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We consider trilayer F1F2F3 Josephson junctions that are finite in two dimensions and have arbitrary magneti-
zations in each ferromagnet Fi (i = 1, 2, 3). The trilayers are sandwiched between two s-wave superconductors
with a macroscopic phase difference �ϕ. Our results reveal that when the magnetizations have three orthogonal
components, a supercurrent can flow at �ϕ = 0. With our generalized theoretical and numerical techniques,
we study the planar spatial profiles and �ϕ dependencies of the charge supercurrents, spin supercurrents, spin
torques, and density of states. Remarkably, upon increasing the magnetization strength in the central ferromagnet
layer up to the half-metallic limit, the self-biased current and induced second harmonic component become
dramatically enhanced while the critical supercurrent reaches its maximum value. Additionally, for a broad range
of exchange-field strengths and orientations, the ground state of the system can be tuned to an arbitrary phase
difference ϕ0. For intermediate exchange-field strengths in the middle layer F2, a ϕ0 state can arise that creates a
superconducting diode effect, whereby �ϕ can be tuned to create a one-way dissipationless current flow. The spin
currents and effective magnetic moments reveal a long-ranged spin torque in the half-metallic phase. Moreover,
the density of states unveils the emergence of zero-energy peaks for the mutually orthogonal magnetization
configurations. Our results suggest that this simple trilayer Josephson junction can be an excellent candidate for
producing experimentally accessible signatures for long-ranged self-biased supercurrents and supercurrent diode
effects.
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I. INTRODUCTION

The competition of ferromagnetic and superconducting
orders in hybrid junction systems has been the focus of ex-
tensive research over the past decades. When constructing
devices that consist of superconductor (S) and ferromagnet
(F) elements, the F1SF2 and SF1F2 spin valves are some of
the simplest configurations with externally controlled sys-
tem properties. Such platforms have been extensively studied
experimentally and theoretically [1–19]. In addition to the
geometrical properties like layer thicknesses, the relative mag-
netization misalignment in these systems plays a pivotal role
in determining the functionality of these systems. To effec-
tively control the magnetization misalignment, one needs to
judiciously choose materials with the proper magnetization
strengths so that an external magnetic field can rotate the
magnetization in one of the F regions while the other one
remains essentially intact [4,9,10].

The presence of a magnetization inhomogeneity in proxim-
ity to a superconductor can result in long-ranged spin-triplet
superconducting correlations [5,20]. These long-ranged corre-
lations are predicted to leave their imprint on various measur-
able quantities, including the critical supercurrent [11,21–26]
and zero-energy density of states [27–32]. An unambiguous
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observation of the triplet correlations in the density of states
(DOS) still has yet to be found. However, the critical supercur-
rent has revealed compelling evidence of triplet correlations
by employing a relatively thick half-metallic (H) layer
of CrO2 (0.3–1 μm) in a NbTiN-CrO2-NbTiN Josephson
configuration [24]. Additionally, a magnetization-orientation-
dependent supercurrent response on the order of 40 μA was
observed, hinting at a controlled long-ranged spin supercur-
rent. When the ferromagnet is in a half-metallic phase, the
very large magnetization strength (on the order of Fermi en-
ergy) permits only one spin to exist [33]. In recent years, het-
erostructures consisting of H layers have attracted much atten-
tion and caused further advances in this research field [34–39].
The H layer has shown that both theoretically and experimen-
tally, it can provide an enhancement to the critical tempera-
ture, and induce a strong nonuniform response to the mag-
netization misalignment in multilayer structures [31,32,38–
40]. In an experiment involving a MoGe-Ni-Cu-CrO2 spin
valve, the superconducting critical temperature Tc showed
variations on the order of �Tc ∼800 mK with variations in
the magnetization misalignment angle, in excellent agreement
with theoretical results [31,32]. A La0.6Ca0.4MnO3 half-metal
counterpart, consisting of a LCMO-Au-Py-Cu-Nb stack,
showed �Tc ∼150 mK, which is a slight improvement over
�Tc ∼50 mK found in systems that use weaker ferromagnetic
counterparts [13]. The former experiment [39] employed a
large out-of-plane external magnetic field of H ∼ 2 T whereas
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the latter experiment [38] used a relatively low in-plane mag-
netic field of H ∼3.3 mT that improves device reliability.

The Josephson effect is traditionally understood to be the
supercurrent that is generated when there is a difference
between the macroscopic phases of two S banks that are sep-
arated by an intrinsically nonsuperconducting region. Once a
supercurrent is established, its flow depends on the geomet-
rical parameters, phase differences, and material properties
of the system. In a conventional ferromagnetic Josephson
junction, the ground-state energy can switch between specific
superconducting phase differences, typically �ϕ = 0 and π ,
due to the dominant first harmonic in the current-phase rela-
tion: sin �ϕ [4,41]. Additionally, close to any 0-π crossover,
higher harmonics, i.e., sin 2�ϕ, sin 3�ϕ . . ., can appear. The
higher harmonics can cause a continuous transition from 0
state to the π state [42,43].

A finite supercurrent at zero phase difference �ϕ = 0 can
also arise, and the Josephson ground state can be charac-
terized by a superconducting phase difference ϕ0. There are
two ϕ0 ground states located symmetrically around �ϕ = 0
associated with this continuous transition, and can have no
spontaneous current [42,43]. Note that a ϕ0 junction intro-
duces excellent opportunities to introduce quantum computer
bits other than 0 and π . Another mechanism to induce the
ϕ0 ground state is a proper combination of magnetization
direction and spin-orbit coupling [42,44–64]. In this case,
the ϕ0 state is associated with a self-biased spontaneous su-
percurrent and located on one side of �ϕ = 0, depending
on the direction of magnetization and spin-orbit coupling
[42]. This mechanism is found to appear in a wide range
of situations involving the presence or absence of nonmag-
netic impurities, such as topological insulators [44–47], Weyl
semimetals [48–50], black phosphorus and van der Waals
materials [51,52,65], linear Rashba-Dresselhaus spin-orbit
coupled platforms [63], and cubic Rashba-Dresselhaus sys-
tems [42,66]. Another configuration that hosts a self-biased
supercurrent and has received far less attention is a spin-
polarized Josephson junction with a simple arrangement of
three ferromagnets having their magnetization orientations
each orthogonal to one another [53–55,67,68].

The supercurrent J (�ϕ) in spin-polarized Josephson junc-
tions can be controlled by a variety of mechanisms, including
through magnetization rotations, and incorporating different
types of magnets with mismatched exchange-field strengths.
For trilayer ferromagnetic Josephson junctions, including
those that contain half-metallic layers, and where only two
of the exchange-field vectors are orthogonal, the super-
current direction can be altered by changing the relative
magnetization orientation [26,69]. If the ground state of the
Josephson junction is at ϕ0 = 0, the supercurrent generally
obeys |J (+�ϕ)| = |J (−�ϕ)|. In some special cases, a super-
conducting diode effect can arise, whereby |J (+�ϕ + ϕ0)| �=
|J (−�ϕ + ϕ0)|. When this occurs, changing the direction of
the superconducting phase gradient, i.e., �ϕ → −�ϕ, the
amplitude for the supercurrent is no longer invariant. We
find that, remarkably, for the simple trilayer ferromagnet
SF1F2F3S structure shown in Fig. 1, where the exchange-
field vectors in the ferromagnet layers are orthogonal to one
another, a diode effect emerges for the supercurrent at inter-
mediate exchange field strengths of the central ferromagnet.

The main aim of this paper is therefore to present an
extensive investigation of the influence of the many rele-
vant physical parameters on the spin and charge transport in
SF1F2F3S ferromagnetic Josephson configurations. We will
use for these purposes a tailor-made numerical method that
allows for the exact solutions of the relevant microscopic
equations for Josephson structure that are finite in two dimen-
sions. To systematically explore a broad range of systems and
determine experimentally relevant parameter sets resulting in
a tunable ϕ0 state and supercurrent flow, the magnetization in
one of the ferromagnet layers will have its magnitude con-
tinuously increased up to the half-metallic phase, and several
key orientations will be investigated. To further understand
the quantum size effects inherent to structures constrained
in two dimensions, a variety of structure lengths and widths
will be studied (see Fig. 1). Moreover, the often extreme
ranges in energy scales for these types of systems require a
microscopic theory without the approximations inherent to
quasiclassical approaches. To properly simulate these exper-
imentally relevant systems, we have therefore generalized the
numerical Bogoliubov–de Gennes (BdG) approach to planar
geometries where the system is confined in two dimensions
and infinite along the third dimension [31,32,38,70,71]. The
microscopic method used here accounts for the significant
band curvature near the Fermi energy arising from the strong
spin-splitting effects of the half-metallic layers. This numeri-
cal approach has also found excellent agreement with results
that rely on asymptotic approximations, such as the Andreev
approximation [71], ab initio calculations [72], and supports
the half-metallic phase where the magnetization strength is as
large as the Fermi level [31,32,38]. This latter phase is inac-
cessible to approximate methods, such as the quasiclassical
approach, which considers the Fermi level to be the largest
energy in the system [22,23,40,73–75].

We shall explore the whole of the parameter range that
accounts for the effects that finite sample size, relative magne-
tizations (magnitude and orientation), and macroscopic phase
differences have on the singlet and triplet pair amplitudes,
magnetic moments, and local density of states (DOS). We
will identify the ground state with phase difference ϕ0 that
is tunable by changes to the magnetization orientation of the
outer ferromagnet. For intermediate exchange-field strengths
in the central F layer, we find the emergence of a ϕ0 state
with a one-way supercurrent flow, i.e., a superconducting
diode effect. Further increases of the magnetization strength
in the F2 layer enhance the supercurrent so that the critical
supercurrent reaches a maximum at the half-metallic phase.
This magnetization increase induces 0-π transitions and con-
trols the induction of higher harmonics in the current-phase
relation. When the magnetization in the F layers has mutu-
ally orthogonal components, a spontaneous supercurrent flows
through the system, which is strongest when the F2 layer
hosts a half-metal. The spatial maps of the spin currents and
magnetic moments reveal a long-ranged magnetic moment
and equal-spin-triplet correlations, propagating from the F1

layer into the right superconducting region. The spatial pro-
files of the DOS reveal that when the trilayer junction region
has mutually orthogonal magnetizations, robust zero-energy
peaks appear in the middle of the outer ferromagnets in the
trilayers, with the largest peaks appearing at the interfaces
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between the central and outer ferromagnets. Similar to the
critical supercurrent, the zero-energy peaks are largest when
the F2 layer is a half-metal.

The paper is organized as follows. In Sec. II, we summarize
the generalized BdG approach and present expressions for
the charge current, spin current, superconducting correlations,
and magnetic moment. In Sec. III, the numerical results and
findings shall be presented. Finally, in Sec. IV we provide a
brief summary of the main results.

II. METHODS

We first present the Hamiltonian, BdG formalism, the as-
sociated field operators, and Fourier expansion method in
Sec. II A. In Sec. II B, the spin-singlet and spin-triplet cor-
relations are given in terms of BdG transformations. The
definitions and derivations of magnetic moment, DOS, charge
current, and spin current and spin torque are presented in
Secs. II C, II D, II E, and II F, respectively.

A. Hamiltonian

We now briefly summarize the BdG approach used to
describe our spatially inhomogeneous nanostructure. We con-
sider a Josephson configuration that is finite in the y-z plane,
and infinite in the x direction (see Fig. 1). The effective
HamiltonianHeff that describes this system is given by

Heff =
∫

d3r

{∑
s

ψ†
s (r)H0ψs(r)

+ 1

2

[∑
s s′

(iσy)ss′�(r)ψ†
s (r)ψ†

s′ (r) + H.c.

]

−
∑
s s′

ψ†
s (r)(h · σ)ss′ψs′ (r)

}
, (1)

where s and s′ are spin indices, and �(r) is the pair potential,
given by

�(r) =Vs(r)

2
[〈ψ↑(r)ψ↓(r)〉 − 〈ψ↓(r)ψ↑(r)〉]. (2)

Here we have assumed an s-wave onsite potential with at-
tractive interaction: V (r − r′) = Vs(r)δ(r − r′), with Vs(r) the
interaction strength, which is nonzero only for energies less
than a characteristic “Debye” energy ωD, and nonzero only
within the superconductor regions. The single-particle Hamil-
tonian H0 for our finite-sized system in the two directions y
and z (see Fig. 1) is written

H0 = − 1

2m

(
∂2

∂z2
+ ∂2

∂y2

)
+ 1

2m
k2

x + U (y, z) − μ, (3)

in which μ is the Fermi energy, and U (y, z) is the spin-
independent scattering potential. The exchange field h ≡
(hx, hy, hz ) describes the magnetic exchange interaction, and
σ ≡ (σx, σy, σz ) are Pauli matrices. To diagonalize Heff , the
field operators ψs and ψ†

s are expanded by means of the
Bogoliubov transformation

ψ↑(r) =
∑

n

(un↑(r)γn − v∗
n↑(r)γ †

n ),

ψ↓(r) =
∑

n

(un↓(r)γn + v∗
n↓(r)γ †

n ),
(4)

where uns, vns represent the quasiparticle amplitudes, and γn,
γ †

n are the Bogoliubov creation and annihilation operators,
respectively. The transformations in Eq. (4) are required to
diagonalizeHeff such that

[Heff , γn] = −εnγn, [Heff , γ
†
n ] = εnγ

†
n , (5)

which leads to the spin-dependent Bogoliubov–de Gennes
(BdG) equations as

⎛
⎜⎝

H0 − hz(y, z) −hx(y, z) + ihy(y, z) 0 �(y, z)
−hx(y, z) − ihy(y, z) H0 + hz(y, z) �(y, z) 0

0 �∗(y, z) −(H0 − hz(y, z)) −hx(y, z) − ihy(y, z)
�∗(y, z) 0 −hx(y, z) + ihy(y, z) −(H0 + hz(y, z))

⎞
⎟⎠

⎛
⎜⎝

un,↑(y, z)
un,↓(y, z)
vn,↑(y, z)
vn,↓(y, z)

⎞
⎟⎠

= εn

⎛
⎜⎝

un,↑(y, z)
un,↓(y, z)
vn,↑(y, z)
vn,↓(y, z)

⎞
⎟⎠. (6)

The pair potential �(y, z) in Eq. (6) is assigned an initial
value, taken to be the bulk gap �0 in S1 and �0eiϕ2 in S2,
so that the macroscopic phase difference is �ϕ = ϕ2. We
will investigate zero-phase (“anomalous”) spin and charge
currents for �ϕ = 0◦, as well as controllable Josephson ϕ0

states that occur when the ground state of the system occurs
when �ϕ = ϕ0 (where ϕ0 does not necessarily equal 0 or π ).
The ferromagnetic exchange-field vector has its components
expressed as

hi = hi(cos θi, sin θi sin φi, sin θi cos φi ), (7)

where i = 1, 2, 3 denotes the ferromagnetic region shown
in Fig. 1. With these inputs, Eq. (6) is then numerically

diagonalized to give the quasiparticle eigenenergies εn and the
quasiparticle eigenfunctions [unσ (y, z), vnσ (y, z)] throughout
the entire junction [76]. Since the structure in Fig. 1 is finite in
the y and z directions, we solve the BdG equations by expand-
ing the quasiparticle wave functions in a two-dimensional
Fourier series basis

un,σ (y, z) = 2√
wl

Nl∑
p

Nw∑
q

up,q
n,σ sin

( pπy

l

)
sin

(qπz

w

)
,

vn,σ (y, z) = 2√
wl

Nl∑
p

Nw∑
q

vp,q
n,σ sin

( pπy

l

)
sin

(qπz

w

)
, (8)
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FIG. 1. Schematic of the F1F2F3 ferromagnetic trilayer structure
sandwiched between two s-wave superconductors (S) with thickness
dS. The system is finite in the y-z plane with width w and length l ,
while infinite along x. The ferromagnets Fi (i = 1, 2, 3) are of thick-
nesses dFi and have arbitrary exchange-field strengths hi. The typical
magnetic configuration is shown here, where h1, h2, and h3 are
oriented along the x, y, and z directions, respectively (the “xyz” con-
figuration), although the exchange-field vectors can have arbitrary
orientations determined by hi = hi(cos θi, sin θi sin φi, sin θi cos φi ).

where σ =↑,↓. Further details on this method can be found
in Appendix A.

B. Triplet correlations and pair amplitude

As discussed in the Introduction, when strong ferromag-
netic layers, such as half-metals, are part of a Josephson
junction, the spin-triplet Cooper pairs can play an important
role in both the thermodynamic and transport properties of the
system [31,69]. We begin by writing the spin-triplet pairing
correlations in the usual way [77],

f0(r, t ) = 1
2 [〈ψ↑(r, t )ψ↓(r, 0)〉 + 〈ψ↓(r, t )ψ↑(r, 0)〉], (9a)

f1(r, t ) = 1
2 [〈ψ↑(r, t )ψ↑(r, 0)〉 − 〈ψ↓(r, t )ψ↓(r, 0)〉], (9b)

f2(r, t ) = 1
2 [〈ψ↑(r, t )ψ↑(r, 0)〉 + 〈ψ↓(r, t )ψ↓(r, 0)〉], (9c)

where the subscript 0 corresponds to ms = 0, and the sub-
scripts 1 and 2 refer to the ms = ±1 projections on the spin
quantization axis [32,78]. It was shown in the previous works
that using this approach to find both the opposite-spin and
equal-spin triplet pairs satisfies the Pauli exclusion principle,
and that the spin-triplet pairs vanish at t = 0. If the exchange
fields between the F layers are not aligned, the total spin
operator of the pairs does not commute with the effective
Hamiltonian, and the spin-polarized components f1 and f2

acquire nonzero values.
As mentioned earlier, the pair potential gives valuable in-

formation regarding the superconducting correlations within
the superconductors only, as it vanishes outside of those re-
gions where Vs(r) = 0. To reveal the fullest details of the
spin-singlet correlations throughout the entire system, which
includes proximity effects between layers, we evaluate the

pair amplitude from Eq. (2), f3 = �(r)/Vs(r). Inserting the
Bogoliubov expansions [Eq. (4)] into Eq. (2) gives the pair
amplitude f3(y, z) in terms of the quasiparticle amplitudes:

f3(y, z) = 1

4

∑
n

[un↑(y, z)v∗
n↓(y, z)+un↓(y, z)v∗

n↑(y, z)]

× tanh
( εn

2T

)
, (10)

where the sum is cutoff for states with energies that ex-
ceed ωD. Here, the identity 1 − 2 f (ε) = tanh(ε/2T ) has been
used ( f is the Fermi function), along with the expectation
values 〈γ †

n γm〉 = δnm f (εn), 〈γmγ †
n 〉 = δnm[1 − f (εn)], and

〈γnγm〉 = 0.
To express the spin-triplet correlations [Eqs. (9)] in terms

of the quasiparticle energies and amplitudes, we first write the
Heisenberg equations of motion for the Bogoliubov creation
and annihilation operators: i∂γn/∂t = [γn,Heff ], i∂γ †

n /∂t =
[γ †

n ,Heff ]. Using the conditions in Eq. (5), we have the so-
lutions γn(t ) = γne−iεnt and γ †

n (t ) = γ †
n eiεnt . Inserting these

solutions into the generalized Bogoliubov transformations
[Eq. (4)], it becomes possible to write the field operators in
Eqs. (9):

f0(y, z, t ) = 1

2

∑
n

[un↑(y, z)v∗
n↓(y, z)

− un↓(y, z)v∗
n↑(y, z)]ζn(t ), (11a)

f1(y, z, t ) = − 1

2

∑
n

[un↑(y, z)v∗
n↑(y, z)

+ un↓(y, z)v∗
n↓(y, z)]ζn(t ), (11b)

f2(y, z, t ) = − 1

2

∑
n

[un↑(y, z)v∗
n↑(y, z)

− un↓(y, z)v∗
n↓(y, z)]ζn(t ), (11c)

where the sums are over all energy values, and ζn(t ) ≡
cos(εnt ) − i sin(εnt ) tanh(εn/2T ). It can be more insightful
to find the triplet correlations projected along the local spin
axis [79], as dictated by the exchange-field direction, instead
of along the conventional z direction. Performing the requisite
spin rotations, we find

f ′
0 = f0 cos φ sin θ − f1 cos θ − i f2 sin θ sin φ, (12)

f ′
1 = f0 cos θ cos φ + f1 sin θ − i f2 cos θ sin φ, (13)

f ′
2 = −i f0 sin φ + f2 cos φ. (14)

Thus, e.g., considering the principal axes, we have for along x
(θ = 0◦, φ = 0◦): f ′

0 = − f1, f ′
1 = f0, and f ′

2 = f2. For along
y (θ = 90◦, φ = 90◦): f ′

0 = −i f2, f ′
1 = f1, and f ′

2 = −i f0,
and, finally, along the quantization z axis (θ = 90◦, φ = 0◦),
all spin-triplet components are unchanged: f ′

0 = f0, f ′
1 = f1,

f ′
2 = f2. The spin-singlet pair amplitude f3 is always invariant

under spin rotations.

C. Magnetic moment

In our structures spin transport is influenced by the leak-
age of magnetic moment out of the F layers and into the
superconductors. This can be characterized by the local
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magnetic moment m(r),

m(r) = −μB 〈η(r)〉, (15)

where η(r) is the spin-density operator

η(r) = ψ†(r)σψ (r), (16)

and μB the Bohr magneton. Again, by using the generalized
Bogoliubov transformation, each component of m can be writ-
ten in terms of the quasiparticle and quasihole wave functions:

mx(y, z) = − 2μB

∑
n

Re[un↑(y, z)u∗
n↓(y, z) f (εn)

− vn↑(y, z)v∗
n↓(y, z)[1 − f (εn)]], (17a)

my(y, z) = 2μB

∑
n

Im[un↑(y, z)u∗
n↓(y, z) f (εn)

+ vn↑(y, z)v∗
n↓(y, z)[1 − f (εn)]], (17b)

mz(y, z) = −μB

∑
n

[(|un↑(y, z)|2 − |un↓(y, z)|2) f (εn)

+ (|vn↑(y, z)|2 − |vn↓(y, z)|2)[1 − f (εn)]]. (17c)

D. Density of states

The proximity-induced electronic density of states (DOS)
can reveal signatures of the energy gap and localized
Andreev bound states. One important experimental quan-
tity involves tunneling spectroscopy experiments which can
probe the local single-particle spectra encompassing the
proximity-induced DOS. The total DOS N (y, z, ε) is the sum

N↑(y, z, ε) + N↓(y, z, ε), involving the spin-resolved local
DOS Nσ (y, z, ε):

Nσ (y, z, ε) = −
∑

n

[|unσ (y, z)|2 f ′(ε − εn)

+ |vnσ (y, z)|2 f ′(ε + εn)], (18)

where f ′(ε) = ∂ f /∂ε is the derivative of the Fermi function
f (ε) = (eε/T + 1)−1. It is also convenient to use the following
relation: f ′(ε) = −1/[4T cosh2(ε/(2T )]. The sum above is
over the quasiparticle amplitudes and eigenenergies εn. Thus,
the DOS calculated in Eq. (18) can provide both a spatial
mapping and energy-resolved characterization of the number
of quasiparticle states in Josephson junctions.

E. Charge transport

For the system shown in Fig. 1, we compute the su-
percurrent in the y and z directions by starting with
the Heisenberg equation for the charge density ρ(r):
∂t 〈ρ(r)〉 = i〈[Heff , ρ(r)]〉, where

ρ(r) = 2
∑

n

[(|un↑(r)|2 + |un↓(r)|2) f (εn)

+ (|vn↑(r)|2 + |vn↓(r)|2)[1 − f (εn)]]. (19)

The continuity equation for the charge supercurrent density J
in the ferromagnetic junction region is written

∂

∂t
〈ρ(r)〉 + ∇ · J = 0, (20)

where each component Ji (i = y, z) is given by

Ji = − e

m

∑
n

Im{[un↑(y, z)∂iu
∗
n↑(y, z)+un↓(y, z)∂iu

∗
n↓(y, z)] f (εn)+[vn↑(y, z)∂iv

∗
n↑(y, z)+vn↓(y, z)∂iv

∗
n↓(y, z)][1− f (εn)]}. (21)

For the trilayer in the steady state, i.e., ∂t 〈ρ(r)〉 = 0, we
have numerically verified ∇ · J = 0 when calculating current-
phase relations.

F. Spin transport

We now extend the above considerations to spin transport.
As in the case of the charge density, the Heisenberg picture
is utilized to determine the time evolution of the spin den-
sity η(r, t ), ∂

∂t 〈η(r, t )〉 = i〈[Heff , η(r, t )]〉, where η is given in
Eq. (16). The associated continuity equation now reads as

∂

∂t
〈η(r, t )〉 + ∇ · S = τ, (22)

where S is the spin-current tensor. This fundamental conser-
vation law balances the spin-current gradients and the spin

torque τ. The expression for the spin current S is found
from taking the commutator above Eq. (22) and inserting
Eq. (1):

S = − i

2m
〈ψ†(r)∇σψ (r) − ∇ψ†(r)σψ (r)〉, (23)

where the tensor components Sαβ represent spin current with
spin β flowing along the α direction in real space. We have
verified that in the steady state, and in the absence of spin
torque, the charge and spin currents are divergence free, i.e.,
∇ · S = ∇ · J = 0. We can now expand each spin component
of the spin current in terms of the quasiparticle amplitudes to
obtain

Syx = − i

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂y

+ u∗
n↓

∂un↑
∂y

− un↓
∂u∗

n↑
∂y

− un↑
∂u∗

n↓
∂y

]

− (1 − fn)

[
vn↑

∂v∗
n↓

∂y
+ vn↓

∂v∗
n↑

∂y
− v∗

n↑
∂vn↓
∂y

− v∗
n↓

∂vn↑
∂y

]}
, (24a)
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Syy = − 1

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂y

− u∗
n↓

∂un↑
∂y

− un↓
∂u∗

n↑
∂y

+ un↑
∂u∗

n↓
∂y

]

− (1 − fn)

[
vn↑

∂v∗
n↓

∂y
− vn↓

∂v∗
n↑

∂y
+ v∗

n↑
∂vn↓
∂y

− v∗
n↓

∂vn↑
∂y

]}
, (24b)

Syz = − i

2m

∑
n

{
fn

[
u∗

n↑
∂un↑
∂y

− un↑
∂u∗

n↑
∂y

− u∗
n↓

∂un↓
∂y

+ un↓
∂u∗

n↓
∂y

]

− (1 − fn)

[
−vn↑

∂v∗
n↑

∂y
+ v∗

n↑
∂vn↑
∂y

+ vn↓
∂v∗

n↓
∂y

− v∗
n↓

∂vn↓
∂y

]}
, (24c)

Szx = − i

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂z

+ u∗
n↓

∂un↑
∂z

− un↓
∂u∗

n↑
∂z

− un↑
∂u∗

n↓
∂z

]

− (1 − fn)

[
vn↑

∂v∗
n↓

∂z
+ vn↓

∂v∗
n↑

∂z
− v∗

n↑
∂vn↓
∂z

− v∗
n↓

∂vn↑
∂z

]}
, (24d)

Szy = − 1

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂z

− u∗
n↓

∂un↑
∂z

− un↓
∂u∗

n↑
∂z

+ un↑
∂u∗

n↓
∂z

]

− (1 − fn)

[
vn↑

∂v∗
n↓

∂z
− vn↓

∂v∗
n↑

∂z
+ v∗

n↑
∂vn↓
∂z

− v∗
n↓

∂vn↑
∂z

]}
, (24e)

Szz = − i

2m

∑
n

{
fn

[
u∗

n↑
∂un↑
∂z

− un↑
∂u∗

n↑
∂z

− u∗
n↓

∂un↓
∂z

+ un↓
∂u∗

n↓
∂z

]

− (1 − fn)

[
−vn↑

∂v∗
n↑

∂z
+ v∗

n↑
∂vn↑
∂z

+ vn↓
∂v∗

n↓
∂z

− v∗
n↓

∂vn↓
∂z

]}
. (24f)

The introduction of spatial inhomogeneity in magnetization
texture or inversion-breaking spin-orbit coupling result in a
net spin-current imbalance that is finite even in the absence of
a Josephson current [26,80,81].

To compute the spin torque, another approach involves
using the continuity equation in the steady state to determine
the spin torque by evaluating the derivatives of the spin current
as a function of position. In the steady state, the continuity
equation reads as ∇ · S = τ. Since the structure is finite in
the y and z directions, we have the following components of
the torque vector:

τx = ∂Syx

∂y
+ ∂Szx

∂z
, τy = ∂Syy

∂y
+ ∂Szy

∂z
, τz = ∂Syz

∂y
+ ∂Szz

∂z
.

(25)

When the junctions are in static equilibrium and there is no
charge current, the spin current does not necessarily vanish
because any inhomogeneous magnetization leads to a nonzero
spin torque that generates a net spin current.

III. RESULTS AND DISCUSSIONS

The results of our systematic investigations are presented
below in terms of convenient dimensionless quantities. Our
choices are as follows: all length scales, including the spatial
coordinates Y = kF y, Z = kF z, and widths DFi ≡ kF dFi (i =

1, 2, 3) are normalized by the Fermi wave vector kF . For
the superconducting correlation length ξ we choose the value
kF ξ0 = 50, and the computational region occupied by the
S electrodes corresponds to a width of kF dS = 150 (see
Appendixes A, B, and C for numerical details). The outer
ferromagnet layers must be thin to effectively generate the
spin-triplet correlations [26,27,79]. We found DF1 = DF3 =
10 to be effective lengths for generating a large population
of spin-triplet correlations. All temperatures are measured in
units of Tc0, the transition temperature of bulk S material,
and we consider the low-temperature regime T/Tc0 = 0.05
throughout the paper. The thermal broadening at this tem-
perature results in a smoothing of the discrete energy spectra
used in the DOS calculations, while other quantities such as
the magnetization and pair correlations show no discernible
differences with the zero-temperature case. Energy scales are
normalized by the Fermi energy EF , including the Stoner
energy hi and the energy cutoff ωD, used in calculating
the pair amplitude [Eq. (10)]. The latter is set at 0.1,
with the main results relatively insensitive to this cutoff
choice. The strength of the magnetic exchange fields h1,3 is
taken to be the same in both magnets: we set its dimensionless
value to a representative h1,3/EF = 0.1. The exchange field in
the central ferromagnet layer will typically correspond to a
half-metal (h2 = EF ) but other exchange-field strengths will
be studied as well. The orientation angles of the magnetic
exchange field in each of the ferromagnet regions can vary,
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FIG. 2. Pair amplitude for a half-metallic Josephson junction with an initial phase difference of �ϕ = 0. The exchange-field magnitudes
are set to h1 = h3 = 0.1EF and h2 = EF . The exchange fields in each ferromagnet are orthogonal to one another, i.e., directed along the x, y,
and z directions for F1, F2, and F3, respectively. The geometrical parameters are as follows: DF1 = DF3 = 10 and DF2 = 50. Three different
widths W are considered: W = 5 (a), W = 10 (b), and W = 50 (c). Spin-triplet amplitudes f0, f1, and f2 for the Josephson junction in (b) with
an initial phase difference of �ϕ = 0, and relatively narrow width W = 10.

depending on the quantity being studied, however, most cases
consider the xyz configuration, whereby the exchange fields
in F1, F2, and F3 are aligned on the x, y, and z directions,
respectively. All results for the DOS in this work are presented
normalized to the superconductor’s normal-state DOS at the
Fermi level, ND. The magnetization is normalized by μBne,
and the normalization τ0 for the spin torque follows from the
normalizations for hi and m in Eq. (27). For the transport
quantities, we normalize the charge currents by J0, where J0 =
enevF , vF = kF /m is the Fermi velocity, obtained through di-
viding Fermi wave vector kF by the mass of quasiparticles m,
and ne is the electron density, written as ne = k3

F /(3π2). We
focus on the supercurrent along the y direction Jy, evaluated at
Z = W/2, the center of the junction. Nearly identical results
are found if Jy is spatially integrated along the width W .

In describing inhomogeneous superconductivity in mul-
tilayer SF1F2F3S Josephson structures, it is insightful to
examine the spatial properties of the singlet correlations.
Thus, we present in Fig. 2 the real parts of the pair amplitudes
f3 normalized by their bulk value for three different geomet-
rical configurations. Three different widths of the junction are
shown: Figs. 2(a) and 2(b) correspond to relatively narrow
junctions with W = 5 and 10, respectively. Figure 2(c) is
for a junction width of W = 50 = kF ξ0. The pair amplitudes
are determined by summing the quasiparticle amplitudes and
energies [Eq. (10)] calculated from Eq. (6). The central fer-
romagnet is half-metallic (h2/EF = 1) with a dimensionless
width of DF2 = 50. The exchange-field vectors are oriented
along the x, y, and z directions in F1, F2, and F3, respectively
(the xyz configuration). Along the y direction, the outer su-
perconductors occupy the regions 0 < Y < 150 and 220 <

Y < 370. In Figs. 2(a)–2(c), the pair amplitude vanishes in
the half-metal region (160 < Y < 210), where only one spin

channel is permitted. For the narrow channel, Fig. 2(a), super-
conductivity reaches its maximal value along the midline of
the width side (Z = 2.5) and nearly vanishes in the vicinity
of the outer boundaries (Z = 0, 5). Boundary and size effects
from quasiparticle reflections at the outer walls are mainly
responsible for the observed contours. The number of peaks
in the pair amplitude profiles is seen to increase for the wider
junctions shown in Figs. 2(b) and 2(c), as electron trajectories
involve larger paths, and interference effects become dimin-
ished.

The spatial behavior of the spin-triplet correlations f0, f1,
and f2 are shown in the bottom row of Fig. 2. The sys-
tem parameters are the same as those used for the W = 10
case shown in Fig. 2(b). Beginning with the opposite-spin
triplets f0, Fig. 2(d) demonstrates that the regions occupied
by the thin outer ferromagnets (150 < Y < 160 and 210 <

Y � 220) contain a considerable enhancement of the f0 triplet
component that decays substantially in the other regions.
The equal-spin-triplet correlations f1 and f2 in Figs. 2(e)
and 2(f) exhibit behavior that is strikingly different, where
they permeate the entire half-metal (160 � Y � 210) where
spin-polarized pair correlations can survive. Moreover, the f1

triplets are seen to propagate into the superconductor (Y >

220) at the given snapshot. Note that although long-range
transport of triplet pairs can occur in Josephson structures
containing only two magnets, as will be seen below, trilayer
ferromagnet junctions are required to generate a sponta-
neous supercurrent with a zero phase difference �ϕ = 0◦.
As observed in Fig. 2, differing junction widths lead to
considerable differences in the behavior of the singlet corre-
lations. To examine how geometrical changes affect Cooper
pair transport, we present in Figs. 3(a) and 3(b) the nor-
malized supercurrent in the y direction as a function of the
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FIG. 3. (a) Normalized anomalous current Jy(�ϕ = 0) versus
the transverse width W . The lengths of the ferromagnet segments are
as follows: DF1 = DF3 = 10 and DF2 = 50. In (b) the width W = 10
is fixed, while the length of the central ferromagnet DF2 changes. The
surrounding ferromagnets F1 and F3 have the same lengths as in (a).
The junction for each scenario has a macroscopic phase difference of
zero, �ϕ = 0, between the outer superconducting electrodes, and the
exchange fields in the ferromagnets are all orthogonal to one another
(i.e., the xyz configuration)

normalized width W and central ferromagnet layer thick-
ness DF2 , respectively. Here we fix �ϕ = 0◦, and the middle
ferromagnet is half-metallic, i.e., h2/EF = 1. It was found
theoretically and experimentally that equal-spin-triplet pairs
can result in a more robust Josephson supercurrent that has a
weak sensitivity to ferromagnet layer thicknesses due to their
long-ranged nature [24,69]. If one of the ferromagnets in the
junction is half-metallic, the equal-spin-triplet correlations are
expected to play an even greater role in the behavior of the
supercurrent. In Fig. 3(a) the zero-phase current is calculated
for a wide range of junction widths W , while keeping the
other dimensions fixed at DF2 = 50 and DF1 = DF3 = 10. It
is evident that damped oscillatory quantum size effects are
discernible for W � 30. For larger W , the size effects van-
ish, and the zero-phase current levels off at its bulk value.
Related to this, oscillations over the Fermi length scale were
observed in the critical temperatures of thin films, attributed
to quantum size effects [82,83]. Next, the normalized width
is fixed to W = 10, and the length of the central half-metal is
varied. The spontaneous supercurrent vanishes when DF2 =
0 since that leaves only two ferromagnets with orthogonal
exchange fields. Increasing DF2 leads to a rapid increase in
the magnitude of Jy(�ϕ = 0) that peaks at DF2 ≈ 10. As
DF2 is increased further, the supercurrent decays towards zero
slowly. This slow decay is indicative of a spin-polarized cur-
rent flowing through the junction, as a current comprised of
spin-singlet pairs would decay completely within the half-
metal region.

The electronic density of states (DOS) provides another
avenue for detecting signatures of single-particle localized
Andreev states. The study of single-particle excitations in
these systems can reveal indirect signatures of the proximity-
induced spin-singlet and spin-triplet pair correlations. Exper-
imentally, this involves tunneling spectroscopy experiments
which can probe the local proximity-induced DOS. From a
theoretical perspective, it is revealing to study the DOS spa-
tially throughout the entire junction at certain key energies.
Thus, in Figs. 4(a)–4(c) the local DOS, normalized by the
normal-state DOS, N0, is shown at three normalized energies.
For ε/�0 = 0 in Fig. 4(a) there is a considerable enhancement

FIG. 4. Local density of states at three different normalized en-
ergies: (a) ε/�0 = 0, (b) ε/�0 = 0.5, and (c) ε/�0 = 1. An initial
phase difference of �ϕ = 0 is considered. The exchange field of the
central F layer is set to h2 = EF , and the outer two magnets have
h1 = h3 = 0.1EF . The exchange-field orientations in each ferromag-
net are orthogonal to one another, corresponding to the x, y, and z
directions for F1, F2, and F3, respectively. A narrow junction width
is considered, with W = 10.

in the DOS in the vicinity of the interfaces separating the
superconductors from the ferromagnetic junction region. In
particular, the DOS peaks within the weaker outer ferromag-
nets F1 and F3, and decays abruptly within the half-metallic
region. There is a much slower decay within the supercon-
ductor regions. This profile is indicative of the generation
of equal-spin-triplet correlations. In Fig. 4(c) for ε/�0 = 1,
there are BCS-type peaks that exhibit quantum interference
patterns due to the finite size of the junction. These peaks
remain regular throughout the outer superconducting banks,
and the DOS is much smaller in the ferromagnetic regions,
where it is weak but nonzero as there is no energy gap for the
parameters used here.

Having established the existence of strong zero-energy
peaks for the half-metallic junction with each of the exchange
fields of the three magnets orthogonal to one another, we now
examine the local DOS at zero energy for other orientation
angles and magnitudes of the exchange field. In the top row of
Fig. 5, the normalized exchange energy is set at h2/EF = 1,
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FIG. 5. Local density of states at zero energy. (Top row) Three different relative orientations of the exchange field in the outer ferromagnet
F3 are considered: in (a) and (b), h1 and h2 are directed along the x and y directions, respectively, while in (a) h3 is along z (θ3 = 90◦,
φ3 = 0◦), and (b) h3 is along y (θ3 = 90◦, φ3 = 90◦). In (c), the exchange fields in all three magnets are aligned along the y direction. An
initial phase difference of �ϕ = 0◦ is assumed. The magnitude of the exchange field of the central F layer is set to h2 = EF , and the outer
two magnets have h1 = h3 = 0.1EF . A narrow junction width is considered, with W = 10. (Bottom row) Three different exchange fields in
the central ferromagnet F2 are considered: (d) h = 0, (e) h = 0.5 EF , and (f) h = 0.7 EF . A zero-phase difference is considered, i.e., �ϕ = 0◦.
The magnitude of the exchange field in the outer two magnets have h1 = h3 = 0.1EF . A narrow junction width is considered, with W = 10.

while the angle φ3 is φ3 = 0◦ in Fig. 5(a) and φ3 = 90◦ in
Fig. 5(b). In Fig. 5(c), each ferromagnet has its exchange
field aligned along the y direction. Clearly, the most dominant
zero-energy peaks occur in Fig. 5(a) within the thin outer fer-
romagnets (150 < Y < 160 and 210 < Y < 220) where the
magnets are all orthogonal. In Fig. 5(b), the rightmost two
magnets F1 and F2 (see Fig. 1) have their exchange field along
the y direction. This reduces the magnetic inhomogeneity,
leading to an asymmetric profile for the quasiparticle exci-
tations that is dominant on the left side. Finally in Fig. 5(c),
when there exists the possibility to describe the system by a
single spin-quantization axis, the spin-polarized triplet corre-
lations vanish [78], and there is a strongly diminished DOS at
zero energy. For the bottom row of Fig. 5, the ferromagnets are
all fixed in the xyz configuration, while the central exchange-
field strength is varied according to h2/EF = 0, 0.5, 0.7 in
Figs. 5(e) and 5(f), respectively. For the unpolarized normal
metal case in Fig. 5(d), there are no zero-energy peaks within
the junction, but instead a series of weak, repeating bands that
arise from proximity effects and a superposition of quasiparti-
cle states confined by the outer superconductor banks. Increas-
ing the exchange field to h2/EF = 0.5 in Fig. 5(e), there is a
slight development of zero-energy states along the boundaries
that becomes amplified for h2/EF = 0.7 [Fig. 5(f)].

Turning now to the electronic spectra, we present in Fig. 6
the quasiparticle energies εn, normalized by EF , versus the
normalized transverse energy ε⊥/EF . We consider two ex-
treme values of the exchange field in the central junction
region: Fig. 6(a) corresponds to a normal metal with h2/EF =
0, and Fig. 6(b) contains the spectra for the half-metal case
h2/EF = 1. For a homogeneous bulk superconductor, a con-
tinuum of states occupy energies that fall outside of the bulk
gap �0. For our system that includes multiple junction layers
with quantum size effects, there will be substantial modifi-
cations to the scattering states and an emergence of discrete
bound states in the excitation spectrum that approximately

fall within the scaled gap �0/EF = 2/(πkF ξ0), corresponding
to �0/EF ≈ 0.0127. Indeed, as Fig. 6(a) shows, the eigenen-
ergies εn exhibit an intricate oscillatory behavior within the
bulk gap region, although with limited quasiparticle excita-
tions with energies near zero. This is in stark contrast to the
half-metallic case in Fig. 6(b), where there are a considerable
number of states that reside at zero energy. These results are
consistent with the zero-energy peaks in the DOS profiles seen
in Figs. 5(a) and 5(d).

Based on the findings of the DOS and energy spectra, it is
clear that the exchange field in the central ferromagnet plays a
crucial role in the formation of zero-energy modes and the ex-
istence of a spontaneous supercurrent. From the quasiparticle
energy diagrams discussed above (Fig. 6), both the bound-
state and continuum-state spectra shown contribute to the total
supercurrent flow. We show in Fig. 7(a) how the supercur-
rent flow is modified by changes to the magnetic strength
in the F2 region by presenting the current-phase relations for
three representative values of h2/EF (as labeled). It is evident
that in going from h2/EF = 0 to h2/EF = 1, new harmonics
emerge, and the 2π -periodic current-phase relation (CPR)
changes considerably, due in part to the proximity-induced
long-ranged spin-polarized triplet correlations. In Fig. 7(a),
the zero-phase state for h2/EF = 0 exhibits no zero-phase
supercurrent since in this case there are only two orthogonal
magnetizations present. Increasing the normalized exchange
field up to 0.3 results in the emergence and gradual increase
in the supercurrent for �ϕ = 0◦. When h2/EF increases to
the half-metallic state, the anomalous current is enhanced
and the CPR exhibits regular oscillations. The same trends
are observed for the maximal supercurrent flow, not just the
zero-phase current. Thus, the spontaneous supercurrent ramps
up as the magnetization strength of the middle ferromagnet
increases.

When analyzing the CPR of finite-sized Josephson junc-
tions, and determining the ground state of the system,
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FIG. 6. Energy spectra as a function of the transverse single-
particle energy ε⊥ ≡ k2

x /(2m). Two types of materials are considered
for the central F region: (a) a nonmangetic normal metal with
h/EF = 0, and (b) a fully spin-polarized ferromagnet h/EF = 1. The
macroscopic phase difference is fixed at �ϕ = 0◦. The magnitude
of the exchange field in the outer two magnets has h1,3/EF = 0.1. A
narrow junction width is considered, with W = 10.

it is useful to study the free energy F , which is com-
prised of two terms: F ≡ FJ + F�. Here we define F� =∫

dy dz|�(y, z)|2/Vs(y, z) and

FJ = −2T
∑

n

ln
[
2 cosh

( εn

2T

)]
. (26)

For the cases considered in this paper, where ∂F�/∂�ϕ is
small, we found that the contribution from FJ is sufficient
to determine the ground state of the system. In Fig. 7(b), we
therefore present FJ as a function of �ϕ for the same system
parameters used in Fig. 7(a). The vertical arrows identify the
ground states of each of the three CPRs, which always occur at
zero current. It is important to note that the ground-state phase
difference ϕ0 can vary from 0◦ to approximately 180◦ by
changing the strength of the ferromagnet in the central layer.
In particular, by increasing h2/EF , the ground state shifts to
higher phase differences. The next notable feature is that with
the emergence of a ϕ0 state, the CPR in Fig. 7(a) for h2/EF =
0.3 is seen to exhibit a clear diode effect, whereby the su-
percurrent exhibits the following property: |Jy(+�ϕ + ϕ0)| �=
|Jy(−�ϕ + ϕ0)|. Thus, by appropriately tuning the phase dif-
ference between the superconductor banks, the dissipationless
current flow can be made to have a one-way flow. This has

FIG. 7. In (a) the current-phase relations for different exchange
fields of the central ferromagnet layer F2 are shown. A range of
normalized exchange fields are considered (see legend), ranging
from nonmagnetic (h2/EF = 0) to half-metallic (h2/EF = 1). The
exchange fields for the outer two magnets are fixed at h1 = h3 =
0.1EF and the xyz configuration is considered. A narrow junction
width is considered, with W = 10. In (b) the free energy FJ is shown
in arbitrary units over the same �ϕ in (a). The minima of each curve
are shifted to the same level for clarity. The arrows identify the phase
differences that correspond to the ground states of the systems in (a),
with only the ground states for positive �ϕ shown.

practical applications as a nanoscale spintronics device with
low-energy consumption.

Next, the effects of rotating the magnetization on the super-
current are investigated, and we address the effectiveness of
exchange-field rotations in controlling charge flow, including
on-off switching of the supercurrent. Controlling the magne-
tization rotation can be achieved experimentally via, e.g., the
application of external magnetic fields [84]. The orientation
of the exchange-field vector h3 is described by the two angles
θ3 and φ3 [Eq. (7)]. Here we fix θ3 so that θ3 = 90◦, and
variations in φ3 occur solely in the y-z plane. In Fig. 8(a),
the CPR is shown for several angles φ3 in the outer magnet
(see legend). As φ3 varies from φ3 = 0◦ to 180◦, the vec-
tor h3 goes from the +z direction to the −z direction. The
exchange-fields in the first and second ferromagnets remain
fixed along the x and y directions, respectively. Here the F2

layer has a set exchange field of h2/EF = 1. As the rotation
angle increases, starting from φ3 = 0◦, the oscillation am-
plitudes in the CPR diminish until vanishing completely at
φ3 = 90◦, at which point the exchange field in F3 is aligned
with the central ferromagnet. Further increases in φ3 � 90◦
result in a full reversal of the supercurrent with the CPR
profile changing sign and mirroring the results for �ϕ � 90◦
about the center line �ϕ = 180◦. Rotating the exchange-field
angle φ3 can be achieved through external means, and thus
the resultant control of the charge currents may be beneficial
in practical devices, including nonvolatile memory elements.
The experimentally relevant critical current Jc as a function of
φ3 is shown in Fig. 8(b), where the data are extracted from
the CPR in Fig. 8(a). The critical supercurrent is calculated
by finding the maximum of the supercurrent over the entire
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FIG. 8. (Top row) (a) Current-phase relations for several mag-
netization angles φ3 (shown in the legend). (b) The corresponding
critical current as a function of φ3 for the system in (a). In (c) an
expanded view of the current-phase relations is shown. A different
scale for the φ3 = 80◦ case (labeled on the right vertical axis) is
used to illustrate how the CPR evolves to a simple sine curve. The
bottom panel (d) shows the free energy FJ , with the vertical arrows
identifying the ground state of the system. In all cases, a half-metallic
junction is considered with h2/EF = 1, and the normalized exchange
field in the outer two magnets is fixed at h1/EF = h3/EF = 0.1, with
the magnetizations along x and z directions, respectively. Results
shown are for a narrow junction width of W = 10.

phase difference interval, i.e., Jc = max[Jy(�ϕ)]. The results
show that if the outer ferromagnet F3 has its exchange-field
vector initially pointing along ŷ (φ3 = 90◦), then variations
in φ3 about this point lead to an immediate linear increase
in the critical current. In Fig. 8(c), the CPR for a select φ3

is shown over an expanded range of phase differences from
−360◦ � �ϕ � 360◦. The scale on the right vertical axes
corresponds to the φ3 = 80◦ case, which is seen to exhibit
the conventional profile described by a sine function. To com-
plement the current-phase relations, Fig. 8(d) contains the
free energies FJ for the curves in Fig. 8(c). As was found
in Fig. 7, the ground state for h2/EF = 1 corresponds to
ϕ0 = 90◦,−270◦. Thus, while rotating the magnetization in
the outer ferromagnet can result in the supercurrent changing
sign or vanishing altogether, the ϕ0 ground state is robust and
remains unchanged.

Next, we investigate how other orientations of the
exchange-field vectors affect the zero-phase supercurrent re-
sponse. In Fig. 9(a), the normalized supercurrent is shown
as a function of the angles θi (i = 1, 2, 3). In most of the
previous cases above, the exchange fields were in the xyz
configuration. Now, when a given angle, e.g., θ2 is varied,

FIG. 9. The top rows (a) and (b) illustrate the normalized anoma-
lous supercurrent Jy(�ϕ = 0◦) as a function of the angles θ1,2,3 and
φ1,2 describing the exchange-field vector orientations in the respec-
tive ferromagnets F1,2,3. In (c) the normalized Josephson current is
shown as a function of phase difference �ϕ for the selected an-
gles θ3 = 0◦, θ3 = 30◦, θ3 = 60◦, and θ3 = 90◦. The corresponding
ground states are depicted by arrows pointing towards the free-
energy minima in (d).

F1 and F3 keep their exchange-field vectors fixed along the
x and z directions, respectively. When θ1 is varied, φ1 is set
to φ1 = 0◦, so θ1 sweeps occur in the x-z plane. Thus, when
rotating from θ1 = 0◦ to 90◦, h1 goes from being aligned along
the x direction to along the z direction, respectively. This cre-
ates a situation with the two outer ferromagnets both aligned
along the z direction, destroying the magnetic inhomogeneity
needed for a finite anomalous current to flow, as observed in
Fig. 9(a). As seen, the peak zero-phase current does not occur
for the xyz configuration as one might expect, but rather when
the exchange-field vector in F1 is slightly skewed between the
x and z directions. When θ2 is now varying, the outer magnets
are fixed according to h1 = h1x̂ and h3 = h3ẑ. When θ2 is
zero (or a multiple of π ), the leftmost two ferromagnets have
collinear exchange fields, and thus the zero-phase current is
zero in these instances. As the exchange field rotates in the
half-metal, it is observed that |Jy(�ϕ = 0)| is largest when
θ2 = π/2, 3π/2, i.e., precisely when the exchange field is
strictly along ±y. Similar behavior is observed when θ3 varies,
with the main difference being an offset of the peak ampli-
tude of the zero-phase current. Thus, for the outer magnets
their optimal zero-phase supercurrent flow occurs when their
exchange-field vectors point between the x and z directions.
Considering now magnetization rotations in the y-z plane, we
present in Fig. 9(b) the zero-phase current as a function of the
angular variables φ2 and φ3. In each case, we fix θ2,3 = 90◦.
As φ2 or φ3 varies from 0◦ to 180◦, the corresponding
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FIG. 10. The nonzero components of the spin-current tensor are
shown as a function of the normalized coordinate Y = kF y. The
phase difference between the two superconducting banks is set to
�ϕ = 0. The central ferromagnet is a half-metal (h2/EF = 1), while
the outer ferromagnets of the trilayer are fixed at h1/EF = h3/EF =
0.1. The exchange-field vector h3 is allowed to vary in y-z plane
(the legend gives the rotation angle φ3). The vertical lines denote
ferromagnet interfaces.

exchange fields change their alignment from ẑ to ŷ, re-
spectively. Therefore, we find that for rotations of the
exchange-field vector in the y-z plane (see Fig. 1), when
|Jy(�ϕ)| is maximal for certain angles φ2, it is zero when
φ3 equals those angles. More specifically, the curves have
identical profiles that are offset from one another by 90◦.

The CPR and free-energy diagrams are illustrated in
Figs. 9(c) and Fig. 9(d) respectively. A range of orientations
θ3 are considered, as shown in the legend. The F1 and F2

magnets have their exchange fields aligned along the x and y
directions, respectively. For each θ3 shown, φ3 = 0◦ is fixed,
so that θ3 variations result in h3 rotating in the x-z plane.
For θ3 = 0◦, the exchange-field vector in F3 is pointing along
x, while θ3 = 90◦ has it along the z direction. The CPRs
in Fig. 9(c) show that the curves retain their profiles as h3

rotates, and they simply undergo an overall shift by an amount
that is proportional to θ3. The free energy FJ has similar
behavior, as Fig. 9(d) shows, and changing θ3 causes the
ground-state phase difference ϕ0 to shift similarly. This tun-
ablilty of the ground state by magnetization rotations can be
achieved through an external magnetic field or a spin-torque
mechanism.

We now explore the spin currents that arise when there is a
zero-phase difference between the superconducting electrodes
and a finite supercurrent. The anomalous supercurrent that is
generated can become spin polarized when passing through
the ferromagnetic trilayer. In Figs. 10(a)–10(c), the spin cur-
rents flowing in the y direction Syσ are shown for each spin σ .
All spin currents are plotted as functions of the dimensionless
coordinate Y , with Z = W/2 fixed. In Fig. 10(d) the spin
current for the z component of spin, flowing in the transverse
z direction Szz is shown. The legend identifies the different

angles of rotation φ3 of the exchange-field vector h3. The
Josephson junction has h1 and h2 in the trilayer oriented along
the x and y directions, respectively. For the type of magnetic
arrangement studied here, the components of the spin-current
tensor Szx and Szy are zero. As seen in Fig. 10(a), the x
component of the spin current has its largest magnitude at
the interface between F2 and F3 (the vertical line at Y = 210)
for φ3 = 0◦, 180◦. This corresponds to the magnetic config-
urations where the exchange-field vectors in the magnets are
each orthogonal to one another. For all other 0◦ < φ3 < 180◦,
the magnitude of the spin current reduces, including vanishing
at φ3 = 90◦. Similar trends are observed in Fig. 10(b) for
the y projection of spin, with now a reduction in the overall
magnitude of the spin currents. Additionally, we find that |Syy|
increases approximately linearly in the thin outer magnets,
before entering the half-metal, where it modulates slightly
while leveling out. For both Figs. 10(a) and 10(b), the spin
currents vanish when φ3 = 90◦, which for this orientation
corresponds to when the anomalous current is zero. For the z
component of spin, the magnitude of the spin current peaks at
the interface between F1 and F2 (Z = 160). Unlike what was
observed in Fig. 10(a), this spin current component is insen-
sitive to changes in φ3. A transverse spin current also flows,
as shown in Fig. 10(d), where the z component of the spin
current flowing in the z direction, Szz, is shown. Within the left
superconductor (Y < 150), there is a weakly decaying spin
current that oscillates upon entering the adjacent ferromagnet
and then |Szz| increases rapidly near the interface (at Y = 160)
separating the ferromagnet from the half-metal. Within the
half-metal and ferromagnet F3 (160 < Y < 220), the spin
current is relatively constant (aside from a slight modulation
at the interface). Finally, within the second superconductor
(Y > 220), the spin current again undergoes a slow decay that
depends on the particular angle φ3.

In discussing spin-transport quantities, we expect that
the presence of an anomalous supercurrent and proximity
effects due to the exchange interactions will lead to a spin-
torque transfer and a corresponding leakage of magnetism.
The interaction of the spin current with the magnetization
is also relevant for memory technologies, where the stor-
age of information depends on the relative orientation of the
magnetizations. In Fig. 11, a spatial mapping of each com-
ponent of the magnetic moment is shown for a half-metallic
Josephson junction with the exchange-field vectors in the xyz
configuration. The phase difference �ϕ is set to zero, and an
anomalous supercurrent is generated. The thin outer magnets
have h1,3/EF = 0.1. In Fig. 11(a), the x component of the
magnetic moment mx (normalized by μBne) is shown. As
seen, mx is confined mainly to the F1 region (150 < Y < 160),
vanishing in the vicinity of the hard-wall boundaries at Z = 0
and 10. Due to the mutual proximity effects between the
surrounding superconductor and half-metal, there is also a
leakage of magnetization into those regions, as well as an
increase in mx from its bulk values within F1. The same
behavior is also observed in Fig. 11(c) for the z component of
the magnetic moment. The half-metal region exhibits a more
uniform magnetic moment [Fig. 11(b)], but also exhibits sim-
ilar proximity effects, including rapid variations near the top
and bottom of the structure, as well as an enhancement of its
spin polarization near the edges at Z = 2 and Z = 8. We also
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FIG. 11. The components of magnetic moment are shown (as
labeled) as a function of the dimensionless coordinates Y and Z .
(d) Shows mx from (a) over a different scale to illustrate the spin
polarization that extends into F3 and the adjacent superconductor.
The yellow vertical lines enclose the ferromagnet regions. The phase
difference between the S banks is set to �ϕ = 0◦, and we consider
the xyz configuration for the magnets.

present in Fig. 11(d) mx over a smaller scale to demonstrate
the typical long-ranged spin imbalance that occurs, which in
this case originates from F1 and is transferred into F3 (210 <

Y < 220) and the adjacent superconductor (Y > 220). The
spatial behavior of the spin currents discussed in relation to
Fig. 10 can be modified by the local magnetizations due to the
spin-exchange interaction, via the mechanism of spin-torque
transfer (STT). The use of STT in half-metallic Josephson
junctions can result in faster magnetization switching times
in random access memories. The STT effect has been widely
found to occur in a broad variety of ferromagnetic materials,
including half-metals, making it widely accessible experi-
mentally [85]. It is thus important not only to understand
the behavior of the spin-polarized currents in ferromagnetic
Josephson junctions, but also the various ways in which to
manipulate them for practical spintronics type of devices. We
therefore investigate in Fig. 12 the equilibrium spin torques

FIG. 12. Spatial mapping of the x, y, and z components of the
spin torque. The phase difference between the two superconducting
banks is set to �ϕ = 0◦, which established a zero-phase supercur-
rent. The central ferromagnet is a half-metal (h2/EF = 1), while the
outer ferromagnets of the trilayer are fixed at h1/EF = h3/EF = 0.1.
Here we fix θ3 so that θ3 = 90◦, and variations in φ3 occur solely in
the y-z plane. In (a) and (b), φ3 = 0◦, and in (c), φ3 = 90◦. For (c), τz

is the only nonzero component.

throughout the junction regions as functions of the normalized
coordinates Y and Z . We calculate τ from the magnetization
and prescribed exchange fields [26] via

τ = − 2

μB
m × h. (27)

In Figs. 12(a) and 12(b), the outer free magnetization angle
is set to φ3 = 0◦ (the xyz configuration) so that an anoma-
lous supercurrent is generated. In Fig. 12(c), φ3 = 90◦ (the
xyy configuration), and hence no self-biased supercurrent is
present. Beginning with the top row, Fig. 12(a), the two spin-
torque components τx and τz are shown superimposed on the
same density plot. The half-metal boundaries are clearly seen
at Y = 160 and 210. It is observed that the STT is most
pronounced near these boundaries, peaking antisymmetrically
on each side. This behavior is consistent with the spin currents
shown in Fig. 10 and the expressions in Eq. (25), where for
weak spatial variations in the z direction, Eq. (25) states that
τx ≈ ∂Syx/∂y and τz ≈ ∂Syz/∂y. Therefore, the slope of the
curves in Figs. 10(a) and 10(c) gives a good approximation
for τx and τz directly. In particular, the normalized Syx in
Fig. 10(a) exhibits a slope that undergoes an abrupt sign
change when crossing the interface at Y = 210, where the
slope is zero, in agreement with the sign change of τx about
the interface [see in Fig. 12(a)]. The same analysis shows
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consistency between Fig. 12(b) and τz, with the notable fea-
ture that changing the angle φ3 in the free layer has no effect
on the z component of the spin currents flowing in the y direc-
tion. From Eq. (22), we see that τ is responsible for the change
in local magnetizations due to the flow of spin-polarized cur-
rents. In Fig. 12(b), the weaker y component of the spin torque
is shown. Unlike the other two components in Fig. 12(a),
τy resides solely in the two outer magnets F1 and F3. This
follows from the leakage of magnetism discussed in relation
to Fig. 11(d), where the x component of the magnetization
in F1 extends all the way to F3 via the spin currents Syy in
Fig. 10(b). It should be emphasized that for there to be a y
component of spin torque in F3, there must also be a finite
mx there since τy in F3 is proportional to hzmx. Finally, we
illustrate in Fig. 12(c) the z component of the spin torque for
the rotation angle φ3 = 90◦. For this magnetic configuration,
the anomalous current vanishes [see Fig. 8(c)]. As seen in
Fig. 10, all spin currents flowing in the y direction also vanish,
except for those with a z spin projection [Fig. 10(c)], which do
not depend on φ3. Since τz ≈ ∂Syz/∂y, the torque in Fig. 12(c)
is centered on the F1/F2 interface at Y = 160.

IV. CONCLUSIONS

Motivated by recent advances and interest in making
use of half-metallic materials (supporting one spin state) in
superconducting hybrid structures, we have studied the spa-
tial mappings and superconducting phase dependency of the
charge supercurrents, spin supercurrents, spin torques, and
density of states in ballistic SF1F2F3S Josephson configu-
rations where the magnetizations in the F layers can have
arbitrary directions and strengths. To this end, we have gen-
eralized a wave-function approach, incorporating efficient
computational techniques for optimizing the diagonalization
of large-size matrices in a parallel computing environment.
This allows our method to properly account for singlet and
triplet pair correlations in realistic three-dimensional systems,
including planar SF1F2F3S hybrids that are confined in two
dimensions, and the third dimension is considered to be in-
finite. Interestingly, the charge supercurrent as a function of
magnetization strength in the F2 layer shows that the critical
supercurrent reaches its maximum value at high values close
to the half-metallic phase so that it becomes only slightly
different from its F1N F3 counterparts. In a situation where
the magnetizations in the three F layers are mutually or-
thogonal (the “xyz” configuration), we find that a self-biased
spontaneous supercurrent exists, and is largest when the F2

layer is a half-metal. We study the behavior of the spon-
taneous supercurrent for various magnetization orientations
in the F layers and determine the most favorable configura-

tions. We find that for intermediate exchange-field strengths of
the central ferromagnet layer, a superconducting diode effect
emerges, whereby a unidirectional dissipationless current can
flow by appropriately tuning the phase gradient between the
outer superconductor electrodes. The DOS studies illustrate
robust zero-energy peaks in the xyz configuration that dis-
appear without three orthogonal magnetization components
in the system. The zero-energy peaks are spatially located
in the F1 and F3 layers and become largest when F3 is a
half-metal. Further studies on the spatial distributions of other
important physical quantities demonstrate an extremely long-
ranged magnetic moment and spin currents extending from
one superconductor in the SF1F2F3S system to the other.
This long-ranged behavior and anomalous supercurrent flow
generated spin torques controllable by rotations of the magne-
tization in the outer ferromagnet.

Apart from the results obtained for the specific SF1F2F3S
system in the half-metallic regime, this generalized approach
can be further expanded to systems with spin-orbit coupling,
various types of impurities, and an external magnetic field.
Unlike the limitations that the quasiclassical method demands,
our approach can cover systems far beyond the quasiclassical
approximations and properly account for band curvatures and
arbitrary ratios among the energy scales, such as the exchange
field and chemical potential, found in many types of systems.
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APPENDIX A: NUMERICAL METHOD

When expanding the quasiparticle amplitudes un,σ and
vn,σ in terms of a complete set of basis functions
[see Eq. (8)], for numerical purposes the sums are
cut off at [76,86] Nl∼kF l/π

√
1 + max{h1, h2, h3} and

Nw∼kF w/π
√

1 + max{h1, h2, h3}, thus ensuring that all of
the quantum states are included over the wide range of en-
ergy scales present in the problem. Inserting Eqs. (8) into the
matrix eigensystem [Eq. (6)] and invoking the orthogonality
of the basis functions, we get the following set of matrix
elements:

[H0]pqp′q′ = 〈pq|H0|p′q′〉= 4

wl

∫ l

0

∫ w

0
dz dy sin

(
pπy

l

)
sin

(
qπz

w

)[
− 1

2m

(
∂2

∂z2
+ ∂2

∂y2

)
+ 1

2m
k2

x −μ

]
sin

(
p′πy

l

)
sin

(
q′πz

w

)

+ 4

wl

∫ l

0

∫ w

0
dz dy sin

(
pπy

l

)
sin

(
qπz

w

)
U (y, z) sin

(
p′πy

l

)
sin

(
q′πz

w

)
, (A1)

[D]pqp′q′ = 〈pq|�|p′q′〉 = 4

wl

∫ l

dN

∫ w

0
dz dy sin

( pπy

l

)
sin

(qπz

w

)
�(y, z) sin

( p′πy

l

)
sin

(q′πz

w

)
, (A2)
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[I j]pqp′q′ = 〈pq|h j |p′q′〉 = 4

wl

∫ dS+dF1

dS

∫ w

0
dz dy sin

( pπy

l

)
sin

(qπz

w

)
h j1 sin

( p′πy

l

)
sin

(q′πz

w

)

+ 4

wl

∫ dS+dF1 +dF2

dS+dF1

∫ w

0
dz dy sin

( pπy

l

)
sin

(qπz

w

)
h j2 sin

( p′πy

l

)
sin

(q′πz

w

)

+ 4

wl

∫ dS+dF1 +dF2 +dF3

dS+dF1 +dF2

∫ w

0
dz dy sin

( pπy

l

)
sin

(qπz

w

)
h j3 sin

( p′πy

l

)
sin

(q′πz

w

)
, j = x, y, z (A3)

where q, q′, p, p′ are integers. In what follows, we scale the expressions in Eqs. (A1)–(A3) by the Fermi energy EF to make
them dimensionless. The integrations for the free-particle term in Eq. (A1) are easily done, which after dividing each term by
the Fermi energy EF = k2

F /(2m) takes the following dimensionless form:

[H0]pqp′q′ =
[{( pπ

kF l

)2
+

( qπ

kF w

)2}
+ ε⊥

EF
− 1

]
δqq′δpp′ . (A4)

Here, for simplicity, the scattering potential U (y, z) is assumed to be zero in this work. The above dependence on four indices
q, q′, p, p′ can be reduced to a system of two indices k and k′ suitable for matrix operations by changing the index operations so
that {p, q} → k and {p′, q′} → k′. This creates a more manageable and compact system of equations.

We can now cast the matrix eigensystem in Eq. (6) into a following form suitable for numerical purposes: A�n = εn�n,
where the matrixA is given by

A =

⎛
⎜⎝
H0 − Iz −Ix + iIy 0 D

−Ix − iIy H0 + Iz D 0
0 D∗ −(H0 − Iz ) −Ix − iIy

D∗ 0 −Ix + iIy −(H0 + Iz )

⎞
⎟⎠. (A5)

Here, εn = εn/EF , and the expansion coefficients are writ-
ten in vector form �n = (un,↑, un,↓, vn,↑, vn,↓)T , with un,σ =
(u1

n,σ , . . . , uN
n,σ )T and vn,σ = (v1

n,σ , . . . , vN
n,σ )T . The rank of

the matrix in Eq. (A5) is N = 4Nl Nw. The numerical im-
plementation of the solver used in solving the 4N × 4N
eigensystem in Eq. (A5) was done using object-oriented For-
tran with the MPI [87], OPENMP [88], and SCALAPACK [89]
libraries.

The energy ε⊥ corresponds to the kinetic energy of the
quasiparticles that are moving transverse to the longitudinal
x direction. This parameter is effectively a good quantum
number, and when performing the sum over states for a given
physical quantity, a fixed number nε⊥ of these transverse states
must be included. During each step of the solution process,
and for the final calculations, the eigenvectors and eigenen-
ergies for nε⊥ matrices need to be calculated. Each of these
nε⊥ matrices are distributed in a block-cyclic manner onto
a subset of the available MPI ranks called a processor grid
(PG). Due to the construction of the problem, the matrix A
can be split into 16 equally sized sections, each containing
one or many PGs, depending on the nrow × ncol form of a PG
for a given problem. A diagram representing this distributed
memory process is shown in Fig. 13. Each section is made
of nq × nq blocks and each block contains np × np matrix
elements. Each one of these sections must be perfectly tes-
sellated by the block size, which then allows individual ranks
to own the same block in each section of the matrix A.
This allows for reduced computational and communication
complexity.

For communication, MPI ranks are grouped into four com-
municators, which are graphically represented in Fig. 14.
These four are MPI_COMM_WORLD, a communicator for
the PG (grid communicator), a communicator for the specific

column within the PG (local column communicator), and a
communicator with the corresponding grid rank in all of the
other processor grids (rank communicator). At the end of
every iteration, all system properties of interest within the
solver are summed using MPI collectives across one, some,
or all of the communicator groups depending on the particular
requirements for a given property.

APPENDIX B: OPTIMIZATIONS AND
COMPUTATIONAL TECHNIQUES

In addition to parallelization via MPI, thread-level paral-
lelization was implemented using OPENMP. A naïve coding

FIG. 13. A representative case of the distributed memory ap-
proach where one matrix is comprised of 16 sections. Each matrix
is distributed within its block-cyclic distribution scheme. The image
shows 1 of the 16 sections distributed over 2 processor rows and
4 processor columns. For large problems, the number of processor
rows and columns for each grid could be significant.
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FIG. 14. MPI_COMM_WORLD is partitioned into multiple pro-
cessor grids. Each rank within the program uses four separate
communicators at different times. MPI_COMM_WORLD, a com-
municator for the PG (grid communicator), a communicator for the
specific column within the processor grid (local column communica-
tor), and a communicator with the corresponding grid rank in all of
the other processor grids (rank communicator).

for the calculation of un,σ (y, z), and vn,σ (y, z) would require
a loop over q, within a loop over p, within a loop over
z, and finally within a loop over y for four levels of loop-
ing. The quasiparticle expansions in Eq. (8) that involve the
terms

∑
p up,q

n,σ sin(pπy/l ) and
∑

p v
p,q
n,σ sin(pπy/l ) could be

calculated and stored within a vector for every q within each
iteration of the loop over y, outside of the loop over z. This
reduces the number of nested loops required. In addition,
inner loops were written to be of the form c = sum(a(:) ·
b(:)), making it possible to fully exploit vector-based com-
piler optimizations.

APPENDIX C: MEMORY REQUIREMENTS

The memory requirements for the problem can be catego-
rized in three major categories: the matrixA, its eigenvectors,
and the workspace required by SCALAPACK to calculate the
eigenvectors. The memory required for A and its associated
eigenvectors is equivalent and scales as α(4npnq)2. Calcula-
tions were performed using 32-bit precision, so the value of
α is 8 bytes (4 bytes each for the real and imaginary por-
tions). The amount of workspace required by SCALAPACK was

FIG. 15. Matrix rank and minimum total memory requirements.
Growth of the rank of matrix A and associated required memory
to calculate the eigenvectors of a representative matrix. Here, W =
100, blocking is set to np, and cluster size = 1. The gray curve is
the required memory to solve the eigenvectors for one matrix. The
orange curve is the associated memory requirement on each process,
with the grid size listed adjacent to each point.

dependent upon the rank of A, with the number of rows and
columns being held by that specific process, and a cluster-size
parameter (additional memory to orthogonalize eigenvectors).
Due to library constraints, the number of 4-byte elements in
the SCALAPACK work array was limited to 231, or 8 GB. This
was a per-process limit on just the work array, and each rank
could use more than 8 GB total. Furthermore, more than one
process could be launched on a single compute node to make
efficient use of available resources.

The growth of the memory requirements is shown in
Fig. 15, using nominal values for the system parameters. The
width of the junction was kept constant, and its normalized
length was increased from 115 to 1215 in increments of 100.
As can be seen, the total required memory for a single matrix
increases with the square of the matrix rank. By increasing
the number of processes used to evaluate A, the per-process
memory could be kept roughly level. The per-process memory
usage and grid size is selected by maximizing the amount of
memory managed by a single process.
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