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Thermal effects on collective modes in disordered s-wave superconductors
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We investigate the effect of thermal fluctuations on the two-particle spectral function for a disordered s-wave
superconductor in two dimensions, focusing on the evolution of the collective amplitude and phase modes. We
find three main effects of thermal fluctuations: (1) the phase mode is softened with increasing temperature,
reflecting the decrease of superfluid stiffness; (2) remarkably, the nondispersive collective amplitude modes at
finite energy near q = [0, 0] and q = [π, π ] survive even in the presence of thermal fluctuations in the disordered
superconductor; and (3) the scattering of the thermally excited fermionic quasiparticles leads to low-energy
incoherent spectral weight that forms a strongly momentum-dependent background halo around the phase and
amplitude collective modes and broadens them. Due to momentum and energy conservation constraints, this
halo has a boundary which disperses linearly at low momenta and shows a strong dip near the [π, π ] point in the
Brillouin zone.
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I. INTRODUCTION

The quantum phase transition between superconducting
and insulating phases of two-dimensional films, driven by in-
creasing disorder [1–6], provides a paradigm for the complex
interplay of interaction and localization [7–11]. The single-
particle fermionic spectrum remains gapped throughout the
transition [9,12] and the fluctuations of the local supercon-
ducting order parameter, that describe the phase (Goldstone)
and amplitude (Anderson-Higgs) collective modes, are the
key low-energy excitations that drive this phase transi-
tion [13–15].

The Higgs mode in superconductors has a long his-
tory [16–18] and continues to be a topic of tremendous current
interest [15,19–30]. While the observation of the Higgs par-
ticle in particle colliders [31,32] has been hailed as one of
the recent successes in that field, the corresponding mode
has not been observed in a clean superconductor. This is due
to the fact that in a clean superconductor, this mode sits at
the two-particle continuum threshold and is damped [17].
Early predictions [33] that the mode can be seen as a subgap
feature in systems with accompanying charge density order
has recently been experimentally verified [34]. The area has
also received a lot of attention due to clean observation of the
Higgs mode in a charge neutral ultracold atomic system [13]
near the superfluid-insulator transition. Recently, observation
of low-energy optical spectral weight in disordered super-
conductors [14] close to a disorder-driven superfluid-insulator
transition has led to a conjecture that this weight is due to the
Higgs mode, based on earlier work on optical conductivity in
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clean systems [35,36]. More recent theoretical work [37,38]
has looked at the question of the contribution of collective
modes to optical conductivity in disordered superconductors
at zero temperature.

In an earlier work [39], we studied the evolution of
two-particle pair spectral functions [39–43] in a disordered
superconductor and presented their full momentum and
frequency dependence as a function of disorder at zero tem-
perature. We found the expected (a) continuum of two-particle
excitations, above an energy threshold equal to twice the
single-particle gap, and (b) linearly dispersing low-energy
collective modes. In addition, surprisingly, we found addi-
tional spectral weight at finite energies below the two-particle
continuum in the long-wavelength limit. The weight in this
nondispersive feature, which was spectrally separated from
the linearly dispersing collective modes, increased with in-
creasing disorder strength. We were able to correlate this
nondispersive spectral weight with the Higgs mode and the
low-energy Higgs weight was concentrated in this additional
spectral feature in the two-particle pair spectral function. One
obvious question is, How does that picture change in the
presence of temperature? It is crucial to understand the com-
bined role of both thermal and quantum fluctuations to make
connections with experimental data.

We also found that at arbitrarily weak disorder, the zero
momentum Anderson-Higgs mode that sits at the threshold
of the two-particle continuum, shifts nonperturbatively within
the two-particle gap. This subgap feature of the Anderson-
Higgs mode is distinguishable from the low-energy phase
divergence at all disorder values, making it a possible candi-
date to observe in energy-resolved spectroscopies. Therefore,
the natural question that arises is, What is the fate of the
Anderson-Higgs mode as a function of temperature? Is it still
possible to separate this mode from the phase fluctuations at
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FIG. 1. (a) At T = 0, the breaking of the Cooper pair into two
quasiparticles leads to a two-particle continuum in the pair spectral
weight with a threshold of 2�. The lower part of the figure depicts a
schematic of the features of the pair spectral function at T = 0. (b) At
finite temperature, the scattering of thermally excited quasiparticles
leads to additional low energy incoherent spectral weight. This leads
to a halo behind the collective modes, as shown in the lower part of
the figure.

finite temperatures? We address these important questions in
this paper.

Our theoretical approach involving functional integrals
allows us to investigate the different contributions of the am-
plitude, the phase, and amplitude-phase mixing fluctuations
to the two-particle spectral function at finite temperature. The
key features of our analysis are the following: (i) We obtain
the evolution of the Anderson-Higgs and the Goldstone mode
as a function of both temperature and disorder. (ii) We find that
small thermal fluctuations induce additional low-energy inco-
herent spectral weight that forms lobes below the two-particle
gap, which compete with the collective mode structure in the
amplitude sector, but keep the phase sector mostly unaffected.
(iii) In the presence of weak disorder, the subgap Anderson-
Higgs mode can be observed separately from the low-energy
phase pile-up in an energy-resolved way even in presence
of moderately high temperatures, thereby making it a robust
feature of disordered superconductors. We note that an alter-
native approach based on an effective classical Monte Carlo
has been used to treat disordered superconductors at finite
temperature [44] but it does not provide momentum-resolved
information about the amplitude and phase fluctuations.

The two-particle continuum at T = 0 is formed micro-
scopically by breaking up a Cooper pair into a pair of
single-particle excitations, as shown in Fig. 1(a), and requires
a threshold energy of twice the single-particle gap. On the
other hand, the collective mode is better described in terms of
the long-wavelength fluctuations of the amplitude and phase
of the condensate of the Cooper-pairs (i.e., the order param-
eter). As temperature is raised, changes in the pair spectral
function occur by two processes: (1) The collective mode

dispersion flattens as the superfluid stiffness is reduced at
finite temperatures due to thermally excited quasiparticles and
(2), additionally, another incoherent continuum is formed due
to scattering of these thermally populated quasiparticles, as
shown in Fig. 1(b). This leads to a low-energy diffuse back-
ground weight and consequent broadening of the collective
modes. In a clean system, the incoherent thermal excitations
occur only below an upper energy cutoff εcutoff(q) determined
by energy and momentum conservation in the scattering pro-
cess. εcutoff(q) varies linearly at long wavelengths and shows a
prominent dip around the commensurate wave vector [π, π ].

In a weakly disordered system, the behavior of the en-
ergy cutoff and its momentum dependence continues to hold
with small corrections. As a result, the nondispersive spectral
weight observed at finite subgap energy at long wavelengths
remains sharp at finite temperatures for weakly disordered
systems. For strongly disordered systems, the constraint due
to momentum conservation in a scattering process is no longer
applicable, and we find the incoherent spectral weight as a
diffused halo without sharply defined boundaries. Since the
low-energy weight in the diffuse halo comes from the scat-
tering of thermally excited quasiparticles, it is exponentially
suppressed at low temperatures and significant weight de-
velops only when a fraction of the critical temperature Tc is
approached.

In disordered systems, the presence of a reasonably sharp
threshold of the incoherent weight at long wavelengths leads
to a clear visibility of the long-wavelength finite energy
weight in the Higgs spectrum. This spectral feature, which
was seen clearly in the T = 0 calculations [39], thus survives
thermal fluctuations in the system. This is a key insight that
we obtain from these calculations.

The rest of the paper is organized as follows: In Sec. II, we
discuss the model Hamiltonian for disordered superconduc-
tors and the finite-temperature mean-field theory. In Sec. III,
we first discuss the technical details of the finite-temperature
Gaussian fluctuation calculation before turning our atten-
tion to the pair spectral function in clean systems at finite
temperature in Sec. III A. In Sec. III B, we focus on the
finite-temperature evolution of the pair spectral function in the
disordered system. Finally, we conclude with a brief overview
of our calculation and key results.

II. MEAN-FIELD THEORY AT FINITE TEMPERATURES

We study the attractive Hubbard model on a square lattice
in the presence of on-site nonmagnetic impurities. The Hamil-
tonian for the model is given by

H = −t
∑
〈rr′〉σ

(c†
rσ cr′σ + h.c) − U

∑
r

nr↑nr↓+
∑

r

(vr − μ)nr,

(1)
where c†

rσ (crσ ) is the creation (annihilation) operator for an
electron with spin σ on site r and μ is the chemical potential.
Nearest-neighbor hopping between two electrons is governed
by t , and U is the attractive interaction between two electrons
on the same site which leads to Cooper pairing. Here, vr is
an on-site random potential, which is drawn independently on
every site r from a uniform distribution of zero mean and
width V , i.e., vr ∈ [−V/2,V/2]. Therefore, V corresponds
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to the strength of the disorder. This model has been studied
previously [9] at zero temperature within a spatially inho-
mogeneous Bogoliubov–de Gennes (BdG) mean-field theory.
More recently, the two-particle spectral functions in this
model at T = 0 have been studied within a Gaussian ex-
pansion around the BdG solution [39]. In this section, we
investigate the mean-field theory at finite temperatures, while
later sections will be devoted to considering the fluctuations
around the mean-field theory at finite temperatures.

Within a functional integral formalism, the partition func-
tion for the model is given by

Z =
∫

D[ f̄σ , fσ ]e−S[ f̄σ , fσ ]. (2)

Here the imaginary time (τ ) action S in terms of the fermion
fields [ f̄σ (r, τ ), fσ (r, τ )] is given by

S =
∫ β

0
dτ

∑
rr′,σ

f̄σ (r, τ )
[
∂τ δrr′ + H0

rr′
]

fσ (r′, τ )

−U
∑

r

f̄↑(r, τ ) f̄↓(r, τ ) f↓(r, τ ) f↑(r, τ ), (3)

where β = 1/T and the single-particle Hamiltonian
H0

rr′ = −tδ〈rr′〉 − (μ − vr )δrr′ . We introduce two Hubbard-
Stratonovich auxiliary fields, �(r, τ ) that couples to the
particle-particle channel [ f̄↑(r, τ ) f̄↓(r, τ )] and the field
ξ (r, τ ) that couples to the density channel [ f̄ (r, τ ) f (r, τ )] to
construct a quadratic theory in the fermion fields. Integrating
out the fermions, and considering a static but spatially varying
saddle point profile of the auxiliary fields, �(r, τ ) = �0(r)
and ξ (r, τ ) = ξ0(r), lead to the BdG mean-field theory. The
BdG self-consistency equations at finite T are given by

�0(r) = U
∑

n

un(r)v∗
n (r)(1 − 2Fn(T )), (4)

ξ0(r) = U
∑

n

(1 − 2Fn(T ))|vn(r)|2 + Fn(T )|un(r)|2, (5)

and 〈n〉 = 2

Ns

∑
r

ξ0(r)

U
, (6)

where 〈n〉 is the average density of electrons in the system
with Ns number of sites. Here [un(r), vn(r)] are the eigenvec-
tors of the BdG matrix corresponding to eigenvalue En and
n runs over positive eigenvalues (En > 0) only. The Fermi
function at temperature T is given by Fn(T ) = 1

eEn/T +1 . We
solve the BdG self-consistency equations [Eqs. (4)–(6)] on a
24 × 24 square lattice with an interaction strength U/t = 5
and at an average fermion density 〈n〉 = 0.875. We consider
15 disorder realizations for each disorder.

Before we discuss the results of the mean-field theory
at finite temperatures, we note the main features of the
mean-field theory at zero temperature for disordered super-
conductors [9,39]: (i) The distribution of the local pairing
amplitude evolves from a sharp distribution around an average
value for low disorder to a broad distribution with peaks
around zero for large disorder, which indicates the destruction
of superconductivity. (ii) The distribution of local densities
evolves from a sharp unimodal distribution at low disorder to
a broad bimodal distribution at large disorder. This indicates
the formation of superconducting puddles or patches in the

background of nonsuperconducting regions at large disorder.
(iii) The formation of superconducting patches is further con-
firmed by the spatial distribution of the pairing amplitude that
shows cluster formation on the scale of the coherence length
in typical disorder configurations. (iv) The single-particle gap
remains finite and large at strong disorder, while the aver-
age order parameter and the superfluid density both decrease
monotonically at large disorder. We will next compare and
contrast these features to the behavior at finite temperatures.

Temperature dependence of single-particle gap: Figure 2
(a) shows the single-particle gap in the system as a function
of temperature. The gap for a clean superconductor (V = 0)
vanishes around Tc = 1.1 t . Note that while the T = 0 gap
has reduced by a factor of 2 between the clean case and
V = 3 t , the decrease in the mean-field Tc is much smaller.
A similar trend is seen in Fig. 2(b) where we plot the average
pairing amplitude �OP (averaged over sites and over disorder
realizations) as a function of temperature for different val-
ues of disorder. Once again we note that while �OP(T = 0)
reduces by a factor of four as we go from V = 0 to V =
3 t , Tc only changes from 1.1 t to 0.9 t . These two trends
taken together show that within the mean-field theory disorder
is much more effective at reducing/killing superconductiv-
ity at T = 0 compared to its effect on reducing Tc of the
system.

A. Temperature dependence of superfluid stiffness

A similar trend is seen in the temperature variation of the
superfluid stiffness ρs (see Appendix A), which is plotted in
Fig. 2(c) with increasing disorder. While the T = 0 value of ρs

reduces by a factor of 6 as the disorder is ramped up from the
clean case to V = 3 t , the mean-field transition temperature Tc

only changes from 1.1 t to 0.9 t .
We note that in two dimensions, the finite temperature

transition is in the universality class of the Berezenskii-
Kosterlitz-Thouless (BKT) transition controlled by phase
fluctuations. We obtain an estimate of TBKT from the inter-
section of the line y = 2

π
T with ρs(T ) obtained from our

calculations, ρs(T −
BKT) = 2

π
TBKT [see Fig. 2(c)]. We see that

with increasing disorder, the mean field Tc is largely unaf-
fected by disorder. However, the zero temperature superfluid
stiffness is reduced by a factor of 6 as disorder is increased to
V = 6t , resulting in a strong reduction of the BKT transition
temperature.

B. Distributions

It is useful to look at how the distribution of the local
order parameter �(r) and the local density n(r) changes with
temperature and disorder strength. In Figs. 3(a) and 3(b),
we plot the distribution of �(r) for V = 0.1 t and V = t ,
respectively. Each plot shows the distribution for a range of
temperatures. In each of these cases, we see that the shape
of the distribution does not change much with temperature,
although the distribution shifts to lower values of �, consis-
tent with the decrease of � with temperature. In Fig. 3(c), we
see a similar trend with a pileup around � = 0. Note that for
V = t and V = 3 t , T = t is above Tc and we simply get all the
weight at � = 0. We plot the distribution of local densities for
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FIG. 2. (a) Single-particle excitation gap Egap, (b) superconducting order parameter �OP, and (c) superfluid stiffness ρs as a function of
temperature T , obtained from finite T BdG calculation. We present data for clean system (V = 0) and three disorder values, V = 0.1 t , t
and 3 t . Egap, and �OP vanish at Tc = 1.1 t in the clean system. All three parameters, Egap,�OP, and ρs have reduced significantly at T = 0,
while the decrease in mean-field Tc is much smaller. The data have been obtained on a 24 × 24 square lattice and averaged over 15 disorder
realizations. In (c), we also show y = 2

π
T (dashed line) whose intersection with ρs(T ) gives an estimate of the BKT transition temperature.

V = 0.1 t , V = t , and V = 3 t in Figs. 3(d)–3(f) respectively.
The density distribution goes from a unimodal distribution at
low disorder to a bimodal distribution at high disorder. At all
values of disorder, the distribution narrows with increasing
temperature, with the effect clearly visible at large disorder
strengths. At large disorder, the bimodal distribution comes
from the formation of superconducting and nonsuperconduct-
ing patches. Increasing temperature leads to smoother density

profile between the patches and hence to a narrowing of the
density distributions.

III. GAUSSIAN FLUCTUATIONS AND PAIR
SPECTRAL FUNCTIONS

The primary motivation of this paper is to understand how
the fluctuations around the mean-field theory that dominate
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FIG. 3. Distribution of (a)–(c) local superconducting pairing amplitude �(r) and (d)–(f) local density n(r) obtained from finite T BdG
calculation for different values of disorder V and temperature T . With increasing disorder, P(�) changes from a sharp distribution around
the average � to a broad distribution with peaks around 0. For a fixed V , the shape of P(�) does not change much with temperature, while
the distribution shifts toward the lower value of �. On the other hand, P(n) becomes bimodal around the average density 〈n〉 = 0.875 in the
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the two-particle pair spectral function at low energies evolve
with temperature in a disordered superconductor. To this end,
we include the spatiotemporal fluctuations of the � field
through

�(r, τ ) = (�0(r) + η(r, τ ))eiθ (r,τ ), (7)

where η(r, τ ) and θ (r, τ ) are the amplitude and the phase
fluctuations, respectively, around the BdG saddle point so-
lution �0(r). We expand the action to second order in the
fluctuations to obtain the Gaussian action SG corresponding
to the fluctuations of the order parameter at finite temperature
T (for T = 0, see Ref. [39]),

SG =
∑
rr′

∑
ωm

(η(r, ωm) θ (r, ωm))

(
D−1

11(r, r′, ωm) D−1
12(r, r′, ωm)

D−1
21(r, r′, ωm) D−1

22(r, r′, ωm)

)(
η(r′,−ωm)
θ (r′,−ωm)

)
, (8)

where ωm = (2m)π/β is the bosonic Matsubara frequency. We analytically continue from Matsubara to real frequencies to
construct the real-time inverse fluctuation propagators. We note that our formalism does not suffer from issues of numerical
analytic continuation.

The inverse fluctuation propagator corresponding to the amplitude fluctuation, D−1
11 , is given by

D−1
11(r, r′, ω) = 1

U
δrr′ + 1

2

∑
En,En′>0

f (1)
nn′ (r) f (1)

nn′ (r′)χnn′ (ω) + 1

2

∑
En,En′>0

f (2)
nn′ (r) f (2)

nn′ (r′)ζnn′ (ω), (9)

where

f 1
nn′ (r) = [un(r)un′ (r) − vn(r)vn′ (r)], and f 2

nn′ (r) = [un(r)vn′ (r) + vn(r)un′ (r)] (10)

are the matrix elements related to the BdG wave functions and the temperature-dependent functions χ and ζ are given by

χnn′ (ω) =
(

1

ω + i0+ − En − En′
− 1

ω + i0+ + En + En′

)
(1 − Fn(T ) − Fn′ (T )) and

ζnn′ (ω) =
(

1

ω + i0+ + En − En′
− 1

ω + i0+ − En + En′

)
(Fn(T ) − Fn′ (T )). (11)

It is useful to analyze the structure of χ and ζ , since they
occur in all the matrix elements of the inverse fluctuation
propagators and provide insight about the microscopic pro-
cesses that control the temperature dependence of the pair
spectral function. Here ζ represents (up to matrix elements,
which do not change its singularity structure) the probabil-
ity amplitude of scattering a Bogoliubov quasiparticle from
one state to the other. Note that Fn(T ) = 0 for all gapped
states at T = 0 and hence this term does not contribute to the
collective modes around the ground state. A simple way to
understand this is that the quasiparticles need to be present in
the first place to be scattered, and at T = 0, none of the gapped
modes are excited in the system. As temperature is raised,
this amplitude becomes finite. It is important to note that the
singularities of this function occur when ω = En − En′ , and
hence at very low energies. Thus, at finite temperatures, ζ is
complex at low energies, with an amplitude that increases with
temperature. We will later see that these scattering processes
play a very important role in determining the low-energy pair
spectral function at finite temperatures. We now consider the
structure of χ , which represents (up to matrix elements, which
do not change the singularity structure of these functions)
the amplitude for creating a pair of Bogoliubov quasiparti-
cles. This is reflected in the singularities at ω = ±(En + En′ ).
Hence, for ω < 2Egap, where the fermionic single-particle gap
Egap corresponds to the lowest positive eigenvalue of the BdG
Hamiltonian, χ is purely real, while it takes complex values
for ω > 2Egap. If we consider the numerator of χ , it is evident
that the numerator goes to 1 at T = 0. So, the T = 0 spectral
function is completely dominated by this term. As the temper-

ature is raised, the numerator decreases; however, χ remains
real at low energies below the two-particle continuum as long
as the single-particle gap remains finite.

The inverse fluctuation propagator for the phase fluctuation
D−1

22 is given by

D−1
22 (r, r′, ω) = D̃dia(r, r′) + ω2κ (r, r′, ω) + �(r, r′, ω),

(12)

where D̃dia is the diamagnetic response of the system, κ is
the frequency dependent compressibility and �(r, r′, ω) is
related to the paramagnetic current-current correlator on the
lattice. The exact formulas for D̃dia, κ , and � are given in
Appendix B.

Finally, the inverse fluctuation propagator corresponding to
amplitude-phase mixing, D−1

12 , is given by

D−1
12(r, r′, ω) = − iω

4

∑
En,n′>0

f (1)
nn′ (r) f (2)

nn′ (r′)χnn′ (ω)

+ f (1)
nn′ (r′) f (2)

nn′ (r)ζnn′ (ω). (13)

We invert the matrix D−1
αβ (r, r′, ω) to obtain the fluc-

tuation propagators Dαβ (r, r′, ω) and the corresponding
spectral functions, Pαβ (r, r′, ω) = − 1

π
ImDαβ (r, r′, ω). Here

P11(r, r′, ω) = − 1
π

Im〈η(r, ω + i0+)η(r′,−ω + i0+)〉 corre-
sponds to amplitude or Higgs fluctuations, P22(r, r′, ω) =
− 1

π
Im〈θ (r, ω + i0+)θ (r′,−ω + i0+)〉 denotes the phase fluc-

tuations while the amplitude-phase mixing is governed by
P12(r, r′, ω) = − 1

π
Im〈η(r, ω + i0+)θ (r′,−ω + i0+)〉. How-

ever, the phase fluctuation propagators are not directly
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measurable in experiments, where probes couple to the
electron density or current. As shown in Ref. [39], the experi-
mentally measurable pair spectral function

P(r, r′, ω) =
∑
αβ

Pαβ (r, r′, ω), (14)

where P11 = P11, P12(r, r′, ω) = �0(r)P12(r, r′, ω),
P21(r, r′, ω) = �0(r′)P21(r, r′, ω), and P22(r, r′ω) = �0(r)
�0(r′)P22(r, r′, ω).

Note that in a translation invariant system, P and P are
related by simple scaling factors. However, in a disordered
system, where the pairing amplitude �0(r) is varying in space,
the spatial correlations of P and P will be quite different
and hence it is important to study the physically measurable
correlations.

A. Pair spectral function in a clean superconductor

In this paper, we are primarily interested in studying
the temperature dependence of the collective modes and the
resultant two-particle spectral functions for a disordered su-
perconductor. We start with the behavior of the temperature
dependence of the two-particle spectral function P(q, ω) in
the clean limit (V/t = 0). This allows us to interpret the low-
energy spectral functions in terms of a temperature-broadened
collective mode and a background spectral weight arising
from the scattering of thermally excited quasiparticles. This
framework will then be used to investigate the pair of spectral
functions in the disordered case.

For a clean system, the problem simplifies considerably
since the fluctuation propagators are diagonal in the momen-
tum basis; e.g.,

D−1
11(q, ω) = 1

U
+ 1

2

∑
k

[
f (1)
k (q)

]2
χk (q, ω)

+ [
f (2)
k (q)

]2
ζk (q, ω), (15)

where

f (1)
k (q) = ukuk+q − vkvk+q, f (2)

k (q) = ukvk′ + vkuk′ , (16)

with

χk (q, ω) =
(

1

(ω + i0+ − Ek − Ek′ )
− 1

(ω+ i0+ + Ek + Ek′ )

)
× [1 − Fk (T ) − Fk′ (T )], (17)

ζk (q, ω) =
(

1

(ω+ i0+ + Ek − Ek′ )
− 1

(ω+ i0+ − Ek + Ek′ )

)
× [Fk (T ) − Fk′ (T )]. (18)

In the above formulas, we have used the standard BCS

spectrum Ek =
√

ξ 2
k + �2

0 with ξk = −2t (cos kx + cos ky) −
μ, �0 the uniform pairing amplitude and u2

k = 1/2(1 +
ξk/Ek ) = 1 − v2

k .
Figures 4(a)–4(d) show the amplitude spectral function

P11(q, ω), while Figs. 4(e)–4(h) show the phase spectral func-
tion P22(q, ω) in the clean system with increasing temperature.
Here the attractive interaction U = 5 t and the density is set
to 0.875. Let us first focus on the pair spectral functions

at T = 0 [Figs. 4(a) and 4(e)]. There is diffuse continuum
spectral weight above ω > 2�0, corresponding to propaga-
tion of two Bogoliubov quasiparticles. Note that at T = 0,
the ζ terms do not contribute, while χ is complex only for
ω > 2�0. For ω < 2�0, there is a coherent dispersing peak at
the collective mode frequencies determined by the vanishing
of the determinant of the inverse fluctuation propagator. The
mode disperses linearly at low momenta.

At q = 0, the collective mode is a pure phase Goldstone
mode and the weight of the amplitude component goes to 0.
This is clearly shown in the inset of Fig. 4(a), where we plot
the weight of amplitude spectral function P11 at the collective
mode frequency as a function of q. Thus at q = 0, the Higgs
weight is finite only at 2�0, which is well-known [33,45,46].
Furthermore, the Higgs mode at this threshold energy is not
a well-defined mode as it is damped due to the presence
of the two-particle continuum, hence its weight appears as
part of the diffuse continuum (see Appendix C for details).
At finite q, however, the collective mode is a mixture of
amplitude and phase fluctuations at finite momenta [45], i.e.,
the eigenmode at finite q has finite projections in both the
amplitude and phase sectors. As the temperature is raised
to T = 0.18 Tc [Fig. 4(b)], T = 0.36 Tc [Fig. 4(c)], and T =
0.54 Tc [Fig. 4(d)], a thermally broadened collective mode is
clearly present riding on a distinct background halo.

The Higgs spectral function P11 shows incoherent spectral
weight beyond the two-particle continuum ω > 2�0, corre-
sponding to overdamped modes. This can be contrasted with
the nonlinear response of the superconductor to an elec-
tromagnetic perturbation or the Higgs contribution to the
third-harmonic generation (THG) intensity [15,28,30], which
shows a sharp feature at ω = 2�0. Note that the nonlinear
response corresponds to a different correlation function than
the spectral function (which represents a linear response of the
system) studied here [37–39].

We now discuss the amplitude-phase mixing in our analy-
sis. We note that specially fine-tuned points having additional
particle-hole symmetry (e.g., square lattice with only nearest
neighbor hopping at exactly half filling) leads to vanishing of
amplitude-phase mixing [37]; however, our system does not
have this symmetry (average density 〈n〉 = 0.875, away from
half filling) and the amplitude-phase mixing is finite at any
finite q in the translation invariant system.

Next we study the finite temperature properties of the am-
plitude and phase spectral functions. The background halo
in the spectral function at finite temperatures, which is due
to the scattering of the quasiparticles already present in the
system (the ζ terms), increases in intensity with increasing
temperature. This incoherent spectral weight has some inter-
esting characteristics. At each q, there is an upper bound of
energy beyond where there is no incoherent spectral weight,
till one reaches ω = 2�0. This limiting energy, which is the
maximum of |Ek − Ek+q| for a fixed q, disperses linearly at
small q and shows a sharp dip around the � and M ([π, π ])
points. In Fig. 5(a), we plot the dispersion of the quasiparticle
energy Ek as a function of k in the Brillouin zone. We see
that the wave vector q = [π, π ] only connects points in the
Brillouin zone where the values of Ek do not differ much,
leading to a dip in the temperature-dependent background
halo around the M point. Although only one such connection
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FIG. 4. Spectral functions in clean superconductor: (a)–(d) amplitude spectral function P11 and (e)–(h) phase spectral function P22 of
the pair spectral function P(q, ω) in a clean superconductor (V/t = 0) shown as a density plot in q (along the principle axis of the 2D
Brillouin zone of the square lattice) and ω for increasing temperatures: T = 0, T = 0.18 Tc, T = 0.36 Tc, and T = 0.54 Tc (corresponding
to T = 0, T = 0.2 t, T = 0.4 t , and T = 0.6 t , respectively). At small temperatures, both the spectral functions P11 and P22 consist of the
collective modes below two-particle continuum. The inset of (a) shows P11 at the collective mode frequency [ωc(q)] at T = 0, as a function
of q. It clearly shows that the amplitude component of the low-energy dispersive collective mode vanishes as q → 0. Hence in the clean
superconductor at q = 0, the Higgs weight is finite only at 2�0 (indicated by the large spectral weight at the top edge of (a)–(d)) in the
long-wavelength limit. The temperature-dependent background halo is clearly seen in P11 for T = 0.36 Tc and T = 0.54 Tc, while P22 is
mostly dominated by strong collective modes. All data for the clean superconductors have been obtained on a 100 × 100 square lattice.

is shown in the figure, one can easily see that this is true in
general. The same also holds for the � point. On the contrary,
the wave vector q = [π, 0] can connect points in the Brillouin
zone where the values of Ek can vary from a small to large
value, and hence the lobelike structure extends up to a large
value of ω. As a result, one can see that the collective mode
both at q = 0 and q = [π, π ] remain sharp, while there is
considerable broadening at intermediate momenta. This is
clearly seen in Figs. 4(c) and 4(d), where the apparent width
of the collective mode shrinks near the M point when the
collective mode lies above the band of incoherent spectral
weight. This is also shown in Fig. 5(b), where we plot the
line cuts of the Higgs spectral function along the energy axis
[energy distribution curve (EDC)] for fixed values of momenta
at the largest temperature T = 0.54 Tc. Near the zone center,
the spectral weight lies above the two-particle continuum. As
we move along the qx axis, the modes at [π/2, 0] and [π, 0]
do not show up as sharp peaks due to the large background
incoherent weight. However, at [π, π ], one can clearly see two
bumps in the spectral function, the lower one coming from
the incoherent scattering of quasiparticles and the upper one
corresponding to the coherent collective mode in the system.

We note that the background halo is more clearly seen in
the Higgs spectral functions, while the phase spectral func-
tions [Figs. 4(e)–4(h)] are primarily dominated by the large
collective mode peak. The robust linear dispersion of the
phase mode allows us to extract the speed of sound from
the long-wavelength linear dispersion. This speed of sound
cs is plotted as a function of T/Tc in Fig. 5(e). We see that
at low temperatures cs remains almost constant, whereas near
T/Tc ∼ 0.54 it starts decreasing and drops to zero at Tc. The
background spectral weight in the phase sector is clearly seen
only around T = 0.54 Tc [Fig. 4(h)], where the character-
istics are similar to that of the Higgs spectral weight. The
EDC curves for the phase spectral function at fixed momenta
are plotted in Fig. 5(c). Here it is clear that the coherent
spectral weight in the collective mode is much larger than
the incoherent spectral weight. Hence, near the collective
mode frequency, one can expand the phase spectral function
P22(q, ω) ∼ Z (q)/(ω − ω(q) + iσω(q)). The large coherent
spectral weight in the phase channel allows us to extract an
energy width of the peak, σω, from the line cuts in Fig. 5(c).
This width is plotted as a function of momenta for differ-
ent temperatures in Fig. 5(d). It is clear that the collective
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FIG. 5. (a) Color plot of the dispersion of a clean superconductor
in the square lattice Brillouin zone. The wave vector [π, π ], shown
with white arrow, connects momenta where the dispersion is almost
same. This leads to a low threshold for incoherent spectral weight due
to quasiparticle scattering near [π, π ]. On the other hand, the wave
vector [π, 0] connects momenta with large difference in dispersion.
Hence, the energy threshold for incoherent weight is large near
[π, 0]. (b), (c) The EDC curves for (b) P11 and (c) P22 are shown
for specific q values at T = 0.54 Tc. (d) Width of the dispersive
collective modes in ω, (σω, obtained from the phase sector P22) as a
function of q values for different temperature values of T . We notice
that the collective mode remains sharp at � and M points, while it
broadens with temperature at intermediate momenta. (e) The sound
velocity is plotted as a function of T/Tc. It remains almost constant
up to T/Tc ∼ 0.54, then rapidly decreases to zero near Tc.

mode remains sharp at q = [0, 0] and [π, π ], while the broad-
ening at intermediate momenta increases with increasing
temperature.

We note that our treatment ignores the long-range Coulomb
interactions between charged electrons which are present in
real materials and focuses on the effective attractive interac-
tion that creates a superconducting state in the system. Long-
range Coulomb interactions in a clean three-dimensional
superconductor are known to gap out the long-wavelength

phase modes and push them to the plasma frequency via the
Anderson-Higgs mechanism [47]. However, in two dimen-
sions, the plasmon dispersion is not gapped; rather it follows
a ∼√

q dispersion [48]. In a disordered system with bro-
ken translational invariance, the plasmon dispersion at long
wavelengths can get modified. There are two length scales
that can cut off the long-range interaction, (a) the screening
length and (b) the localization length generating an effective
short-range interaction [8,49]. In Appendix D, we provide
detailed estimates of these two length scales for our system.
We find that the two-dimensional screened interaction has a
1/r3 dipolar decay and the corresponding scattering length ∼
lattice spacing. The localization length is estimated to be 20
lattice spacing or larger. Thus, for our calculation, the effective
length scale from screening provides the long-distance cutoff
which modifies the Coulomb interaction.

So far, the effect of Coulomb interactions has been studied
for clean superconductors in Refs. [28,37] using the standard
path integral formalism. The modification of this formalism
to include Coulomb interactions for the disordered super-
conductor is nontrivial, challenging, and an open problem.
The only work on combining disordered superconductivity
and Coulomb interactions has been attempted in Ref. [49],
where disorder has been treated on average as a homoge-
neous film and the Coulomb interactions have been treated
perturbatively. We expect the inhomogeneous superconductor,
with superconducting puddles in an insulating matrix and
a finite single-particle gap across the transition, to respond
quite differently to Coulomb interactions. However, the details
of such an inhomogeneous calculation with spatially depen-
dent screening treated self-consistently remain open for future
investigations.

B. Pair spectral function in disordered superconductor

We now consider the key issue which we want to study
in this paper: How do the collective modes evolve with
temperature in a disordered superconductor? In a disordered
system, momentum is not a good quantum number for a single
disorder realization. For each such realization, we first con-
struct the pair spectral function Pαβ as a matrix in the real
space coordinates r and r′. We then work with the center
of mass coordinate R = (r + r′)/2 and relative coordinate
d = (r − r′) and average the spectral function P(d, R, ω) over
several disorder realizations. The disorder averaging restores
translation invariance, i.e., the averaged quantity is a func-
tion only of d and ω. Averaging over R, we get P(d, ω) =
1/Ns〈

∑
R P(d, R, ω)〉 (Ns being the number of lattice sites and

〈〉 corresponds to disorder average). We then Fourier trans-
form the spectral function in d to express it as a function of
q and ω, i.e., P(q, ω). The variation of this disorder-averaged
spectral function with momentum q and energy ω will be our
key tool to study the behavior of finite-temperature collective
modes.

We first consider the spectral function of the disordered
system at T = 0 (worked out in Ref. [39]), so we have a
reference to understand the finite temperature variations. The
amplitude and phase spectral functions P11 and P22 are plotted
as a function of q and ω for a weakly disordered system with
V = 0.1 t in Figs. 6(a) and 6(e), respectively. While the phase
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FIG. 6. Spectral functions in a weakly disordered superconductor: (a)–(d) amplitude spectral function P11 and (e)–(h) phase spectral
function P22 of the pair spectral function P(q, ω) in the presence of weak disorder V/t = 0.1 shown as a density plot in q and ω, for increasing
temperatures: T = 0, T = 0.18 Tc, T = 0.36 Tc, and T = 0.54 Tc (corresponding to T = 0, T = 0.2 t, T = 0.4 t , and T = 0.6 t , respectively).
Note the appearance of the subgap Higgs peak in the amplitude sector P11 at low T . While this nondispersive Higgs mode remains unaffected at
momenta � = [0, 0] and M = [π, π ] with increasing T , it gets overwhelmed by the temperature-induced background halo at other momenta.
The coherent collective modes in the phase sector remain mostly unaffected at low temperatures, but they are thermally broadened at large
temperatures. The EDC curves for (i) P11 and (j) P22 are shown for specific q values and for a temperature T = 0.54 Tc. The EDC of P11 clearly
shows the Higgs mode at the � point and two distinct modes (the lower broad peak is due to the temperature-induced quasiparticle scattering,
and the higher energy peak is due to disorder) at the M point. The EDC curves for P22 show thermally broadened dispersive collective mode
peaks. All the disorder data have been obtained on a 24 × 24 lattice, and averaged over 15 disorder realizations.

spectral function [Fig. 6(e)] is almost unchanged from the
clean case, with a linearly dispersing collective mode domi-
nating at low energies, the amplitude spectral function shows
dramatic change [Fig. 6(a)]. In contrast to the clean case,
where at q = 0, the Higgs mode sits at the threshold of the
two-particle continuum at an energy of 2�0, a non-dispersive
mode appears at an energy below two-particle continuum
(2Egap) in this case. At q = 0, this subgap mode is identified
as the disorder-induced Higgs mode in a superconductor [39].
The T = 0 spectral functions for a moderately disordered

system with V = t is shown in Figs. 7(a) (amplitude) and
7(e) (phase), respectively. The nondispersive mode in the am-
plitude spectral function gains more spectral weight and is
considerably broadened, while the phase spectral function is
relatively unchanged with disorder.

Next we study the effect of disorder on the amplitude and
phase spectral functions at finite temperatures. Figures 6(b)–
6(d) shows the amplitude spectral function P11(q, ω), and
Figs. 6(f)–6(h) show the phase spectral function in presence
of a weak disorder V/t = 0.1 with increasing temperature.
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FIG. 7. Spectral functions in a moderately disordered superconductor: (a)–(d) amplitude spectral function P11 and (e)–(h) phase spectral
function P22 of the pair spectral function P(q, ω) in the presence of moderate disorder V/t = 1.0 shown as a density plot in q and ω, for
increasing temperatures: T = 0, T = 0.2 Tc, T = 0.4 Tc, and T = 0.6 Tc (with Tc = 1.0). The subgap Higgs mode gets broadened and its
low-energy threshold comes down in energy. With increase in temperature, contrary to the weak disorder, the lobe structure of the background
halo is not seen in the amplitude sector, and the Higgs mode remains prominent at all temperatures. The EDC curves for (i) P11 and (j) P22

are shown for specific q values and for T = 0.6 Tc. The EDC curves for P11 also show that the nondispersive Higgs mode dominates at all
temperatures. On the other hand, the phase sector is dominated by the dispersing collective modes, which only get thermally broadened at large
temperatures.

The most visible change in the amplitude spectral functions
is the appearance of the low-energy continuum weight or
the halo in the background of the collective mode. As ex-
plained in the section on clean superconductors, this weight
represents the scattering of the Bogoliubov quasiparticles and
increases with temperature. However, for each q there is an
upper bound of energy up to which the background weight
exists. This background cutoff disperses linearly at small q
and shows a pronounced dip around the [π, π ] point. There-
fore the nondispersing Higgs mode near q = 0 and q = [π, π ]
remains unaffected at finite temperatures [Figs. 6(b)–6(d)].
We also note that the small Higgs component in the linearly
dispersing collective mode is overwhelmed by the back-

ground incoherent weight as temperature increases [Figs. 6(c)
and 6(d), corresponding to T/Tc = 0.36 and T/Tc = 0.54], so
the only coherent weight in the amplitude spectral function
at these finite temperatures is related to the disorder-induced
Higgs mode. To see this feature clearly, we plot some EDCs
of the amplitude spectral function at T = 0.54 Tc in Fig. 6(i).
These are line cuts of the data in Fig. 6(d) at fixed values
of q. The nondispersive mode at q = 0 is clearly seen as a
peak. At q = [π, π ], there are two peaks, with the lower broad
peak corresponding to the incoherent quasiparticle scattering
and the sharper higher energy peak (at energies similar to
the q = 0 peak) corresponding to the nondispersive Higgs
mode.
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FIG. 8. (a)–(c) Width of the collective modes in q, (σq, obtained from the phase spectral function P22) as a function of ω below two particle
continuum, for (a) T = 0.2 Tc, T = 0.4 Tc, and T = 0.6 Tc, respectively. We note that for a fixed T , σq increases with increase in disorder. At
small disorder, the width does not change much with energy, while the larger disorder shows a broad peak. Since with increasing disorder the
collective mode structure comes down to lower energy (Figs. 6 and 7), the threshold ω at which σq vanishes also decreases with disorder.

On the other hand, the phase spectral function P22 remains
mostly unaffected in the presence of weak disorder even at
finite temperatures, as seen in Figs. 6(f)–6(h). While the col-
lective mode is thermally broadened, it still dominates the
low-energy phase spectral function function. It is interesting
to note that the mode near [π, π ] remains sharp at finite
temperatures as the incoherent spectral weight lies below the
energy of this mode. As temperature is increased [Figs. 6(g)
and 6(h)], the background halo with the two-lobe structure
becomes more prominent even in the phase spectral function.
The variation of the phase spectral function with energy at
fixed momenta at T = 0.6 Tc is plotted in Fig. 6(j). The curves
show thermally broadened dispersive peaks of the collective
modes.

We now increase the disorder to a moderate value of V = t
and study the spectral functions with increasing temperature.
With increase in disorder, the nondispersive Higgs mode gets
broadened and its lower end comes down toward the zero
energy. This mode also gains much more spectral weight.
This is seen in Fig. 7(a) where we plot the spectral function
at T = 0. As temperature is increased [Figs. 7(b)–7(d)], we
once again see a diffuse background halo, but at this mod-
erate disorder, the sharp lobe structure of the halo, which
was present in the clean and the weakly disordered system,
is absent. Since the sharp boundaries resulted from simulta-
neous momentum and energy conservation in quasiparticle
scattering, and momentum conservation is strongly broken
in each disorder realization at these moderate disorders, the
background halo is more diffuse in this case. However, as in
the weakly disordered case, the nondispersive Higgs mode
remains prominent at all finite temperatures. This is clearly
seen in Fig. 7(i), where we plot the variation of the amplitude
spectral function with energy at fixed momenta. The curves
at all the momenta show a broad peak at roughly the same
energy corresponding to the nondispersive Higgs mode in
the system. We note that at this moderate disorder, the edge
of the continuum perceptibly comes down with increasing
temperature, showing the softening of the gap in the system.

In contrast, the phase spectral function is dominated by the
linearly dispersing collective mode, which is robust to both the
presence of disorder and temperature [Figs. 7(e)–7(h)]. At the

largest temperature of T = 0.6 Tc, the collective mode near
the [π, 0] or [π, π ] point is broadened, but a distinct peak can
still be observed, as seen in the EDCs plotted in Fig. 7(j).

We have already seen that the phase spectral function con-
sists of a dominant dispersing collective mode. However, in a
disordered system, momentum is not a good quantum number,
and one would expect the collective modes to be broadened in
momentum space due to elastic scattering from the impurities.
To estimate the effect of this scattering, we consider the half
width of the spectral function peak in the phase channel at
different fixed values of ω from the momentum distribution
curves. We only take into account the collective mode line
between � and X points where the mode is dispersing, and
limit our study to energies well below two particle continuum.
In Figs. 8(a)–8(c), we plot this width σq as a function of
ω for three different temperatures, T = 0.2 Tc, T = 0.4 Tc,
and T = 0.6 Tc, respectively. Each plot contains the width for
three different disorder values, a weak disorder of V = 0.1 t , a
moderate disorder of V = t , and a strong disorder of V = 3 t ,
respectively. As expected, we observe that for any fixed T ,
σq increases with increasing disorder. While the low disorder
width does not change much with the energy of the collective
modes, the width at moderate and high disorders shows a
broad peak as a function of the collective mode frequency. We
also find that σq vanishes at a threshold ω which decreases
with disorder. This happens because the whole collective
mode structure itself comes down when we increase disorder
(see Figs. 6 and 7).

We have already seen that the nondispersive mode in the
amplitude channel produces a finite subgap spectral weight
at q = 0, while the linearly dispersing collective mode has
large weight at zero energy in the phase channel (the Gold-
stone mode). The phase peak and the amplitude peak are
spectrally separated at T = 0, and hence this mode should
be spectroscopically observable. We now consider whether
a finite temperature will erase this spectral separation and
render this mode invisible. We have plotted the amplitude
and phase contribution to the spectral function for a weak
disorder of V/t = 0.1 [Fig. 9(a)] and a moderate disorder of
V = t [Fig. 9(b)]. In both cases, we find that as temperature
is increased, the peak positions remain unchanged while the
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FIG. 9. (a), (b) Amplitude (P11, shown as dotted lines) and phase contribution (P22, shown as solid lines) to the pair spectral function P at
q = [0, 0] shown for two different disorder values, V = 0.1 t and V = t , as a function of ω, and for increasing temperatures. (c) The separation
between the Higgs and the phase peak, �ω, plotted as a function of T . We notice that at small disorders, they are separated for a large range
of temperatures, while it falls rapidly to zero at a critical temperature T s

c with increase in disorder.

broadening increases, but the separate phase and amplitude
features are observable up to a reasonably high temperature.
Thus, this feature is also robust to turning on temperature in
the system. We note that inclusion of density fluctuations can
alter the spectral separation of these features [50].

To systematically track the separation between the subgap
Higgs peak and the low-energy phase peak, we define a pa-
rameter �ω which indicates the separation between them in
energy. In Fig. 9(c), we plot �ω as a function of temperature
for disorder V/t = 0.1, 1, and 3. Here we extend our analysis
up to large temperature values, keeping in mind that the BdG
theory does not work well close to Tc. We notice that at small
temperature, the Higgs and the phase modes are separated for
moderately large values of disorder. However, with increase
in temperature, the separation decreases monotonically and
vanishes at a critical temperature T s

c . T s
c decreases with in-

crease in disorder, which suggests that the sharp feature of the
Higgs mode is more robust in the presence of temperature at
small disorder and the robustness goes away with an increase
in disorder. The momentum- and energy-resolved MEELS
spectroscopy [51] should observe this Higgs mode separately
from the phase pileup in an energy-resolved way.

In conclusion, in this paper we have extended our previous
studies on two-particle spectral function for disordered s-wave
superconductors [39] to finite temperatures. Using a func-
tional integral formalism and Gaussian expansion around the
inhomogeneous saddle point, we have studied the two-particle
spectral function at small and moderately high temperatures,
both in clean and disordered superconductors. We derive the
analytical formulas for inverse fluctuation propagators at finite
temperature, continued to real frequency. We present the full
q − ω dependence of the amplitude and phase sectors of the
spectral function, and therefore study the evolution of the
Higgs and the Goldstone mode with temperature and disorder.
We show that at finite temperatures, additional low-energy
incoherent spectral weight appears in the form of lobes. In the
presence of disorder, the temperature-dependent background
halo competes with the collective modes in the amplitude sec-
tor. However, we find that if the disorder is not too strong, the
nondispersive Higgs mode which appears as a subgap feature
at q = [0, 0] remains unaffected in presence of moderately
high temperatures. Therefore, the Higgs mode can be seen in

an energy-resolved way separately from the low-energy phase
pileup, even at experimentally accessible temperatures.
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APPENDIX A: SUPERFLUID STIFFNESS
AT FINITE TEMPERATURE

We use Bogoliubov transformation in a disordered su-
perconductor, which diagonalizes the effective mean-field
Hamiltonian for the negative U Hubbard model, with energy
En and the corresponding eigenfunction [un(r), vn(r)] [9].
Here n runs over the positive eigenvalues, i.e., En > 0. The
current operator is defined as

jx
r = it

∑
σ

(c†
r+x̂σ crσ − c†

rσ cr+x̂σ ), (A1)

and the local kinetic energy associated with the x-directed
hopping is given by

Kx
r = −t

∑
σ

(c†
r+x̂σ crσ + c†

rσ cr+x̂σ ). (A2)

Now the superfluid stiffness by the Kubo formula is given by

Ds

π
= 〈−Kx〉 − �xx(qx = 0, qy → 0, iωp = 0), (A3)

where iωp is the Bosonic Matsubara frequency. The first term
represents the diamagnetic response to an external magnetic
field which is given by

〈−Kx〉 = 4t

N

∑
n

un(r + x̂)un(r)Fn(T )

+ vn(r + x̂)vn(r)(1 − Fn(T )). (A4)
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The second term is the paramagnetic response given by the
dynamical transverse current-current correlation function,

�xx(q, iωp) = 1

N

∫ 1/T

0
dτ eiωpτ 〈 jx(q, τ ), jx(−q, 0)〉, (A5)

which is calculated to be

�xx(q, iωp) = 2t2

N

∑
nm

Anm(q)[Anm(q) + Bnm(−q)]

iωp + (En − Em)

× [Fn(T ) − Fm(T )]. (A6)

In the above equation, n and m run over all eigenvalues (both
En < 0 and En > 0), and Anm and Bnm are given by

Anm(q) =
∑

i

e−iq.r[un(r + x̂)um(r) − un(r)um(r + x̂)],

Dnm(q) =
∑

i

e−iq.r[vn(r + x̂)vm(r) − vn(r)vm(r + x̂)].

APPENDIX B: INVERSE FLUCTUATION PROPAGATOR
FOR PHASE FLUCTUATIONS

The inverse fluctuation propagator for the phase fluctuation
is given by

D−1
22 (r, r′, ω) = D̃dia(r, r′) + ω2κ (r, r′, ω) + �(r, r′, ω).

The diamagnetic response D̃dia is related to the local kinetic
energy

K(r, r′) = −t
∑
En>0

vn(r)vn(r′)[1 − Fn(T )] + un(r)un(r′)Fn(T )

through the relation

D̃dia(r, r′) = −1

2
δrr′

∑
〈rr1〉

K(r, r1) + 1

2
δ〈rr′〉K(r, r′). (B1)

Here, the frequency-dependent compressibility κ is given by
the density-density correlator,

κ (r, r′, ω) = 1

8

∑
En,n′>0

f (2)
nn′ (r) f (2)

nn′ (r′)χnn′ (ω)

+ f (1)
nn′ (r) f (1)

nn′ (r′)ζnn′ (ω), (B2)

while �(r, r′, ω) is related to the paramagnetic current-current
correlator on the lattice

�(r, r′, ω) =
∑

〈rr1〉〈r′r2〉
J (r, r1, r′, r2, ω) − J (r, r1, r2, r′, ω)

− J (r1, r, r′, r2, ω) + J (r1, r, r2, r′, ω), (B3)

where

J (r, r1, r′, r2, ω) = − t2

8

∑
Enn′>0

f (3)
nn′ (r, r1) f (3)

nn′ (r2, r′)χnn′ (ω)

+ f (4)
nn′ (r, r1) f (4)

nn′ (r2, r′)ζnn′ (ω). (B4)

The new matrix elements f (3) and f (4) are given by

f (3)
nn′ (r, r′) = [un(r)vn′ (r′) − vn(r)un′ (r′)], and

f (4)
nn′ (r, r′) = [un(r)un′ (r′) + vn(r)vn′ (r′)]. (B5)

APPENDIX C: DAMPING OF THE HIGGS MODE ABOVE
TWO-PARTICLE CONTINUUM THRESHOLD

In this Appendix, we repeat the analytic calculations [37]
that show that the imaginary part of the inverse Green’s func-
tion has a square root singularity. At q = 0, the amplitude
spectral function is given by P11(0, ω) = − 1

π
ImD11(0, ω) =

− 1
π

Imχ−1
��(0, ω), where χ�� is defined as

χ��(q, ω) = 2

U
+

∑
k

[ukuk+q − vkvk+q]2

×
[

1

ω + i0+ − Ek − Ek+q

− 1

ω + i0+ + Ek + Ek+q

]
. (C1)

At q = 0, the imaginary part of χ�� for ω > 2�0 is then
given by

χ ′′
��(0, ω) = −π

∑
k

[
u2

k − v2
k

]2
δ(ω − 2Ek )

= −π
∑

k

ξ 2
k

E2
k

δ(ω − 2Ek ), (C2)

where Ek =
√

ξ 2
k + �2

0 . For ω → 2�0 + 0+, the contribution
to the above integral comes from momenta near the Fermi
surface, or from energies near εF . In this case, one can expand

Ek ∼ �0 + 1
2

ξ 2
k

�0
and write

χ ′′
��(0, ω) ∼ −N (εF )

∫
dξ

ξ 2

�2
0

δ

(
ω − 2�0 − ξ 2

�0

)

∼ −N (εF )

√
ω − 2�0

�0
. (C3)

We note that it is well-known that the real part of
χ��(0, 2�0) = 0 and the real part χ ′

�� ∼ ω − 2�0 near the
two-particle continuum threshold. This shows that the Higgs
propagator

D11(0, ω) = 1

χ��(0, ω)
∼ 1

(ω − 2�0) + i
√

ω − 2�0
.

(C4)

Therefore, the spectral function P11(0, ω) = − 1
π

Imχ−1
��(0, ω)

shows an overdamped mode at ω = 2�0.

APPENDIX D: ESTIMATE OF DIFFERENT
LENGTH-SCALES RELEVANT TO COULOMB

INTERACTION

In a purely two-dimensional system, screening of the
Coulomb interaction does not lead to an exponentially de-
caying potential; rather it leads to a power law decay which
is faster than 1/r. If we use a Thomas-Fermi approximation
for screening, the screened interaction in momentum space is
given by Vc(q) = (e2/2κε0) 1

q+qTF
, where ε0 is the permittivity

of free space and κ is the dielectric constant, which is mod-
ified by the presence of substrates in two-dimensional films.
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Here qTF is the Thomas-Fermi wave vector. Considering the
static screening of the Coulomb interaction within random
phase approximation, the Thomas-Fermi wave vector is given
by

qTF = e2

2κε0
ρ(εF ), (D1)

where ρ(εF ) is the density of states (DOS) at the Fermi en-
ergy. Now using the formula for DOS (per spin) for a square
lattice with nearest-neighbor hopping near zero energy [52],
ρ(ε) = 1

2π2ta2 ln 16
|ε/t | , we find for a system close to half filling

(considering two spins)

qTFa = e2

2π2κε0ta
ln

16

|μ/t | , (D2)

where a is the lattice constant and μ is the chemical potential
obtained from our calculation.

We would like to note that unlike three-dimensional sys-
tems, the Fourier transform of the Thomas-Fermi screened
interaction in two dimensions does not lead to an exponen-
tially decaying function, rather the screened potential has a
form Vc(r) ∼ e2

4πκε0

1
q2

TFr3 at large r. This would, in general,
be modified by the finite thickness of the film and the pres-
ence of the substrate and gates. However, even the dipolar
effective interaction is short ranged, and one can define a
scattering length in terms of the phase shifts of two-body wave
functions [53]. For the dipolar interaction Vdip(r) = d2/r3, it
can be shown [53] that the scattering length is a2 = e2γE ld ,
where γE ∼ 0.577 is the Euler constant and ld is the dipolar
length given by ld = md2/h̄2. Therefore, comparing with this
model, we find that for screened Coulomb interaction on a

two-dimensional tight-binding model,

ld = m∗d2

h̄2 = e2

8πε0κt

1

(qTFa)2
, (D3)

where we have used the effective mass m∗ = h̄2/2ta2. Now in
our model, we have μ/t ≈ −0.48 (for U/t = 5). Therefore,
for SiO2 (κ = 3.6) and Si (κ = 11.7) substrates, we find qTFa
to be 2.9 and 0.92, respectively, using typical lattice constant
a ∼ 3 Å and hopping energy t ∼ 10 eV. The corresponding
values of a2/a are 0.24 and 0.77, respectively. Thus, we find
that the length scales coming from screening is of the order of
a lattice spacing.

On the other hand, the localization length ξloc is given
by vF τ in the weak disorder regime, where vF is the Fermi
velocity and τ is the mean-free time of the electrons in the
lattice. Now, using the Fermi golden rule, it can be shown
that the scattering rate is proportional to the square of the
disorder potential [54], i.e., τ−1 ∝ 〈V 〉2, which implies that
ξloc decreases with disorder. For example, for V/t = 1, we
have ξloc ∼ 1

0.05
1

kF
≈ 20

kF
[55]. Since we are working close to

half filling, 1/kF ∼ a. Therefore, for all our considerations,
we can safely say that the screening length scale, as defined
by the scattering length of the effective dipolar interaction, is
much smaller than the localization length. Hence the screen-
ing length will play the role of the long-distance cutoff for the
divergence of the Coulomb potential. Thus a short-range ap-
proximation is quite appropriate here. The localization length
of course increases exponentially with 1/V 2 as one goes to the

weak disorder limit (ξloc ∼ et2/V 2
). Thus, the screening length

will continue to play the role of cutoff even at V/t ∼ 0.1.
We note that the problem of determining the spatially inho-

mogeneous screening self-consistently, which would provide
a better estimate of the length scale, remains an open problem.
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