previous experi-
ence in bipartition boundary state, where the NS-NS and R-R
sectors give the same entanglement entropy.

When taking A as the subsystem to compute the entangle-
ment entropy, we find the entanglement spectra for SA are
the same when deep in the topological region u = 1, and
deep into the trivial region u = 3. When coming closer to the
critical point, these two spectra become different. (We note,
in contrast, in the edge-theory calculation, the NS-NS-NS and
R-R-R sectors give different entanglement entropies SA. The
precise reason for the disagreement between the lattice and
edge-theory calculations is unclear. We, however, note that the

configurations are not exactly the same; for example, there are
two junctions in the edge-theory calculations whereas there
are four junctions in the lattice calculation.)

For negativity spectrum, we also find that the PBC and
APBC give the same spectrum γ× at u = 1. This is only
true deep in the topological region. For example, if we take
u = 1.9 or 0.1, we can see the vast difference between the two
spectra. Furthermore, when going deep into the trivial region
u = 3, the two spectra become identical again.

b. Spectrum of �+. We now move on to the numerically
obtained spectrum {ζ } of �+, plotted in Figs. 8 and 9, for vari-
ous u with anti-PBC. We see that they provide clear signatures
of the topology of the phase. Indeed, in the Chern insulator
phases, the eigenvalues {ζ } are nontrivially distributed over
the complex plane. In the trivial insulator phases, on the other
hand, the eigenvalues {ζ } are localized near ζ = −1; 1. In the
atomic limit u → ∞, we expect that the spectrum collapses to
two points ζ = −1; 1. The distribution of {ζ } is also nontrivial
at the critical points u = 0,±2. However, we defer the discus-
sions for the critical points, and focus on the Chern insulator
phase.

In particular, in the Chern insulator phase, we can identify
two types (branches) of eigenvalues, those that are away from
the real axis [Im(ζ ) �= 0], and those that are exactly on ζ =
−1 and 1, which are highly degenerate. We believe that the
appearance of these states is closely tied to the topological
properties of the Chern insulator phase, in the same way that
midgap states in the regular entanglement spectrum indicate
nontrivial topology.

Moreover, the eigenstates corresponding to these two types
of eigenvalues are distinguished by their real-space profiles,
as shown in Fig. 9. For the first type of eigenvalues, the
corresponding eigenstates are localized near the points where
the regions A, B, and C all meet. On the other hand, for
the eigenvalues at ζ = −1, 1, the eigenstates are distributed
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FIG. 9. Eigenvectors of �+ at (a) u = 1 and (b) u = 3 using anti-PBC for a 20 × 20 lattice. For each u, we take three different eigenvalues,
as indicated using the blue, orange, and yellow stars, and plot the corresponding eigenvectors supported on A ∪ B. The eigenvectors exhibit
differing patterns of spatial localization for different phases.
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FIG. 10. Distribution of (a) v1(r), (b) v2(r), and (c) negativity contour eA:B(r) at u = 1 for a 20 × 20 lattice, supported on region A ∪ B.

throughout the bulk. In contrast, in the trivial phase u = 3,
from Fig. 9, there do not exist eigenstates localized at the
intersection of A, B, and C.

c. Negativity contour. To better understand the spatial de-
composition of the negativity, we plot the negativity contour
(18) of a 20 × 20 lattice at u = 1 (Fig. 10). From Fig. 10(c),
the negativity contour is only supported near the boundary
between A and B, but not the boundary between AB and
their complement, which is as expected. From Figs. 10(a) and
10(b), we find this is because adding v1, v2 together makes
the nonzero values on the boundary between AB and their
complement cancel.

d. Reflected entropy. We finally examine the reflected en-
tropy and mutual information, and show their difference hA:B

in Fig. 11 in units of ln(2)/3. As the entanglement entropy
and negativity, it is peaked at the phase transitions and takes
smaller values in gapped phases. In the Ch = 1 phase, hA:B

takes its minimum around u ∼ 1.34; we focus on this point
and test the conjecture (10). There, hA:B is independent of l ,
and hA:B ∼ 2.272 × (c/3) × ln 2 (with c = 1). We should first
note that the setup in the lattice calculations has four junctions
where all the three regions meet, whereas in our edge-theory
calculations there are two junctions [see Fig. 3(a)]. This may
result in a factor of 2 difference between the edge-theory and
lattice calculations. Even taking into account the difference in
the number of junctions, hA:B is not quantized to (c/3) ln 2. We
expect this to be a consequence of nonuniversal contributions
coming from the sharp corners at the trijunction. This would

0 1 2 3
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4

6
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PBC

10 20 30

2.1

2.2
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FIG. 11. (a) The difference between reflected entropy and mutual
information hA:B = RA:B − IA:B, computed on 20 × 20 lattice (L =
20). (b) Scaling of hA:B with the size of lattice l at u = 1.34, which
shows that hA:B is a constant 2.272. u = 1.34 is where hA:B is minimal
in the topological phase.

suggest that the edge theory approach provides a more reliable
way of extracting universal topological contributions to the
reflected entropy (and other entanglement measures) with-
out being obscured by nonuniversal and/or geometric effects.
Similar to the entanglement entropy, both APBC and PBC
give the same result when u is not so close to the critical point.
Once again, this may be attributed to the different configura-
tions adopted in the edge-theory and lattice calculations.

VI. CONCLUSION

We have investigated correlation measures, i.e., entangle-
ment entropy, entanglement negativity, and reflected entropy,
in the ground states of topological liquid in (2+1) dimensions,
in the multipartition setting (Fig. 1). This was done by con-
structing vertex states explicitly in various configurations with
or without fluxes.

In the bipartition case, we study the entanglement entropy
in the NS-NS, R-R, and NS-R sectors, and unveil a topological
contribution in the NS-R case. This contribution is due to
the nontrivial configuration where a σ anyon exits from the
entanglement cut.

In the tripartition case, we find the correlation measures
capture various universal characteristics of topological liq-
uids. For example, we found that the spectrum of the partially
transposed density matrix is nontrivially distributed over the
complex plane. This is somewhat similar to the spectrum
previously computed for (1+1)D fermionic conformal field
theory and symmetry-protected topological phases. There, a
nontrivial dependence of the spectrum on the spin structures
was observed [51,56]. We also found universal topological
contribution to negativity and hA:B. In the NS-NS-NS case,
we verified the conjecture (10) for the reflected entropy, while
there exists an additional contribution to hA:B in the R-R-R
sector due to the σ anyon.

There are a number of open questions to be discussed. First
of all, our tripartition setup is different from the ones consid-
ered previously (except for the original Kitaev-Preskill setup
[5]), and more complicated in the sense that the entangling
boundaries are not smooth, but have a singular point where all
spatial regions meet. One may wonder if the correlation mea-
sures depend not just on topological, but also on geometrical
properties of entangling boundaries. For example, entangle-
ment entropy is known to have a nontrivial corner contribution
when the entangling boundary has a sharp corner in critical
theories [73–82]; similar behavior was recently found in the
context of integer quantum Hall states [83]. One could imag-
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ine that there is a similar contribution to quantities that we
studied in our work. It is unclear at this moment if our method
is capable of capturing nontrivial geometry at the point where
all spatial regions meet. Also, as we mentioned, in the R-R-R
sector, we expect that a nontrivial flux (anyon) should be lo-
cated just at the junction because of the conservation of topo-
logical charge. Understanding how precisely correlation mea-
sures depend on such excitation is an important open question.

Putting our work in a slightly broader context, one of the
important questions is to understand what kind of underlying
(topological or geometrical) data can appear in entanglement
measures. While we took chiral p-wave superconductors and
Chern insulators as examples, in order to get more general
pictures, it is desirable to extend our analysis to more generic
topological liquids. In the future, we plan to study Abelian
fractional quantum Hall states by constructing vertex states
for multicomponent compactified boson theories. We can
also discuss cases where the different spatial regions A, B,C
have different topological orders. Such configurations involv-
ing gapped interfaces between distinct phases have garnered
much attention recently due to the possibility of trapping
parafermion zero modes at domain walls along these inter-
faces [84–93]. The entanglement entropy for an interface
between two distinct arbitrary Abelian phases [37,40] and for
particular classes of non-Abelian phases [38,94] has already
been computed. In the former case, the entanglement was
subsequently shown to signal the presence of an emergent
one-dimensional topological phase along the interface [95].
It is natural to expect more exotic outcomes could occur in
the trijunction configurations we have considered. A similar
consideration was investigated recently in [96].

Finally, while we took in this paper an approach from the
edge theory, it is interesting to study the entanglement nega-
tivity using complementary bulk approaches. For example, we
can study entanglement negativity in lattice models such as
string net models. Also, it is interesting to formulate surgery
calculations for the entanglement measures we have consid-
ered [31,33,94,97,98]. These alternative bulk calculations can
clarify precisely what kind of topological data can be captured
by the entanglement negativity in the setup studied in this
work.
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APPENDIX A: DIRECT CALCULATION METHOD

The Neumann function method provides an elegant way
of deriving the form of the conformal boundary state for free

theories, which extends straightforwardly to the tripartition
case (and, indeed, more general n partition). As a check on
our results using this method, we rederive the vertex states in
this Appendix using a more direct approach. In this Appendix,
we will work with the Majorana and complex fermion fields.

We recall that the edge-state Hamiltonian including gap-
ping potential terms is given by

H0 =
∫ 2π

0
dσ
∑

I

f I†i∂σ f I ,

(A1)

Hint =
∫ 2π

0
dσ f †(σ )M f (2π − σ ) + H.c.,

where in the last line we used a vectorial notation and the mass
matrix M is given by

M = m

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (A2)

Corresponding to this situation, we seek for a state |V 〉 which
satisfies, for 0 < σ < π ,

[ f I (σ ) − i f I+1(2π − σ )]|V 〉 = 0. (A3)

Solving the constraint, the state |V 〉 is given in the form of a
fermionic coherent state. A major simplification for the case
of complex fermion is that we can diagonalize the mass matrix
M by a unitary rotation U as M = U †�U , where

U = 1√
3

⎛
⎝ 1 1 1

ω∗ ω 1
ω ω∗ 1

⎞
⎠,

� = diag(1, ω, ω∗), ω = e2π i/3. (A4)

In the rotated basis η := U f , the edge Hamiltonian is diagonal
and given by

H0 =
∫ 2π

0
dσ

3∑
a=1

η†
ai∂σηa,

Hint =
∫ π

0
dσ

3∑
a=1

meiθaη†
a(σ )ηa(2π − σ ), (A5)

where θ1 = 0, θ2 = 2π/3, and θ3 = −2π/3. We take the
spatial boundary conditions (Ramond or Neveu-Schwarz) for
I = 1, 2, 3 being all identical, so the rotation does not affect
the spatial boundary condition. Thus, in the rotated basis, we
have three copies of the single fermion problem,

[ηa(σ ) + ga(σ )ηa(2π − σ )]|V 〉 = 0,

where ga(σ ) = −is(σ )eis(σ )θa , (A6)

and s(σ ) is the sign function: s(σ ) = 1 for 0 < σ < π and
s(σ ) = −1 for π < σ < 2π . Similarly, the boundary condi-
tion for η† is given by

[η†
a(σ ) + g̃a(σ )η†

a(2π − σ )]|V 〉 = 0,

where g̃a(σ ) ≡ −ga(−σ ) = −is(σ )e−is(σ )θa . (A7)

For now, we focus on the vertex state for a given copy and
omit the subscript a. We will restore the subscript later when
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it is necessary. By mode expansion, η(σ ) =∑r e−iσ rηr and
g(σ ) =∑n∈Z einσ gn, the gluing condition can be written as

[ηr + Nr,sηs]|V 〉 = 0, (A8)

where Nr,s := g−r−s and the Fourier components of g(σ ) are
given by

gn =

⎧⎪⎨
⎪⎩

0, n �= 0, n is even
−2 cos θ

nπ
, n is odd

sin θ, n = 0.

(A9)

In the next subsections, we discuss the construction of the
vertex state for each copy, for the Majorana and Dirac fermion
fields separately. Here, we summarize the result. We separate
Nr,s into four blocks

N++
r,s = Nr,s, N−−

r,s = N−r,−s,

N−+
r,s = N−r,s, N+−

r,s = Nr,−s, r, s > 0. (A10)

The vertex state solution is

|V 〉 ∝ exp

( ∑
r,s�1/2

Krsη
†
r η−s

)
|0〉,

with K ≡ −(1 + N++)−1(N+−)

= −(N−+)−1(1 + N−−), (A11)

where |0〉 is the Fermi sea annihilated by ηr, r > 0 and η†
r , r <

0. The equivalence of the two expressions of K comes from
the fact that

∑
s NrsNst = δr,t . We give the detailed derivation

in the next subsections. Denoting ηr = ur and η−r = v†
r for

r > 0, the solution can be written in the familiar Gaussian
state form

|V 〉 ∝ exp

( ∑
r,s�1/2

Krsu
†
r v

†
s

)
|0〉

= exp

(
1

2

∑
r,s�1/2

[
Krsu

†
r v

†
s − (KT )rsv

†
r u†

s

])|0〉. (A12)

Combining the three copies η1, η2, η3 and restoring the
subscript a = 1, 2, 3 for K, u, v, the vertex state in the rotated
basis is

|V 〉 = N exp
[

1
2 (V †)T KV †

]|0〉, (A13)

where

(V †)T = (u†
1, v

†
1, u†

2, v
†
2, u†

3, v
†
3),

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 K1 0 0 0 0
−KT

1 0 0 0 0 0
0 0 0 K2 0 0
0 0 −KT

2 0 0 0
0 0 0 0 0 K3

0 0 0 0 −KT
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A14)

We may use an inverse rotation to write the solution in the
original basis f , f † (see Appendix A 3).

1. Majorana fermion

Let us now discuss the type of state presented in (A6) and
(A7) in more detail. As a warmup, we first consider a simi-
lar problem for the Majorana fermion edge mode, following
Ref. [46]. Let us consider the Majorana fermion field, and the
boundary condition

[ψ (σ ) + g(σ )ψ (−σ )]|V 〉 = 0 for − π < σ < π.

(A15)
We focus on the NS sector. As a specific example, we can
take g(σ ) = ±i sign(σ ). We, however, proceed with a generic
choice of g(σ ). g(σ ) is subject to a consistency condition:
Assuming g(σ ) �= 0, we note that the condition (A15) can be
rewritten as

[g(σ )−1ψ (σ ) + ψ (−σ )]|V 〉 = 0

�⇒ [g(−σ )−1ψ (−σ ) + ψ (σ )]|V 〉 = 0. (A16)

Comparison with Eq. (A15) implies

g(σ )g(−σ ) = 1. (A17)

In terms of the Fourier components of g(σ ), g(σ ) =∑
n∈Z einσ gn, the consistency condition reads as

∑
n gngn+p =

δp,0.

Let us now proceed to the construction of |V 〉. Defining a
matrix Nn,m = g−n−m, the boundary condition and the consis-
tency relation can be written as[

ψr +
∑

s

Nr,sψs

]
|V 〉 = 0,

(A18)∑
m

Nn,mNm,l = δnl (N2 = 1),

respectively. For convenience, we use fermionic creation and
annihilation operators to write⎛

⎜⎝
ψ1/2

ψ3/2
...

⎞
⎟⎠ ≡ b,

⎛
⎜⎝

ψ−1/2

ψ−3/2
...

⎞
⎟⎠ ≡ b†. (A19)

We also introduce a block structure

N =
(

N++ N+−

N−+ N−−

)
,

N++
r,s = Nr,s = g−r−s, N+−

r,s = Nr,−s = g−r+s,

N−+
r,s = N−r,s = gr−s, N−−

r,s = N−r,−s = gr+s. (A20)

From the consistency condition N2 = 1, these blocks satisfy

(i) N++N++ + N+−N−+ = 1,

(ii) N++N+− + N+−N−− = 0,

(iii) N−+N++ + N−−N−+ = 0,

(iv) N−+N+− + N−−N−− = 1. (A21)

We also note NT = N , which is the consequence of Nr,s =
g−r−s. This leads to

(N++)T = N++, (N−−)T = N−−,

(N+−)T = N−+, (N−+)T = N+−. (A22)
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The boundary condition (A18) can now be written two differ-
ent ways as[

ψr +
∑
s>0

Nr,sψs +
∑
s>0

Nr,−sψ−s

]
|V 〉 = 0

�⇒
{

[b + (1 + N++)−1N+−b†]|V 〉 = 0,

[b + (N−+)−1(1 + N−−)b†]|V 〉 = 0.
(A23)

The equivalence of the two conditions can be established by
using the consistency equations (i)– (iv): We first note that

(1 + N++)(1 − N++) = 1 − (N++)2 = N+−N−+, (A24)

where we used (i) in the first line. This relation can be rewrit-
ten as

(1 − N++)−1(1 + N++)−1 = (N+−N−+)−1

�⇒ (1 + N++)−1(N+−) = (1 − N++)(N−+)−1.
(A25)

Next, from (iii), we note that N−+ intertwines the +
and − sectors as N−+N++ = −N−−N−+. This leads
to N++(N−+)−1 = −(N−+)−1N−− and (N++)k (N−+)−1 =
(N−+)−1(−N−−)k . Then,

(1 − N++)(N−+)−1 = (N−+)−1(1 + N−−), (A26)

which completes the proof of the equivalence. We now define

K := (1 + N++)−1(N+−) = (N−+)−1(1 + N−−), (A27)

and write the boundary condition as

[b + Kb†]|V 〉 = 0. (A28)

We note that if g(σ ) is odd under σ → −σ , gn = −g−n,
then KT = −K . This can be seen by first noting that gn =
−g−n implies N++ = −N−− and N+− = −N−+, which make
N++/N−− and N+−/N−+ commute. We then see

KT = (N+−)T [(1 + N++)−1]T

= (N−+)(1 + N++)−1

= (1 + N++)−1(N−+)

= (1 + N++)−1(−N+−) = −K. (A29)

Finally, using the antisymmetry of K , we can write the
solution of boundary condition [b + Kb†]|V 〉 = 0:

|V 〉 ∝ exp

(
− 1

2

∑
r,s�1/2

Kr,sb
†
rb†

s

)
|0〉. (A30)

This can be checked by the Baker-Hausdorff formula.

2. Dirac fermion

Let us now turn to the case of Dirac fermions f (σ ), f †(σ ).
Consider a boundary condition

[ f (σ ) + g(σ ) f (−σ )]|V 〉 = 0,
(A31)

[ f †(σ ) + g̃(σ ) f †(−σ )]|V 〉 = 0,

for −π < σ < π . At this moment, g̃(σ ) appears to be an in-
dependent function, not related to g(σ ). We, however, require
the condition

g̃(σ ) = −g(−σ ). (A32)

We will see momentarily the implication of this condition on
the vertex state. As a specific example, we consider

g(σ ) = −is(σ )eis(σ )θ ,
(A33)

g̃(σ ) = −g(−σ ) = −is(σ )e−is(σ )θ ,

where s(σ ) = sgn(σ ).
In the Fourier space, the condition (A31) reads as[

fr +
∑

s

Nr,s fs

]
|V 〉 = 0,

[
f̃r +

∑
s

Ñr,s f̃s

]
|V 〉 = 0,

Nr,s = g−r−s, g(σ ) =
∑
n∈Z

einσ gn.

Ñr,s = g̃−r−s, g̃(σ ) =
∑
n∈Z

einσ g̃n, (A34)

where the Fourier decomposition of f † is given by f †(σ ) =∑
s∈Z+1/2 eiσ s f †

s =∑s∈Z+1/2 e−iσ s f̃s. Namely, we introduced

the set of operators f̃s by f̃s ≡ f †
−s. Similarly, the condition

(A32) in the Fourier space is

g̃n = −g−n. (A35)

We define the creation and annihilated operators as⎛
⎜⎝

f1/2

f3/2
...

⎞
⎟⎠ ≡ b,

⎛
⎜⎝

f−1/2

f−3/2
...

⎞
⎟⎠ ≡ c†,

(A36)⎛
⎜⎝

f †
1/2

f †
3/2
...

⎞
⎟⎠ ≡ b†,

⎛
⎜⎝

f †
−1/2

f †
−3/2
...

⎞
⎟⎠ ≡ c,

and we also define, similarly,⎛
⎜⎝

f̃1/2

f̃3/2
...

⎞
⎟⎠ ≡ c,

⎛
⎜⎝

f̃−1/2

f̃−3/2
...

⎞
⎟⎠ ≡ b†. (A37)

The conditions in (A34) can be organized as[
fr +

∑
s�1/2

Nr,s fs +
∑

s�1/2

Nr,−s f−s

]
|V 〉 = 0

�⇒
{

[b + (1 + N++)−1N+−c†]|V 〉 = 0,

[b + (N−+)−1(1 + N−−)c†]|V 〉 = 0,
(A38)[

f̃r +
∑

s�1/2

Ñr,s f̃s +
∑

s�1/2

Ñr,−s f̃−s

]
|V 〉 = 0

�⇒
{

[c + (1 + Ñ++)−1Ñ+−b†]|V 〉 = 0,

[c + (Ñ−+)−1(1 + Ñ−−)b†]|V 〉 = 0.
(A39)

As we have seen, the two conditions in (A38) are equivalent
by using N2 = I. Similarly, the two conditions in (A39) are
equivalent by using Ñ2 = I.
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Now let us define

K = (1 + N++)−1(N+−) = (N−+)−1(1 + N−−),

K̃ = (1 + Ñ++)−1(Ñ+−) = (Ñ−+)−1(1 + Ñ−−). (A40)

Then, the boundary conditions are written as [b + Kc†]|V 〉 =
[c + K̃b†]|V 〉 = 0, or[(

b
c

)
+
(

0 K
K̃ 0

)(
b†

c†

)]
|V 〉 = 0. (A41)

Here, we note that the condition (A32) imposes

KT = −K̃ . (A42)

This can be seen by first noting

KT = (N−+)(1 + N++)−1 = (1 − N−−)−1(N−+), (A43)

where we use the intertwining relation N−+N++ =
−N−−N−+. Second, (A32) implies Ñ++ = −N−− and
Ñ+− = −N−+, which leads to KT = (1 − N−−)−1(N−+) =
−(1 + Ñ++)−1(Ñ+−) = −K̃ .

With this condition, the vertex state is given by

|V 〉 ∝ exp

[
−1

2

∑
r,s�1/2

(
Krsb

†
rc†

s + K̃rsc
†
r b†

s

)]|0〉

= exp

[
−
∑

r,s�1/2

Krsb
†
rc†

s

]
|0〉

= exp

[
−
∑

r,s�1/2

Krs f †
r f−s

]
|0〉. (A44)

3. Comparison with the Neumann coefficient method

Let us now take the complex fermion as an example and
compare the elements of the Neumann coefficient matrix K
in the NS-NS-NS sector, between the direct calculation and
Neumann function method. For the direct calculation method,
the matrix K in Eq. (A11) is in the rotated η basis, so we need
to rotate back to f basis, namely,

Kf = U †

⎛
⎝Kη,1

Kη,2

Kη,3

⎞
⎠U . (A45)

In the direction method, we take the cutoff to be Nc = 400
and compute the Neumann coefficients K numerically. In the
following tables, we take the first 8 × 8 block from the K12

matrix in both cases. The real and imaginary parts obtained
from the direct calculation and Neumann function method are

Re[K]direct = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2971 0 0.0945 0 0.0564 0 0.0406
−0.2964 0 0.3127 0 0.0990 0 0.0569 0

0 −0.3124 0 0.3183 0 0.1047 0 0.0620
−0.0934 0 −0.3178 0 0.3163 0 0.1033 0

0 −0.0988 0 −0.3159 0 0.3189 0 0.1060
−0.0549 0 −0.1040 0 −0.3184 0 0.3172 0

0 −0.0568 0 −0.1030 0 −0.3168 0 0.3190
−0.0389 0 −0.0612 0 −0.1054 0 −0.3185 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A46)

Re[K]Neumann =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2963 0 0.0933 0 0.0548 0 0.0388
−0.2963 0 0.3128 0 0.0990 0 0.0570 0

0 −0.3128 0 0.3177 0 0.1040 0 0.0611
−0.0933 0 −0.3177 0 0.3163 0 0.1034 0

0 −0.0990 0 −0.3163 0 0.3184 0 0.1053
−0.0548 0 −0.1040 0 −0.3184 0 0.3173 0

0 −0.0570 0 −0.1034 0 −0.3173 0 0.3184
−0.0388 0 −0.0611 0 −0.1052 0 −0.3184 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A47)

Im[K]direct =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.7699 0 −0.0998 0 −0.0638 0 −0.0477 0
0 −0.5703 0 −0.0444 0 −0.0330 0 −0.0265

−0.0999 0 −0.5537 0 −0.0384 0 −0.0302 0
0 −0.0444 0 −0.5322 0 −0.0255 0 −0.0212

−0.0639 0 −0.0384 0 −0.5291 0 −0.0238 0
0 −0.0330 0 −0.0255 0 −0.5210 0 −0.0179

−0.0478 0 −0.0303 0 −0.0238 0 −0.5199 0
0 −0.0265 0 −0.0212 0 −0.0179 0 −0.5156

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A48)

Im[K]Neumann = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.7698 0 −0.0998 0 −0.0638 0 −0.0476 0
0 −0.5702 0 −0.0444 0 −0.0329 0 −0.0264

−0.0998 0 −0.5536 0 −0.0383 0 −0.0302 0
0 −0.0444 0 −0.5321 0 −0.0254 0 −0.0211

−0.0638 0 −0.0383 0 −0.5291 0 −0.0237 0
0 −0.0329 0 −0.0254 0 −0.5209 0 −0.0178

−0.0476 0 −0.0302 0 −0.0237 0 −0.5199 0
0 −0.0264 0 −0.0211 0 −0.0178 0 −0.5155

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A49)
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We see these two set of matrices are almost identical (up to
a minus sign, which is presumably due to convention). The
numerical check for other blocks K11, etc., shows the same
results.

We also compare the K matrices of closed string real
fermion using direct calculation and Neumann coefficient
method, and arrive at the same conclusion. Note that in the
direct calculation, the rotation becomes

Kf = U T

⎛
⎝K1,η/2 0 0

0 0 −KT
2,η/2

0 K2,η/2 0

⎞
⎠U . (A50)

APPENDIX B: DETAILS OF THE NEUMANN
COEFFICIENT METHOD

In this Appendix, we give some technical details for the
Neumann coefficient method.

1. Different choice of the branch cuts in the R-R sector

For the vertex state for bipartition in the R-R sector, we
can work alternatively with the following choice of the gIJ

function:

gIJ
σ−σ = 1

2

[√
(ω − ω1,0)(ω − ω2,0)

(ω′ − ω1,0)(ω′ − ω2,0)
+ (ω ↔ ω′)

]
. (B1)

Both choices lead to the same vertex state as we demonstrate
below. The choice we made in the main text is somewhat
simpler, while this choice here is closer to the branch cuts we
choose in our calculations in the R-R-R sectors for tripartition.
Using ωI = ωI,0( 1+z

1−z ) and ω1,0 = i, ω2,0 = −i, the Neumann
function is given by

R11 = R22 =
√

zz′

z − z′
1

2

[√
z

z′
1 − z′

1 − z
+
√

z′

z

1 − z

1 − z′

]

=
∑
m�1

(
z′

z

)m

+ 1

2

[∑
n�0

zn −
∑
n�1

(z′)n

]
,

R12 = −R21 = i
√

zz′

1 − zz′
1

2

[√
z

z′
1 − z′

1 − z
+
√

z′

z

1 − z

1 − z′

]

= (−i)
∑
m>0

(zz′)m + i

2

[∑
n>0

zn +
∑
n>0

(z′)n

]
.

(B2)

We note that we obtain the desired singular term∑
m�1(z′/z)m =∑m�1 e−im(σ−σ ′ ) in R11 and R22. From

the expansion coefficients and using the same ansatz solution
in Eq. (86), we obtain the vertex state

|V 〉 = exp

[
−i
∑
n�1

χ1
−nχ

2
−n +

∑
n�1

(
χ1

−nχ
1
0 + χ2

−nχ
2
0

+ iχ1
−nχ

2
0 − iχ2

−nχ
1
0

)]|�〉. (B3)

This is the same solution as Eq. (57) with the additional
requirement (χ1

0 + iχ2
0 )|�〉 = 0. Similarly, for the Dirac

fermion field in the R-R sector, one can show the solutions
from the two choices of the branch cuts also match.

2. Verification of the boundary condition in the R sector

In this section, we verify that the R-R-R sector vertex state
ansatz satisfies the boundary condition for real and complex
fermions. The verification for the NS-R two-string solution
simply parallels the proof below [69], which we shall omit.

For the Majorana fermion case, the ansatz solution is

|V 〉 = exp

[
1

2

∑
m,n�1

χ I
−mRIJ

mnχ
J
−n + 2

∑
m,n�1

χ I
−mRIJ

m0χ
J
0

]
|�〉.

(B4)
Let us denote A =∑m,n�1

1
2χ I

−mRIJ
mnχ

J
−n +∑m�1 2χ I

−m

RIJ
m0χ

J
0 . To show explicitly that this state satisfies the boundary

condition, we define

DI =
∑
m�1

2χ J
−mRJI

m0. (B5)

Using

χ I
p|V 〉 =

∑
n�1

RIJ
pnχ

J
−n|V 〉

+ exp (A)

[
2RIJ

p0(χ J
0 −

∑
m�1

χK
−mRKJ

m0 )

]
|�〉,

χ I
0 |V 〉 = exp (A)

[
χ I

0 −
∑
m�1

2χ J
−mRJI

m0

]
|�〉, (B6)

one can check the following relation:

χ I (σ )|V 〉 =
∑
p�1

χ I
pe−ipσ |V 〉 + χ I

0 |V 〉 +
∑
p�1

χ I
−peipσ |V 〉

=
∑

p,n�1

e−ipσ RIJ
pnχ

J
−n|V 〉 +

∑
p�1

e−ipσ

× exp (A)

[
2RIJ

p0(χ J
0 −

∑
m�1

χK
−mRKJ

m0 )

]
|�〉

+χ I
0 |V 〉 +

∑
p�1

χ I
−peipσ |V 〉. (B7)

On the other hand, defining

χ̃ I
cr =

∑
n�1

χ I
−neinσ + 2χ I

0 + DI , (B8)

and using

(DI + 2χ I
0 )|V 〉 = exp (A)

[
2χ I

0 −
∑
m�1

2χ J
−mRJI

m0

]
|�〉, (B9)

one can check∫
dσ ′

2π
RIJ (σ, σ ′)χ̃ J

cr (σ ′)|V 〉

=
∑

m,n�1

e−imσ RIJ
mnχ

J
−n|V 〉

+
∑
m�1

e−imσ RIJ
m0(DJ + 2χ J

0 )|V 〉
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+
∑
n�1

RIJ
0nχ

J
−n|V 〉 + δIJ

1

2
(DJ + 2χ J

0 )|V 〉

+
∑
m�1

χ I
−meimσ |V 〉

= χ I (σ )|V 〉, (B10)

where we exploited the fact RIJ
m0 = −RJI

0m and RIJ
00 = δIJ

1
2 . Fi-

nally, the property RI+1,J (σ, σ ′) = iRI,J (2π − σ, σ ′) ensures
that χ satisfies the desired boundary condition

χ I+1(σ )|V 〉 = iχ I (2π − σ )|V 〉. (B11)

For the complex fermion, we start from the ansatz solution
in Eq. (88):

|V 〉 = exp

( ∑
m,n�1

gI
−mRIJ

mng†,J
n

+
∑
m�1

2RIJ
m0(gI

−mg†,J
0 + g†,I

m gJ
0)

)
|�〉. (B12)

We can verify the following relations:

gI (σ )|V 〉 =
∫

dσ ′

2π
RIJ (σ, σ ′)g̃J

cr.(σ
′)|V 〉,

g†,I (σ )|V 〉 =
∫

dσ ′

2π
RIJ (σ, σ ′)g̃†,J

cr. (σ ′)|V 〉,
(B13)

where

g̃I
cr (σ ) =

∑
n�1

gI
−neinσ + (2gI

0 + DI ), DI =
∑
m�1

2RJI
m0gJ

−m,

g̃†,J
cr (σ ′) =

∑
n�1

g†,I
n einσ + (2g†,I

0 + D†,I ),

D†,I =
∑
m�1

2RJI
m0g†,J

m . (B14)

These relations allow us to verify the boundary condition

gI+1(σ )|V 〉 =
∫

dσ ′

2π
RI+1,J (σ, σ ′)g̃J

cr (σ ′)|V 〉

= i
∫

dσ ′

2π
RIJ (2π − σ, σ ′)g̃J

cr (σ ′)|V 〉

= igI (2π − σ )|V 〉. (B15)

Similarly, for g†, we can verify g†I+1(σ )|V 〉 = ig†I (2π −
σ )|V 〉.

3. Explicit form of the Neumann coefficients
in the NS-NS-NS sector

The explicit form of the Neumann coefficient matrix K
in the NS-NS-NS sector is derived following the methods of
Ref. [42] and is summarized below:

K = I3 ⊗ Kaa + J+ ⊗ Ka,a+1 + J− ⊗ Ka,a−1,

Irs =
{( −m

n+m+1 + −m
n−m

)
unum, n = even, m = odd(

n
n+m+1 − n

n−m

)
unum, n = odd, m = even

Kaa
rs = 1

3
Irs +

[
M+

r−1/2,s−1/2

r + s
+ M−

r−1/2,s−1/2

r − s

]
,

M+
nm = −[(n + 1)gn+1(m + 1)gm+1 − ngnmgm][(−1)n − (−1)m],

M−
nm = −[(ngn(m + 1)gm+1 − (n + 1)gn+1mgm][(−1)n − (−1)m],

Ka,a+1
rs = 1

2
Irs − 1

2
Kaa

rs − (−i)

2

√
3

[
M̄+

r−1/2,s−1/2

r + s
+ M̄−

r−1/2,s−1/2

r − s

]
,

M̄+
nm = [(n + 1)gn+1(m + 1)gm+1 − ngnmgm][(−1)n + (−1)m],

M̄−
nm = [(ngn(m + 1)gm+1 − (n + 1)gn+1mgm][(−1)n + (−1)m],

Ka,a−1
rs = 1

2
Irs − 1

2
Kaa

rs + (−i)

2

√
3

[
M̄+

r−1/2,s−1/2

r + s
+ M̄−

r−1/2,s−1/2

r − s

]
,

I3 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, J+ =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, J− = (J+)T , (B16)

where r = n + 1
2 , s = m + 1

2 . un is the coefficient in the ex-
pansion of ( 1+x

1−x )1/2 =∑∞
n=0 unxn, which can be expressed

compactly as u2n = u2n+1 = (− 1
2

n

)
(−1)n. We note un satisfies

the recursion relation

u0 = u1 = 1, 2nu2n = (2n − 1)u2n−2, u2n = u2n+1.

(B17)
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gn is the coefficient in g(x) = ( 1+x
1−x )1/6 =∑∞

n=0 gnxn. Finally,
�n = M̄−

nm/(r − s) contained in the diagonal (r = s) term
should be evaluated using �n = 2

3

∑n
k=0(−1)n−kg2

n−k . We
note, in addition, that the above coefficients differ from those
appearing in Ref. [42] by factors of i. This is a consequence
of the fact that we deal with free fermions with (anti)periodic
boundary conditions rather than open boundary conditions
and hence different conformal maps ωI [Eq. (40)] than those
in Ref. [42]. One can also show explicitly that the singular
terms are indeed δIJ

∑
r�1/2 e−ir(σ−σ ′ ), as required.

APPENDIX C: CORRELATION MATRIX FOR
THE VERTEX STATE

Once the vertex states are obtained, we can compute vari-
ous entanglement measures by the correlator method. Here,
we collect some details for the numerical calculations of
the correlation matrices. For numerical purposes, we need to
truncate the matrix at size Nc, and in the direct calculation
method we use the second expression in Eq. (A11) to com-
pute K in order to avoid singularities (singularities become
less problematic for larger Nc). Then, K is a 6Nc × 6Nc real
antisymmetric matrix, so we can use an orthogonal matrix Q
to bring it to standard block-diagonal form

K = QT �Q, � = ⊕3Nc
k=1�k, �k =

(
0 σk

−σk 0

)
. (C1)

In the block-diagonal basis b† = QV †, the state |G〉 is

|G〉 = N exp

[
1

2
(b†)T �b†

]
|0〉

= N exp

[
3Nc∑
k=1

σkb†
2k−1b†

2k

]
|0〉. (C2)

In order to calculate the entanglement entropy and negativ-
ity, we need to compute the correlation matrices C and F . The
nonzero elements are

〈G|b†
2k−1b†

2k|G〉 = −〈G|b†
2kb†

2k−1|G〉
= −〈G|b2k−1b2k|G〉 = 〈G|b2kb2k−1|G〉 = σk

1 + σ 2
k

,

〈G|b†
2k−1b2k−1|G〉 = 〈G|b†

2kb2k|G〉 = σ 2
k

1 + σ 2
k

,

〈G|b2k−1b†
2k−1|G〉 = 〈G|b2kb†

2k|G〉 = 1

1 + σ 2
k

, (C3)

and the correlation matrices C, F are expressed as

Crs = 〈G|V †
r Vs|G〉 = 〈G|b†

pbq|G〉QprQqs

=
3Nc∑
k=1

σ 2
k

1 + σ 2
k

(Q2k−1,rQ2k−1,s + Q2k,rQ2k,s),

Frs = 〈G|V †
r V †

s |G〉 = 〈G|b†
pb†

q|G〉QprQqs

=
3Nc∑
k=1

σk

1 + σ 2
k

(Q2k−1,rQ2k,s − Q2k,rQ2k−1,s). (C4)

These correlators need to be rotated back to the original basis
fA, fB, fC by unitary transformation U . Noting that f † trans-
forms with U ∗ rather than U , the full transformation matrix
U ′ is

U ′ = U ∗ ⊗
(
1 0
0 0

)
+ U ⊗

(
0 0
0 1

)
, (C5)

where 1 is the Nc × Nc identity matrix. The correlation matri-
ces transform via

C → (U ′)†CU ′, F → (U ′)†F (U ′)∗. (C6)

With C, F , we can obtain the correlation matrix � using
Eq. (12) and compute various entanglement measures.
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