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Spin-triplet superconductivity driven by finite-momentum spin fluctuations
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A small number of superconductors are believed to exhibit intrinsic spin-triplet pairing, and they are often
discussed in terms of a simple, 3He-like picture where ferromagnetic spin fluctuations provide the “glue.” How-
ever, in some cases in which reliable inelastic neutron scattering measurements are available, spin excitations
are found to be peaked at finite momentum q rather than q = 0. Here we investigate some simple models that
exhibit triplet pairing arising from antiferromagnetic spin fluctuations. We show that a strong peak at larger q in
the magnetic susceptibility can drive such states and can give rise to pairing states with nodes in the kz plane even
in the presence of a pure two-dimensional Fermi surface. In these situations, dominant pair scattering processes
occur between Fermi surface segments with like signs of the superconducting order parameter, yet they are
consistent with an overall odd-parity state. We examine the applicability of these scenarios to the putative triplet
superconductor UTe2.
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I. INTRODUCTION

The importance of the effect of spin fluctuations on su-
perconductivity has been recognized since the early work
of Berk and Schrieffer [1] and Doniach and Engelsberg [2],
who pointed out that unexpectedly low measured critical tem-
peratures in the transition metal series could be understood
by accounting for these effects, which contribute a repulsive
term to the effective pairing interaction. It was recognized
by Layzer and Fay [3] that the same interaction would be
attractive in the triplet channel. These calculations were per-
formed for an electron gas, where the magnetic susceptibility
χ0(q) was peaked at wave vector q = 0, and strongly en-
hanced near the Stoner instability Uχ0(q) = 1, where U
is a local repulsive interaction. Later, it was realized that
unconventional singlet pairing can be favored if the same sus-
ceptibility is peaked at nonzero wave vector, e.g., as obtained
for tight-binding models near half-filling [4–6]. For example,
finite-momentum spin fluctuations in cuprates near (π, π ) are
often thought to drive a d-wave state, which changes sign over
the Fermi surface in order to take advantage of the repulsive
interaction [7].

Based on the preceding considerations, it is generally con-
sidered natural for ferromagnetic spin fluctuations to drive
triplet (odd-parity) pairing, while antiferromagnetic fluctu-
ations should drive singlet (even-parity) pairing. Recently,
an apparently “unnatural” situation has arisen in the novel
unconventional superconductor UTe2. This heavy fermion
compound is now believed to be a spin-triplet superconductor
on the basis of NMR experiments and a thermodynamic phase
diagram including reentrant phases at high fields quite similar
to known ferromagnetic superconductors [8,9]. However, in-
elastic neutron scattering experiments found spin excitations
primarily at intermediate incommensurate wave vectors [10],
and under applied pressure, an antiferromagnetic rather than

ferromagnetic phase is nucleated at 1.3 GPa [11]. At present,
the physical pairing mechanism in this material is the subject
of considerable debate, and the pairing channel itself is not
yet determined, so it may well be that spin fluctuations are
not responsible for superconductivity in the usual sense. It
is, however, also possible that in systems like UTe2 unusual
aspects of the electronic structure, in particular its lower sym-
metry, may conspire to produce a pairing interaction that is
odd parity with a susceptibility peaked at nonzero q.

There may already be an example of the latter phe-
nomenon. While the order parameter symmetry in the
canonical heavy fermion superconductor UPt3 is not com-
pletely agreed upon, there is considerable evidence in favor
of a triplet E2u representation [12]; yet inelastic neutron ex-
periments find peaks at nonzero wave vector [13–15]. A
three-dimensional (3D) microscopic spin fluctuation solution
of the linearized gap equation indeed found such a state to
be stable, but it is not clear if it is competitive with singlet
states. Notably, the actual gap structure identified was con-
siderably more complicated than those considered in earlier,
phenomenological calculations [16]. The band structure used
indeed led to a susceptibility peaked at wave vectors similar
to those observed in the neutron measurements.

It is thus quite interesting to explore the general question of
when a spin-triplet paired state can be favored in the presence
of strong nonzero momentum scattering in order to understand
the pairing mechanism in these two materials and guide the
search for other intrinsic triplet superconductors. In this paper,
we begin with the simplest possible models with repulsive
interactions, and we ask how the electrons pair given a mag-
netic susceptibility function with assumed peaks at q �= 0,
consistent with the symmetry of the lattice. We begin with
simple 2D models, and we show that nonzero-q triplet pairing
is already possible. Then we discuss models with dispersion
in the third direction, and how they can be optimized. Finally,
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we discuss the case of UTe2 in the context of what we have
learned of the conditions required for finite-q triplet pairing.

To our knowledge, the general problem of how to generate
triplet pairing with finite-q spin fluctuations has only been
discussed before in the context of systems with significant
spin-orbit coupling spin anisotropy. For example, several au-
thors attempted to explain chiral p-wave superconductivity
in Sr2RuO4 [17–19] using this approach, assuming mag-
netic susceptibilities χi j (q) where i and j are directions in
spin space resembling results from density functional the-
ory (DFT) calculations, but additionally allowing for a spin
anisotropy such that χ+−/χzz < 1 and the overall magnitude
of the peaked structure of both components at a Fermi surface
nesting vector. Other authors investigated similar scenarios in
the context of organic superconductors [20].

In multiband systems, however, the susceptibility peak
is not necessarily peaked at wave vectors determined by
the Fermi surface. We therefore adopt a more general phe-
nomenology, and we show that finite-q triplet pairing is
possible even in the absence of the spin-orbit coupling nec-
essary to enhance the anisotropy in the spin response.

II. MODEL

We consider a single-band tight-binding model with the
Hamiltonian

H0 =
∑
kσ

ξkc†
kσ ckσ , (1)

where ξk is the Fourier transform of the hopping matrix
elements, which for a square lattice system in two di-
mensions would be given by ξk = −2t[cos(kx ) + cos(ky)] −
4t ′ cos(kx ) cos(ky) − μ, with t being the hopping integral to
nearest neighbors, and t ′ is the hopping integral between next-
nearest neighbors.

When such a system is subjected to interactions, it can
exhibit an instability to a superconducting state such that the
superconducting gap is given by the self-consistent solution
of the equation [21]
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are the energy eigenvalues in the superconducting state with
singlet/triplet order parameter �

s/t
k , and �

s/t
k,k′ are the (effec-

tive) singlet/triplet pairing interactions.
The pairing vertices are given by the symmetrized opposite

spin pairing vertices for the singlet case,

�s
k,k′ = �

opp.sp
k,k′ + �

opp.sp
−k,k′ , (4)

and by the same spin pairing vertices for the triplet case, which
are also related to the opposite spin pairing vertices as follows:

�t
k,k′ = �

opp.sp
k,k′ − �

opp.sp
−k,k′ = �

same sp
k,k′ − �

same sp
−k,k′ . (5)

Note that the singlet (triplet) pairing vertices are symmetrized
(antisymmetrized) to obey the Pauli principle for the overall

antisymmetry of the Cooper pair wave function. For the sin-
glet case, this is apparent in the spin structure, while a triplet
state must be of odd parity in the order parameter, �s

k = �s
−k

and �t
k = −�t

−k.
If the pairing interaction is mediated by a spin-fluctuation

mechanism, the interactions can be approximately derived
from a (partial) summation of bubble and ladder diagrams
with the result [5]
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where the spin and charge susceptibilities are given by

χ sp
q = χ0(q)

1 − Uχ0(q)
, (8)

χ ch
q = χ0(q)

1 + Uχ0(q)
(9)

in the random phase approximation (RPA).
Here, U is an (effective) Hubbard interaction originating

from the Hamiltonian

Hint = U

2N

∑
k,k′,q

∑
σ

c†
k′σ c†

−k′+qσ c−k+qσ ckσ , (10)

and χ0(q) is the response function (susceptibility) of the cor-
responding noninteracting electron system. In principle, one
would like to calculate χ0(q) directly from the tight-binding
model Hamiltonian (1), and this has been done previously in
various theoretical investigations in single-band systems [21]
and multiband systems [22–24]. Note, however, that while
the pairing problem is a low-energy problem where only the
electronic structure very near the Fermi level plays a role,
in the multiband case the pairing interaction itself may in
addition contain contributions involving interband transitions
from higher-energy states. The paramagnetic susceptibility
in itinerant multiband models is given by an integral over
the Brillouin zone and sum over bands, where all possible
scattering contributions are taken into account, weighted by
the inverse energy difference of the eigenstates. Thus, for
multiband models, interband transitions can contribute sig-
nificantly if there is sufficient phase space connecting states
with the same momentum transfer q. The importance of
these scattering contributions has been examined using the
Kramers-Kronig relation, for example, using a model for an
iron-based material in Ref. [25].

In addition, as we discuss further below in Sec. IV, the
Fermi surface of many interesting candidate unconventional
superconductors is not well known. Since many such systems
are strongly correlated materials, density functional theories
have well-known limitations; the band structure of heavy
fermion systems, in particular, is notoriously difficult to cal-
culate accurately due to their significant f -electron character
at the Fermi level. While comparison with angle-resolved
photoemission spectroscopy (ARPES) and quantum oscilla-
tion experiments sometimes assists these determinations, in
many cases atomically flat surfaces appropriate for ARPES
are difficult to obtain, and the 3D nature of the systems
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introduces further uncertainties. We therefore adopt a slightly
different viewpoint in considering the low-energy tight-
binding model Eq. (1) and the response function χ0(q) as
independent quantities, an approach that has been adapted
already by calculating χ0(q) from more bands than were used
in the solution of the actual pairing problem [16].

In the following, we restrict ourselves further to the super-
conducting instability at Tc. Using an expansion in powers of
the gap, the BCS gap equation, Eq. (2), can be cast into the
linearized gap equation in the singlet and triplet channel,[

− 1

2(2π )D

∫
FS

dk′

|vk′ |�
s/t
k,k′

]
g(k′) = λig(k). (11)

Here g(k) is the gap symmetry function, which contains the
momentum dependence of the order parameter, and λi is the
eigenvalue. The leading instability is given by the largest
eigenvalue, and g(k) is proportional to the gap function at Tc.
In this way, the calculation reduces to the calculation of the
eigenvalues and eigenvectors of a matrix whose elements need
to be determined by calculating the pairing interaction and the
weight associated with each of the k-points that parametrize
the Fermi surface in D = 2, 3 dimensions.

III. RESULTS FOR MODEL SYSTEMS

A. Triplet pairing from scattering at finite momentum

Examining the spin-singlet pairing vertex, one finds that
�s

k,k′ > 0 for all choices of k and k′ when assuming χ
sp
q >

χ ch
q , which is natural in a RPA approach; see Eqs. (8) and

(9). Thus the spin-singlet pairing is always repulsive for
pairs of states at the Fermi surface, such that only sign
changing solutions to the gap equation (2) are allowed; the
additional minus sign is then canceled by the relative mi-
nus sign in �k and �k′ . Indeed, it is required that the
pairing vertex is actually momentum-dependent, originating
from a momentum-dependent susceptibility χ0(q) mediating
a stronger repulsion for some k + k′ = q or k − k′ = q. In
this case, the gap symmetry function g(k) tends to be large
and of opposite sign for points k and k′ on the Fermi surface
that are connected by the vector q where χ0(q) is peaked.

For the triplet pairing vertex, it turns out that �t
k,k′ in Eq. (5)

is a difference of two positive terms and can be positive or
negative, depending on whether �

same sp
k,k′ or �

same sp
−k,k′ is larger.

Furthermore, we note that these only depend on the momen-
tum transfer k − k′; see Eq. (7). If the summed charge and
spin susceptibilities at q = k − k′ are larger (than the ones at
k + k′), one has an effective attractive interaction for Cooper
pairs (k,−k), (k′,−k′) at the respective Fermi points k and
k′. Indeed, a susceptibility that is peaked at q = 0 would im-
mediately give rise to an attractive pair scattering for Cooper
pairs that are located close by on the Fermi surface.

To find a solution to the gap equation (2), it is required
additionally that the order parameter is odd parity, yielding a
sign change upon inversion. In addition, the periodicity of the
gap function within the Brillouin zone forces a vanishing g(k)
at the zone boundaries. Examining the single-band Hubbard
model alone, one finds triplet instabilities to be leading solu-
tions for small filling where the gap symmetry function is of

FIG. 1. Single-band Hubbard model: triplet pairing from finite-
momentum scattering. (a) Spin susceptibility in one-quarter of the
Brillouin zone for the single-band Hubbard model (U = 0.05, t = 1,
t ′ = 0) at filling n = 0.54 and low temperature T = 0.0001, which
exhibits two dominant peaks at the scattering vectors q1 and q2 as
explicitly shown in panel (b), where the susceptibility is plotted along
the high-symmetry path marked in red in panel (a). (c) Gap symmetry
function g(k) of the leading triplet instability, and (d) leading singlet
instability plotted at the Fermi surface with the same momentum
scale as in (a) and the scattering vectors placed to connect points
k and k′ on the Fermi surface.

lowest-order harmonic, i.e., it has the form ∝ sin(kx ) in two
dimensions; see, for example, Refs. [21,26].

If, however, the susceptibility is peaked at q with magni-
tude slightly smaller than 2kF , there are further solutions to
the linearized gap equation, Eq. (11), which involve higher-
order harmonics, i.e., more nodal lines/points are required.
Such a situation, for example, occurs in the single-band model
close to quarter-filling [21,27], where in the weak-coupling
regime U � t a triplet state emerging from finite-q scattering
becomes favorable and has an eigenvalue that exceeds the
one from the singlet instability. For purposes of illustration,
we show the susceptibility for this case in Figs. 1(a) and
1(b) together with the leading instabilities in the triplet and
singlet channel [Figs. 1(c) and 1(d)]. Note that the position
of accidental nodal lines and those where |g(k)| is maximum
is very similar in these states. As seen in panels (a) and (b),
the susceptibility has two dominant peak contributions labeled
by q1 and q2. These mediate the dominant pairing interaction
that drives g(k) to be large and the same sign for the triplet
case because �t

k,k′ < 0 (c), while in the singlet case the same
scattering vectors connect parts of the Fermi surface which
have opposite sign of the order parameter.

B. Phase diagram from peaked susceptibility

In this section, we drop the requirement that the (bare) sus-
ceptibility is directly calculated from the tight-binding model
that describes the Fermi surface and therefore the low-energy
electronic structure of the system. Instead, the paramagnetic
response is assumed to exhibit a peak structure at a certain
dominant vector q0 (and its symmetry-related counterparts);
the origin of χ0(q) could be from higher-energy scattering
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FIG. 2. Single-band model with phenomenological susceptibil-
ity. (a) Fermi surface of the model at filling n = 0.1 exhibiting an
almost circular Fermi surface with average magnitude k̄F of the
Fermi vector. (b) Susceptibility exhibiting peaks at q0 and symmetry-
related points in the Brillouin zone. (c,d) Singlet and triplet gap
structure functions g(k) for the respective leading solution in each
channel.

(other bands) or be related to a Heisenberg model of local-
ized spins with dominant fluctuations at the symmetry-related
q0. In the localized picture, the momentum of the dominant
fluctuations is given by the structure of the exchange inter-
actions in the model such that in principle any q0 can be
realized with a suitable microscopic model. For concreteness,
we consider our tight-binding model on the square lattice
with t = 1, t ′ = −0.2 at filling n = 0.1, i.e., μ = −2.828 77,
yielding an almost circular Fermi surface; see Fig. 2(a). An
example susceptibility with peaks at q0 = (qx, qy) = (1.9, 1)
and symmetry-related positions for the D4 symmetry is pre-
sented in panel (b) of the same figure. The peak is taken to
have a Lorentzian shape with a structure fq0 (q) = 1/[(q0 −
q)2/ζ 2 + 1], where we set the decay constant in momentum
space as ζ = 0.5. In summary, we use

χ0(q) = 1

N0

∑
D4/q0

fq0 (q), (12)

where N0 is chosen such that the maximum (in the Brillouin
zone) is set to unity, i.e., the critical Hubbard interaction
would be at Uc = t = 1 and the sum is taken over the eight
symmetry-related vectors. Using this susceptibility together
with the pairing vertex and Eqs. (6), (7), (8), and (9) to
solve the linearized gap equation for U = 0.9 yields an (ex-
tended) s-wave state [Fig. 2(c)] and a (higher order) p-wave
triplet state that has a lower eigenvalue (but of similar or-
der) [Fig. 2(d)]. Note that the dominant scattering processes
connect Fermi points with the opposite (same) sign for the
singlet (triplet) states. Because the scattering vector q0 is not
at a high symmetry point in general, the triplet state can retain
odd parity, as seen in Fig. 2(d).

Next, we discuss the phase diagram as a function of the
peak position q0, which exhibits various dominant instabilities

FIG. 3. Phase diagram of the single-band model. (a) Phase di-
agram of dominating superconducting instabilities as a function of
the position of the peak in the susceptibility q0 = (qx, qy ); colors
indicate the types of solutions. (b), (d) Eigenvalue λt (λs) of the
leading triplet (singlet) solution. The triplet eigenvalue is peaked at
small but nonzero momentum transfer, while the singlet eigenvalue
has a slightly larger maximal eigenvalue and strong peaks closer
to the 2k̄F line. (c) The ratio of the eigenvalues λt/λs showing the
relative competition, which is larger than 1 on a finite circle in the
center, has a dip and a rise beyond the dashed 2k̄F line.

as presented in Fig. 3(a), notably the finite size of the triplet
phase for small |q0|. The phase diagram is only shown for q0

in the first quadrant, and there is a mirror symmetry at the
45◦ line as expected from the square-lattice system. Panels (b)
and (d) show the eigenvalue of the leading instability in each
channel, while panel (c) presenting the relative eigenvalues
λt/λs reveals that a triplet state can become competitive also
for large q0 close to phase boundaries and “triple” points
where three singlet instabilities meet, very similar to the emer-
gence of the dome for triplet states in the single-band Hubbard
model at weak coupling [21,27]. In this example, however, the
triplet state is never the leading instability except near q = 0.

Extending the normal-state Hamiltonian trivially in the kz

direction (with no dispersion), the Fermi surface becomes
a cylindrical tube, and we can study the influence of finite
qz components in the susceptibility. Indeed for qz = 0, our
model just consists of sets of coupled Cooper pairs at the
Fermi points k and k′ at each value of kz, while there is no
scattering between states at different kz. In this case, we will
just recover highly degenerate solutions that have pairing in
each plane. Since we employ only roughly 650 k-points on
the Fermi surface, the numerical approach does not faithfully
capture these degeneracies. However, at finite qz one finds a
competition between singlet and triplet instabilities [Figs. 4(c)
and 4(d)] with triplet states that have a nodal plane at kz = 0
[Fig. 5(b)] or states where (accidental) nodes appear across
the scattering vector q0; see Figs. 5(e) and 5(f). Such triplet
states with additional (non-symmetry-enforced) nodes have
been discussed in the context of spin fluctuation pairing in
Sr2RuO4 [28,29]. The calculations and discussions in the
previous section demonstrate that pairing into a triplet state

104507-4



SPIN-TRIPLET SUPERCONDUCTIVITY DRIVEN BY … PHYSICAL REVIEW B 105, 104507 (2022)

FIG. 4. Singlet pairing eigenvalues λs and triplet pairing eigen-
values λt as a function of q0 = (qx, qy, qz ) for a single-band model
at low filling n = 0.1, but with trivially extended dispersion in the
z-direction (a)–(d). At small qz, triplet solutions are competitive (a),
(b), while for larger qz, the phase diagram is dominated by singlet
instabilities (c), (d). The line of twice the average in-plane Fermi
momentum 2k̄F is marked in panel (a).

can be driven by spin fluctuations at small q0, where the pair
scattering is trivially between states that are in a region with
the same sign of the superconducting order parameter, or by
spin fluctuations with large momentum transfer q0 where this
vector connects regions of the Fermi surface that exhibit the
same sign, but have two or more (accidental) nodal lines in
between.

IV. DISCUSSION OF RELATION TO UTe2

In this section, we discuss the electronic structure of
the candidate triplet superconductor UTe2 and use a similar
phenomenological approach to motivate possible supercon-
ducting instabilities assuming the Fermi surface of this system
as revealed from ab initio calculations [10,30] and ARPES
measurements [30]. We begin by studying a featureless Fermi
surface in a single-band picture, an approximation that ne-
glects multiorbital effects and more importantly spin-orbit
coupling when calculating the pairing interaction that enters
Eq. (11). Nevertheless, the Fermi surface itself is derived
from a Hamiltonian with SOC, such that the pairing may
be supposed to be in the pseudospin basis of the Kramer’s

FIG. 5. Examples of pairing states for a model without dis-
persion in the z-direction, but three-dimensional structure of the
susceptibility. (a) Leading singlet state for q0 = (0.1, 0.1, 0.6)π ,
where accidental nodes appear in the kx-ky planes. (b), (c) The two
leading triplet states of pz symmetry and px symmetry where the pair
scattering is within the region of the same sign. (d)–(f) Pairing states
for a different q0 = (0.6, 0.6, 1.0)π . (d), (e) The leading singlet
states show nodes at the kx-ky planes. (f) The leading triplet solution
is of higher-order harmonics with q0 connecting the same sign parts
across a nodal line.

degenerate states on the Fermi surface. However, for the sake
of discussing the possibility of instabilities from nonzero q0

fluctuations, our approach is simplified, but it captures the es-
sential physics of pairing from antiferromagnetic fluctuations.
We note that by adopting a multiband BCS-like approach,
without including the frequency-dependent self-energy as in
Eliashberg theory, we neglect band renormalizations that may
be stronger in triplet superconductors and destabilize the
triplet channel further [31]. We believe that this quantitative
effect will simply shift the phase boundaries of the triplet
phases found below slightly, and will not affect our main
qualitative point here.

Let us discuss at this point the influence of anisotropy in
spin space, as in principle expected when spin-orbit coupling
is present. This has been examined by Kuwabara and Ogata
[17], where the susceptibility obtained from a calculation
using a DFT band structure for Sr2RuO4 (fixing the maximum
of the spin correlations and allowing for a spin anisotropy
with χzz > χ+−) was discussed in terms of its influence on
superconducting pairing. Decreasing χ+− leaves the triplet
instabilities with a d-vector in the x-y plane unchanged, while
the pairing for the state with a d-vector along the z direc-
tion is modified, as is the singlet pairing interaction. For
their choice of the Fermi surface topology with a nesting
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FIG. 6. Fermi surfaces from theoretical models. (a) Fermi surface from a four-band tight-binding model within an ab initio calculation
for ThTe2 (red/blue) different orbital content (this work). (b) Fermi surface from a 56-band tight-binding model derived from an ab initio
calculation for UTe2 (shown is the inverse Fermi velocity in units of 1/eV, this work). (c) Fermi surface from a single-band model fitted to ab
initio calculations [33].

across the Brillouin zone boundary, it was demonstrated that
a lowest harmonic d-wave singlet solution is suppressed upon
decreasing χ+−, and the aforementioned triplet solution (d-
vector along the z direction) of the lowest harmonic is
enhanced such that their Tc’s cross, implying a phase transition
from singlet to triplet pairing states. Indeed, for UTe2 sub-
stantial anisotropy in the spin susceptibility has been detected
[32], such that splitting of Tc for the triplet states with differ-
ent directions of the d-vector is expected as well. However,
whether a reduced χ+− will make the triplet state with a
d-vector along the z direction more (less) competitive depends
on whether the leading superconducting state is driven by
scattering between k and k′, which have the opposite (same)
sign of �(k). In the aforementioned work, instabilities with
lowest-order harmonics are considered, such that the possi-
bility of driving a triplet state by fluctuations at q connecting
the same sign of the order parameter with higher order nodes
[see Fig. 1(d)] is not included. This always leads to a negative
expectation value for the pairing eigenvalue when calculated
without anisotropy in spin space as discussed in Ref. [17].

A. Electronic structure of UTe2

Next, we want to understand which specific materials char-
acteristics might drive triplet superconductivity UTe2, which
shows considerable experimental evidence counter to singlet
pairing. At the same time, to our knowledge there is no di-
rect evidence for the expected ferromagnetic spin fluctuations
(despite the claimed “proximity” to other sister compounds
with ferromagnetic order) [34]. Instead, antiferromagnetic
spin fluctuations were detected in inelastic neutron scattering
experiments [10,35,36]. While it is challenging to obtain a
realistic electronic structure (tight-binding model) from ab
initio calculations because the system is a heavy fermion
material with strong spin-orbit coupling effects and electronic
correlations, there have been several attempts presented so
far. Some authors have adopted calculations of the electronic
structure that simply study the sister compound ThTe2 with
the experimental lattice constants of UTe2, arguing that the
primary f -weight is away from the Fermi level [30], a detail
that is also shown in the supplemental material. Such an
approach evidently neglects low-energy Kondo lattice scatter-
ing. Nevertheless, it appears that at least some of the effects
of correlations are captured within this approximation, as
confirmed by DMFT calculations using the correct ab initio
input for UTe2 [30], as well as DFT+U calculations [37].

Here it is seen that the UTe2 DMFT spectral function is quite
similar to a ThTe2 calculation and compares reasonably well
to ARPES measurements. From such an approach, one can
derive a four-band model with two U atoms in the elementary
cell, exhibiting a Fermi surface as presented in Fig. 6(a).

We have obtained the corresponding tight-binding model
from a DFT calculation with the FPLO code [38] using the
crystallographic parameters of UTe2 with a = 4.1617 Å, b =
6.1276 Å, and c = 13.965 Å, the space group Immm (no.
71), and internal parameters for Th at Wyckoff position 4e
z = 0.1348, Te at 4j z = 0.2977, and Te at 4h y = 0.251.

A very similar Fermi surface with four almost two-
dimensional nearly square tubes, but somewhat different
corrugation in the kz direction, is obtained from a tight-
binding model derived from a LDA+U calculation for UTe2

[see Fig. 6(b)], with the same lattice parameters as described
in the previous paragraph, but placing a U atom. Fully rela-
tivistic calculations were carried out, which treats spin-orbit
coupling accurately. Here, we use the values F0 = 2 eV,
F2 = 0, and F4 = 0 for the Slater parameters corresponding
to Ueff = 2 eV, J = 0, and we perform a DFT+U calculation.
The double counting term in LDA+U calculations is treated
using the around mean field (AMF) formula [39]. After ini-
tial convergence, we project to symmetry-preserving Wannier
functions of 56 states near the Fermi level [40].

Finally, a somewhat different topology of the Fermi sur-
face was recently proposed by a fit of a single-band model
(including spin-orbit coupling) to a DFT+U calculation [see
Fig. 6(b)] [33]. The main differences are whether or not the
bands cross the Fermi level along the dashed line from � to
the top of the Brillouin zone, an effect that theoretically can be
controlled by the choice of the Hubbard interaction U in the
DFT+U approach such that band crossings and band inver-
sion of bands with even and odd parity can be induced [33].

B. Susceptibility and spin fluctuation pairing
on the Fermi surface of UTe2

For our 56-band tight-binding model, we calculate the
orbitally resolved susceptibility [24]

χ0

1
2
3
4

(q) = − 1

N

∑
k,μν

[ f (Eν (k + q)) − f (Eμ(k))]

× a
4
μ (k)a
2∗

μ (k)a
1
ν (k + q)a
3∗

ν (k + q)

Eν (k + q) − Eμ(k)
(13)
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FIG. 7. Physical susceptibility (in units of 1/eV) from tight-
binding models. (a) Susceptibility as calculated from the four-band
model (at qz = 0) and (b) visualization of the susceptibility from the
56-band model in the full Brillouin zone with a total of 11 × 11 ×
21 q-points repeating the values at the Brillouin zone boundary. The
color of each pixel corresponds to one data point; the data for fixed qx

and qy appear as stacked bars in the qz direction. Units for χ (q) are
1/eV, but they are not comparable due to differences in the overall
electron density of the models.

for the components 
1 = 
3, 
2 = 
4, which enter the physical
susceptibility

χ0(q) = 1

2

∑

,
′

χ0


′

′ (q). (14)

Here, a

μ(k) is the 
 orbital component of the eigenvector

in band μ with eigenenergy Eμ(k), and f (E ) is the
Fermi function. We calculate the susceptibility on a grid
consisting in 11 × 11 × 21 equally spaced momenta q in
the Brillouin zone [−π/a, . . . , π/a] × [−π/b, . . . , π/b] ×
[−2π/c, . . . , 2π/c] [Fig. 7(b)], where the sum over bands μ

and ν is cut out when large band energies Eμ appear in the
denominator. For the four-band model, we can use a much
finer k grid, and we do not have to cut off any bands from
the sum. Comparing the susceptibility as obtained from the
two tight-binding models reveals that there is no signature
of ferromagnetic fluctuations since χ (q) has a minimum at

FIG. 8. Phase diagram for qz = π using the nontrivial Fermi
surfaces for UTe2. (a) Susceptibility peaked at q0 = (qx, qy, qz ) and
symmetry-related positions together with the Fermi surface of the
four-band model, U = 0.2. (b) Susceptibility with elongated peak at
q0 = (qx, qy, qz ) and additional two-dimensional contribution at the
qx plane, U = 0.4, fq0 (q) in Eq. (15). (c) Susceptibility with peak at
q0 = (qx, qy, qz ) and additional two-dimensional contribution at the
qx plane, but using the Fermi surface from the single-band model
[33], U = 0.2 (left: singlet eigenvalue, middle: triplet eigenvalue,
right: ratio; maximum of the eigenvalues as indicated).

q = 0, but a ridge close to the Brillouin zone boundary in
the x-direction; see Fig. 7. There are small variations as a
function of qy and qz in both cases, which might play a role
in the formation of the superconducting instability. Note that
a pairing calculation within a spin-fluctuation approach for
the four-band model yields a leading extended s-wave state
with nodes at kx-ky planes while the triplet state has much
smaller eigenvalue (not shown). The ab initio calculation
of tight-binding models for UTe2 might be inaccurate, and
our spin-fluctuation approach does not incorporate effects
of spin-orbit coupling in the four-band model. We therefore
do not advocate for a realistic determination of the pairing
state from these investigations. Instead, we want to follow up
on the approach to use the example Fermi surface geometry
in order to investigate how spin-fluctuation pairing would
lead to singlet and triplet instabilities given a (paramagnetic)
susceptibility with a given peak structure. Guided by the
existence of the ridge of intensity in the χ (q) in both models
and also experimental findings of large antiferromagnetic
fluctuations close to the Brillouin zone boundary [10,35,36],
we start from a phenomenological momentum dependence
as in Eq. (12). However, now the momentum dependence
contains a one-dimensional peak at q0, only restricted in qx

and additionally a weaker three-dimensional peak at the same
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momentum,

fq0 (q) = 1
δq2

x
ζ 2 + 1

+ 1/2
δq2

x +0.1δq2
y +δq2

z

ζ 2 + 1
, (15)

where δqi ≡ qi − q0,i. The overall normalization is again
chosen such that Uc = 1 for a magnetic instability at q0.
Symmetry-related peaks for the orthorhombic structure in-
cluding periodic repetition with respect to the (conventional)
Brillouin zone that is chosen to be within qx ∈ [−π/a, π/a],
qy ∈ [−π/b, π/b], qz ∈ [−2π/c, 2π/c] [41] are included. In
Fig. 8(a), we present a phase diagram as a function of the
in-plane peak position qx and qy for a fixed qz = π , similar
to Fig. 4, using the Fermi surface (including distribution of
weights from the Fermi velocity) of our four-band model [see
Fig. 6(a)]. Indeed, because of the orthorhombic symmetry,
the phase diagram is less symmetric, and triplet instabilities
seem to be favorable only at small qx and qy. Note that
despite the deviations from tetragonal symmetry, the pairing
eigenstates are overall very similar for spin fluctuations at
q0 = (0.1, 0.6, 1)π [q0 = (0.6, 0.1, 1)π ] as demonstrated in
Figs. 9(a) and 9(b), where the leading triplet states seem to
resemble px and (py) pairing instabilities, while the dominant
singlet state exhibits multiple nodes along the ky-kz (kx-kz)
plane.

For a calculation with a susceptibility that resembles
the susceptibility obtained from the tight-binding models
by using the momentum dependence from Eq. (15) with a
one-dimensional contribution, the phase diagram shows little
dependence on qy as expected from the ridge structure of
the susceptibility, see Fig. 8(b). The eigenvalues have lit-
tle dependence on qy, but there appears a region of close
competition between singlet and triplet instabilities close to
qx = 0.7π . Pairing states in this region as shown in Fig. 9(c)
exhibit accidental nodal lines in the ky-kz plane, and the triplet
solution corresponds to higher harmonics, i.e., the dominant
scattering vector connects regions with the same sign of g(k)
across two nodal planes. Finally, we also calculated a similar
phase diagram for the Fermi surface of the single-band model
of Ref. [33] [Fig. 6(c)] that has overall very similar shape,
with a triplet instability that becomes competitive at larger
qx ≈ 0.9π [Fig. 8(c)]. Indeed the Fermi surface is less two-
dimensional than for the four-band model, and the dependence
of the eigenvalues λs and λt on qx is less pronounced. Still
the eigenstates show nodal lines in the ky-kz planes where
the positions of the maxima of |g(k)| are similar between the
singlet and triplet solution, the latter again exhibiting higher-
order harmonics with the scattering vector across two nodal
planes. Note that the line nodes of the triplet states visible in
Fig. 9 may disappear in the presence of spin-orbit coupling
[42]. Let us conclude this discussion of the phenomenologi-
cal phase diagram by noting that a recent INS investigation
[35,36] has detected dominant spin fluctuations at (hkl ) ≈
(0.57, 0, 0) that corresponds to q0 = (1 − 0.57, 0, 0.5)2π =
(0.86π, 0, π ) in the conventional Brillouin zone setting, i.e.,
close to the point in momentum space where competition
between singlet and triplet solutions is seen in our phase
diagram; see Fig. 8.
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FIG. 9. Example pairing states for three-dimensional Fermi
surface of UTe2. (a) Susceptibility peaked at q0 = (0.1, 0.6, 1)π
and symmetry-related positions. (b) Susceptibility peaked at q0 =
(0.6, 0.1, 1)π and symmetry-related positions. (c) Susceptibility
with peak at q0 = (0.7, 0, 1)π and additional two-dimensional
contribution at the qx = 0.7π plane, i.e., fq0 (q) as in Eq. (15).
(d) Susceptibility with peak at q0 = (0.7, 0, 1)π and additional
two-dimensional contribution at the qx = 0.7π plane, but using the
single-band Fermi surface.

V. CONCLUSIONS

The expectation that UTe2 might be a nearly ferromagnetic
superconductor has not been borne out by inelastic neutron
experiments, which show that the magnetic fluctuation spec-
trum is dominated by a broad ridge of excitations centered
at q = 2π (0.57, 0, 0) in the primitive Brillouin zone. In most
known families of unconventional superconductors, however,
finite-q magnetic scattering leads to singlet pairing. Motivated
by this apparent paradox, we have considered the general
question of how finite-q spin fluctuations can drive triplet
pairing, and further asked if there is anything specific about
the UTe2 system that might favor such a scenario. The spin
fluctuation interaction is driven by the magnetic susceptibil-
ity χ (q), whose peaks are determined by the Fermi surface
in single-band systems, but may be strongly influenced by
higher-energy states in the case of multiband superconduc-
tors. We showed that even in one-band situations with very
simple, symmetric Fermi surfaces, it is possible that peaks of
χ (q), calculated in the random phase approximation, occur at
rather asymmetric positions in q-space, driving triplet super-
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conductivity via an attractive pair scattering connecting order
parameters with the same sign. Such a situation is known to
occur, for example, in the one-band Hubbard model quite far
from half-filling, which we revisited briefly here.

In more complicated situations, susceptibility peaks
can occur at highly asymmetric positions depending on
the number of bands, orbital content, and dimensionality
of the near-Fermi-level electronic structure. We therefore
next considered situations with simple Fermi surfaces, but
susceptibilities peaked at phenomenologically chosen po-
sitions, consistent of course with the symmetries of the
underlying crystal. For such models, we calculated “phase
diagrams” of the amplitude of spin fluctuation pairing in
singlet and triplet channels according to the position qx, qy

of the dominant χ (q) peak calculated in the random phase
approximation. In addition to the usual ferromagnetic small-q
states, large-q triplet states were found to be competitive or
dominant over significant ranges of such phase diagrams. We
discussed what kinds of scattering processes would give rise
to such states, and we displayed the structure of the leading
gap functions, which generally involve higher-order harmon-
ics of p-wave representations, with accidental nodal lines.

With specific focus on the UTe2 system, we presented
results for a DFT+U calculation of the susceptibility
indicating the presence of prominent scattering ridges of
intensity aligned along the y direction, qualitatively consis-
tent with INS experiments. To perform the associated spin
fluctuation pairing calculations, we used the Fermi surface
as obtained from downfolding ab initio results, and again
assumed a phenomenological susceptibility inspired by the

ab initio calculation. We found that large-q triplet states are
indeed competitive over large parts of the phase diagram, and
we compared to results using similar Fermi surfaces obtained
from other approaches in the literature. Thus we conclude
that spin fluctuations at finite q may indeed be consistent
with the spin-triplet pairing deduced phenomenologically by
comparison with NMR and other experiments.

We have presented a possible solution to the UTe2 “para-
dox” described here within the framework of conventional
spin fluctuation theory. Of course, if the pairing mechanism
appropriate to this material turns out to be quite different from
what is assumed here, our calculations may not apply to UTe2

directly, but should describe other potential triplet supercon-
ductors, including possibly UPt3. In addition, we note that
the calculations presented here were for the simplest para-
magnetic, spin-rotationally-invariant case. A more complete
treatment, including spin-orbit coupling and the associated
spin anisotropy in the susceptibility, the orbital degrees of
freedom, and a direct calculation of the susceptibility from the
model electronic structure, will be postponed to a later date
when more certainty exists about the appropriate low-energy
model.
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