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Conservation of angular momentum in ultrafast spin dynamics
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The total angular momentum of a closed system is a conserved quantity, which should remain constant
in time for any excitation experiment once the pumping signal has been extinguished. Such conservation,
however, is never satisfied in practice in any real-time first-principles description of the demagnetization process.
Furthermore, there is growing experimental evidence that the same takes place in experiments. The missing
angular momentum is usually associated to lattice vibrations, which are not measured experimentally and
are never considered in real-time simulations. Here we critically analyze the issue and conclude that current
state-of-the-art simulations violate angular momentum conservation already at the electronic level of description.
This shortcoming originates from an oversimplified description of the spin-orbit coupling, which includes
atomic contributions but neglects completely that of itinerant electrons. We corroborate our findings with
time-dependent simulations using model tight-binding Hamiltonians, and show that indeed such conservation
can be reintroduced by an appropriate choice of spin-orbit coupling. The consequences of our findings on recent
experiments are also discussed.
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I. INTRODUCTION

Thanks to recent advances in femtosecond laser technolo-
gies the possibility of achieving control over the magnetiza-
tion dynamics at timescales of the order of 100 fs is now
within our reach. After the discovery of the ultrafast optical
demagnetization of a nickel film irradiated with a subpicosec-
ond laser pulse in 1996 [1], several additional experiments
have shown a rich variety of laser-induced phenomena in mag-
netic compounds, including ultrafast demagnetization [2–8],
spin reorientation [9,10], and the modifications of the mag-
netic structure [11,12].

Such race toward the control of the magnetization dy-
namics at the femtosecond timescale is driven by both the
fundamental physical investigation of the underlying mech-
anism leading to ultrafast spin dynamics and technological
innovation in the fields of high-speed magnetic recording and
spin electronics [13–15].

The now-standard pump-probe experimental protocol rep-
resents a valid technique for probing the magnetization
dynamics of a sample at short timescales. Here, the system is
first excited by the application of an optical pulse (pump), and
then the magnetization dynamics is reconstructed by probing
it with a second small perturbing signal (probe) [16,17]. De-
pending on the time delay between the pump and the probe
one can accurately trace the magnetization trajectory with a
few femtoseconds’ resolution. Then, the results are typically
rationalized by choosing among the most relevant dissipation
mechanisms that are at play at the given timescale. In partic-
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ular, the different types of magnetization dynamics have been
usually classified within two main groups.

Fast magnetization processes [18] are those observed on
a timescale ranging from a few nanoseconds to a hundred
picoseconds. These are usually described by means of the
so-called three-temperature model, where electrons, phonons,
and spins form three different thermal baths that are brought
out of equilibrium by the application of the laser pulse. The
subsystems are able to exchange energy and they thermalize
to achieve a final equilibrium state.

An ultrafast process, instead, is active at a much shorter
timescale, approximately of the order of 100 fs. In this case
there is much less general agreement on the ultimate cause
behind the observed spin dynamics. In recent years different
magnetization dynamics models have been proposed in the
literature to account for the experimental observations. These
include the fully relativistic direct transfer of angular momen-
tum from the laser field to the spins [19,20]; electron-magnon
spin-flip scattering [21], where the main channel of spin dis-
sipation is associated to the scattering between conduction
electrons and localized magnetic moments; electron-electron
spin-flip scattering [22]; the Elliott-Yafet mechanism [23];
other spin relaxation channels due to elastic deformations
[24]; and laser-induced superdiffusive spin currents [25].
Among these different schemes only the last one does not
require the spin-orbit coupling to play a dominant role in the
demagnetization process. Crucially, it was experimentally ob-
served that during the ultrafast demagnetization the behavior
of the electronic orbital momentum alone cannot account for
the spin decay rate in magnets [26]. Thus, several theoretical
works [27,28] suggested that at least part of the spin momen-
tum should be directly transferred to the atomic degrees of
freedom. However, the question has not been settled yet, and
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there is still some debate on the importance of such angular-
momentum transfer channel and its relation to the ultrafast
demagnetization process.

In our contribution we analyze these issues in great detail,
in particular focusing on the conservation of the total elec-
tronic angular momentum. We find that the standard treatment
of the spin-orbit interaction, based on the sum of atomic
contributions, is at the origin of the violation of the elec-
tronic angular momentum conservation. Relaxing some of the
approximations, and in particular the assumption that in a
multiatom environment the spin-orbit interaction could still
be written as if the atoms were isolated, leads to a more
complete expression for the spin-orbit interaction. This allows
one to satisfy the conservation law. Our results are put to
the test with a simple tight-binding model and confirmed by
time-dependent simulations.

In Sec. II we will discuss the problem of the total orbital
momentum conservation, in particular, with reference to the
ab initio methods that are more commonly used to simulate
these processes. In Sec. III we explain why these methods
cannot conserve the total system’s angular momentum at the
present level of development and show how to modify the
spin-orbit coupling operator in order to enforce this conser-
vation law. In Sec. IV we look at some results obtained in
the case of a very simple tight-binding model simulation for
atomic clusters and we compare the results with the ones
obtained by using the standard models. In Sec. V we conclude.

II. NONCONSERVATION OF THE TOTAL ANGULAR
MOMENTUM IN AB INITIO SPIN DYNAMICS

The general assumption underpinning any state-of-the-art
work in the field of ultrafast magnetism is that the total angular
momentum of the system, Ĵ, is conserved during the dynam-
ics. This means that the following equation holds in general
[29]:

�〈Ĵ〉 = �〈Ŝ〉 + �〈L̂e〉 + �〈L̂atom〉 + �〈L̂ph〉 = 0, (1)

where Ŝ is the spin operator, L̂e the electronic orbital momen-
tum operator, L̂atom the atomic orbital momentum, and L̂ph the
orbital momentum carried by the electromagnetic field inter-
acting with the material. In Eq. (1) the symbol 〈Ô〉 = 〈Ô〉t

represents the expectation value of the vector operator Ô at
time t . Under this assumption the nuclear spin degrees of
freedom are not considered, since they do not contribute ap-
preciably to the spin dynamics. In fact, the typical energy scale
of hyperfine interactions is in the MHz range; namely it is
orders of magnitude smaller than the other interactions at play.
As such, it starts to influence the magnetization dynamics on
a timescale of a few μs, much longer than the temporal scale
we are interested in here.

Different models tend to simplify Eq. (1) by assuming that
only a few of those terms are involved in the dynamics. For
instance in Ref. [20] the spin-relaxation rate is quantified by
considering only the transfer between Ŝ and the photon field
L̂ph, while Ref. [24] and Ref. [23] consider the spin relaxation
due to respectively the phonon field and the full atomic field
L̂atom. In spin-magnon scattering models the spin operator is
partitioned into a localized magnetic moment component and
an electronic spin one [21]. In Ref. [28] the rate of exchange

of orbital momentum between spin, electrons, and phonons is
treated instead at the perturbative level.

When simulating the magnetization dynamics in real time,
none of the methods routinely used to interpret the exper-
iments is able to satisfy Eq. (1). These include ab initio
approaches, such as real-time time-dependent density func-
tional theory (rtTDDFT) [30,31], semi-ab-initio schemes,
such as time-dependent tight-binding (TDTB) models [32], or
quantum chemistry methods [33]. In general, this deficiency is
not due to a lack of numerical accuracy; instead it represents a
well-known limitation of the underpinning theoretical formal-
ism. The most promising among these methods, both in terms
of lack of free parameters and ease of computation, is certainly
rtTDDFT [34]. In rtTDDFT only the electronic subsystem
is evolved quantum mechanically by solving a set of single-
particle Schrödinger-like equations, known as the Kohn-Sham
equations [35]. By solving exactly the rtTDDFT problem, it
is possible to reproduce the temporal dependence of both the
electronic and the magnetization density. However, the inter-
actions between the electrons, the atoms, and the laser field are
treated by means of effective external scalar potentials. This
means that, in practice, the photons and the atomic degrees of
freedom are not self-consistently evolved during the dynam-
ics. As a consequence, only �〈Ŝ〉 + �〈L̂e−KS〉 is accessible
from the knowledge of the spin and charge densities, where
L̂e−KS is the electron KS angular momentum [36]. Unfortu-
nately, as one can deduce from Eq. (1), �〈Ŝ〉 + �〈L̂e−KS〉 is
not a constant of motion. Hence, if we insist on this level of
description, we will not be able to answer the question on what
is the relevant channel for angular momentum dissipation
during the demagnetization process. The same considerations
are of course valid also for TDTB models, which are based on
a similar approach.

In the remaining part of this section we will look at
how �〈Ŝ〉 and �〈L̂e〉 evolve in time by solving the set of
rtTDDFT equations at the level of implementation provided
by the OCTOPUS code [37]. OCTOPUS expands the wave
function and the operators in real space over a numerical
grid and approximates the electron-ion interaction with norm-
conserving pseudopotentials [38] incorporating relativistic
effects through a spin-orbit coupling term [39]. In particular,
the pseudopotential, V̂ps(r), has the following general form
[40],

V̂ps(r) =
∑

l

l∑
m=−l

V ps
l (r) |l, m〉 〈l, m| ,

V ps
l (r) = V̄ ion

l (r) + V SO
l (r)

4
+ λV SO

l (r)L̂0 · Ŝ, (2)

where L̂0 is the orbital momentum operator of the atom
and the expansion is performed over its eigenstates |l, m〉
(spherical harmonics). In Eq. (2) the scalar component of
the potential, V̄ ion

l (r), describes the effect of the mass shift
and the Darwin term, while V SO

l (r) sets the range of the
spin-orbit coupling that, for convenience, we can rescale by
a factor λ. We start by considering the simplest possible
case of an iron atom isolated in vacuum and excited by the
application of an external laser pulse. This example, of course,
has little practical relevance, but it has important implications
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FIG. 1. Time evolution of different observables, as computed
with rtTDDFT, for an isolated Fe atom excited by the application
of an external laser field, Ex (t ), along the x axis (solid black line,
upper panel inset). The comparison between 〈Ŝz〉 (solid line) and
〈Ĵz〉 (dashed line) is shown in the upper panel for different spin-orbit
coupling strengths λV SO

l (λ = 0, 1, 2). In the lower panel, instead,
we show 〈L̂2〉 (solid line) and �〈Ŝ2〉 (dashed line) obtained with the
same values of λ shown in the upper panel. The units for 〈Ŝz〉 and
〈Ĵz〉 are eV fs, while that for the electric field is eV/Å.

for our analysis. In the case of a single isolated atom, the
〈L̂atom〉 term is identically zero, so that, after the electric field
has extinguished, the quantity 〈Ĵ〉 = 〈Ŝ〉 + 〈L̂e〉 is conserved.
This, however, is not the case, as one can see from the time-
dependent traces of Fig. 1. We find, in fact, that the total
orbital momentum 〈Ĵz〉 still oscillates even after the laser pulse
has vanished. Importantly, we notice a difference between the
calculations performed with and without spin-orbit coupling.
If the spin-orbit strength, λ, is set to zero (red lines) 〈Ŝz〉
does not change in time, whereas 〈Ĵz〉 is affected only during
the application of the pulse. For λ = 1, 2, instead, 〈Ĵz〉 is not
conserved even after the application of the pulse with the
fluctuations getting larger as the spin-orbit strength increases.
The lower panel of Fig. 1 confirms these findings by showing
that 〈L̂2

e〉 remains constant over long times only in the ab-

(a.u.)

(a.u.)

(a.u.)

FIG. 2. Time evolution, as computed with rtTDDFT, of differ-
ent observables for an iron dimer excited by the application of an
external laser field, Ex (t ), along the x axis (bond axis, solid black
line, lower panel inset) in the presence of spin-orbit coupling. The
comparison between 〈Ŝz〉 (solid line) and 〈L̂e

z 〉 (dotted line) is shown
in the upper panel. It is obtained by fixing the atomic positions during
the dynamics and by performing a Ehrenfest molecular dynamics
calculations. In this last case also the total atomic orbital momentum
is shown (dashed black line). In the lower panel we show instead
〈L̂2

e〉 (solid line) and �〈Ŝ2〉 (dotted line) obtained for fixed atoms and
for Ehrenfest dynamics calculations. The units for 〈Ŝz〉 and 〈Ĵz〉 are
eV fs, while that for the field is eV/Å.

sence of spin-orbit coupling. In contrast, for λ �= 0 the module
squared of the orbital momentum is not conserved during the
evolution, even at times where the laser pulse is not present.

The next level of complexity is achieved by looking at a Fe2

ferromagnetic dimer. In this case we first obtain the electronic
ground state at the optimized geometry and then we let the
system evolve in time under the effect of the same laser field of
Fig. 1, polarized along the bond axis of the dimer. In the sim-
ulation the atomic degrees of freedom are explicitly included
by performing the rtTDDFT evolution together with Ehrenfest
molecular dynamics for the ions [41]. In Fig. 2 we compare
the temporal evolution obtained without allowing the atomic
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motion to that obtained from Ehrenfest dynamics. In the upper
panel we look at 〈L̂e

z 〉 and 〈Ŝz〉 and we note that the atomic
motion plays no role in their dynamics (the curves obtained
with Ehrenfest dynamics overlap perfectly with the ones ob-
tained by keeping the atoms fixed except for 〈Ŝz〉 where the
two curves slightly diverge at longer times). The timescale
is, in fact, too short and the atoms do not have enough time
to move. In the case of fixed atomic coordinates the quan-
tity 〈L̂e

z 〉 + 〈Ŝz〉 is not conserved, as expected. However, also
the quantity 〈L̂e

z 〉 + 〈Ŝz〉 + Latom
z is not conserved during the

Ehrenfest dynamics. In particular, the atomic orbital momen-
tum is characterized by huge oscillations persisting also after
the pulse amplitude sets to zero. In the lower panel of Fig. 2
it is confirmed that the spin lost during the dynamics is not
transferred to the orbital degrees of freedom. The same con-
clusions are valid for both atomic clusters and bulk systems,
and increasing the size of the cluster does not help to reinstate
angular momentum conservation (see also Ref. [31]).

In the next section we will critically review the approxima-
tions taken in our time-dependent simulations and show that
the explicit form of spin-orbit potential used is the source of
the nonconservation of the angular momentum. Such oversim-
plified description of the spin-orbit coupling can be corrected
and the conservation reinstated.

III. BREAKDOWN OF THE CONSERVATION
LAW AND SOLUTION

For the remaining of the paper we will focus on finite-size
systems; however, these arguments can be generalized also to
the case of extended, periodic systems.

A. Case 1: ĤSO = 0

The first case we analyze corresponds to the situation
where there is no spin-orbit interaction. As a consequence, our
attention is focused on the conservation of the total angular
momentum only (we do not consider the spin; given that it
commutes with the system’s Hamiltonian, it is a constant of
motion). We start by writing the Hamiltonian Ĥ of a system
of Ne electrons in the field generated by Ni identical ions of
mass M (we make this choice to keep the treatment easier).
Here the ions are treated also as quantum particles; there is no
additional external field. The Hamiltonian thus writes

Ĥ =
Ni∑

a=1

P̂2
a

2M
+ V̂ii + Ĥie(r̂, p̂, R̂), (3)

where (r̂, p̂) defines the set of electronic positions and linear
momentum operators, R̂ = (R̂1,x, R̂1,y, . . . , R̂Ni,z ) is the set of
3Ni atomic coordinate operators, V̂ii is the ion-ion interac-
tion, and Ĥie represents the full electronic Hamiltonian. This
latter includes the electron kinetic energy term, the electron-
electron interaction, and the electron-ion interaction. By using
dR̂a/dt = P̂a/M, it is easy to show that the time derivative of
the orbital momentum associated to ion a is

d

dt
L̂a = −R̂a × ∇Ra [Ĥie + V̂ii]; (4)

by writing Ĥie = Ĥ0
ie + Ûee, where Ûee is the electron-

electron interaction potential and Ĥ0
ie = ∑Ne

i=1 p̂2
i /2me +

∑Ne
i=1

∑Ni
a=1 vie(|r̂i − R̂a|), with vie(|r̂i − R̂a|) being the elec-

trostatic potential exerted by the ath ion on the ith electron, it
is easy to show that

d

dt
L̂a = −R̂a ×

[ Ne∑
i=1

∇Ravie(|r̂i − R̂a|) + ∇RaV̂ii

]

= −
Ne∑

i=1

r̂i × ∇Ravie(|r̂i − R̂a|) − R̂a × ∇RaV̂ii; (5)

by combining Eq. (5) with the time derivative of the ionic
linear momentum operator, dP̂a/dt = −∇Ra [Ĥie + V̂ii], we
obtain the following important relation,

d

dt
L̂a = d

dt

{
L̂a −

Ne∑
i=1

r̂i × P̂a

}

= − 1

me

Ne∑
i=1

p̂i × P̂a +
Ne∑

i=1

r̂i × ∇RaV̂ii − R̂a × ∇RaV̂ii,

(6)

from which we can conclude that
∑Ni

a=1 L̂a is a constant of
motion for the system’s Hamiltonian Ĥ ,

d

dt

Ni∑
a=1

L̂a = 0 (7)

(further details are given in Appendix A). From now on we
will refer to L̂a as the conserved orbital momentum (COM)
operator. In addition, we can write

∑Ni
a=1 L̂a = L̂atom + L̂e

with Eq. (1) being manifestly satisfied in the case of a
spin-unpolarized system with no externally applied electro-
magnetic field. It may be also useful to separate the electronic
contribution to the COM from the ionic one; by defining
L̂e

a = −∑Ne
i=1 r̂i × P̂a we can finally write L̂a = L̂a + L̂e

a.

1. Proof of the inequality L̂e
a �= L̂

0
a

Let us define the angular momentum L̂0
a as that associated

to the atom a in the absence of other nuclei; this operator
commutes with the Hamiltonian of the isolated atom: Ĥa

ie =∑Ne
i=1 p̂2

i /2me + ∑Ne
i=1 vie(|r̂i − R̂a|) + Ûee. In general it is

easy to show that for every multiatom system the inequality
[
∑Ni

a=1 L̂0
a, Ĥie] �= 0 is valid due to the broken spherical sym-

metry of the system [namely to the term
∑Ne

i=1

∑Ni
b�=a vie(|r̂i −

R̂b|)].
From the previous considerations we have also

[
∑Ni

a=1 L̂a, Ĥie + V̂ii] = 0, while for the purely electronic
part of the COM we write −i[L̂e

a, Ĥie]/h̄ = R̂a × ∇Ra Ĥie. In
general it can be shown that −i[L̂0

a, Ĥie]/h̄ �= R̂a × ∇Ra Ĥie

(all the details are given in Appendix B) and, as a
consequence, L̂e

a �= L̂0
a. In conclusion the electronic orbital

momentum operator corresponding to L̂e = ∑Ni
a=1 L̂e

a cannot
be identified with the sum of the operators L̂0

a for isolated
atoms.
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2. Isolated-atom case

In the case of a single isolated atom we have [L̂0
a, Ĥa

ie] = 0
due to spherical symmetry, in addition ∇Ra Ĥ a

ie = 0, and, as a
consequence, L̂e

a = L̂0
a + cÎ, where we can freely set c = 0.

3. Nonconservation of L̂at + L̂elec in TDTB

In TDTB models the electronic orbital momentum operator
around each atom is usually set by definition to L̂e

a = L̂0
a. The

time derivative of the expectation value of the electronic or-
bital momentum operator around atom a is (see Appendix B)

d

dt
L0

a = − i

h̄

〈[
L̂0

a, Ĥie + V̂ii
]〉 = − i

h̄

〈[
L̂0

a, Ĥie
]〉

�= Ra × 〈∇Ra Ĥie〉 + Ra × ∇RaVii = − d

dt
Latom

a , (8)

which leads to

d

dt

Ni∑
a=1

L0
a + d

dt
Latom �= 0. (9)

As a consequence these models cannot conserve the total or-
bital momentum even if the atoms are allowed to move. Note
that this result is independent on the choice of Ĥie while Ûee is
usually parametrized by means of a mean-field approximation
[32].

B. Case 2: ĤSO �= 0

Here we consider the case of finite spin-orbit coupling, so
that the spin degrees of freedom need to be reintroduced in
the discussion. We will not generalize the treatment to the full
Dirac formalism, since it is unnecessary for our conclusions,
and so we will simply add the spin-orbit coupling term to
the general Hamiltonian of Eq. (3). The spin-orbit coupling
operator associated to atom a may be written in the following
general form,

ĤSO
a = − eh̄

4m2
e c2

Ne∑
i=1

σ̂ i · [Ẽa(r̂i, t ) × p̂i], (10)

where Ẽa(r̂, t ) is the effective screened electric field due to
atom a and experienced by the electrons. From now on we
will treat the electron-electron interaction in a mean-field way,
so that the expression for the effective field can be written
as Ẽa(r̂, t ) = Eext (t )/Ni + Ẽmf

a (r̂ − R̂a), where Ẽmf
a is short

range due to the screening of the conduction electrons, while
Eext is the applied external field assumed to be spatially ho-
mogeneous. In this way the electrons are treated as effective
noninteracting particles. By summing over all the atoms the
spin-orbit Hamiltonian becomes

ĤSO = ĤSO−ext +
Ni∑

a=1

ˆ̃HSO
a , where (11)

ĤSO−ext = − eh̄

4m2
ec2

[
Eext (t ) ·

Ne∑
i=1

p̂i × σ̂ i

]
,

ˆ̃HSO
a = − eh̄

4m2
ec2

Ne∑
i=1

σ̂ i · [
Ẽmf

a (r̂i − R̂a) × p̂i
]
. (12)

The first contribution due to the externally applied electric
field is not of great interest here since it will act only dur-
ing the application of the laser pulse, while we are mainly
interested in the long-term dynamics of the system; therefore,
we will focus on the second term only. Without any loss of
generality we can rewrite the mean-field screened electric
field as eẼmf

a = −∇Ra ṽie(|r − Ra|), where ṽie is the screened
electron-ion potential. The spin-orbit coupling operator then
becomes

Ĥa
SO = i

2m2
ec2h̄

Ne∑
i=1

Ŝi · {[P̂a, ṽie(|r̂i − R̂a|)] × p̂i}

= 1

2m2
ec2

Ne∑
i=1

∑
l jk

εl jk Ŝl
i P̂

j
a

{
− i

h̄

[
p̂k

i , ṽie(|r − Ra|)
]}

+ i

2m2
ec2h̄

Ne∑
i=1

∑
l jk

εl jk Ŝl
i

[
P̂ j

a p̂k
i , ṽie(|r̂i − R̂a|)

]
. (13)

After some manipulations the second term on the right-hand
side can be shown to be exactly zero. Thus, the spin-orbit
coupling experienced by a single electron becomes

Ĥa
SO = − ∂r ṽie(r)

2m2
ec2|r̂ − R̂a|

Ŝ · {(R̂a − r̂) × P̂a}

= − ∂r ṽie(r)

2m2
ec2|r̂ − R̂a|

Ŝ · L̂a, (14)

where L̂a is the COM operator introduced in Eq. (6). It is
evident that

∑Ni
a=1 La is not a constant of motion of the new

Hamiltonian Ĥ ′ = Ĥ + ĤSO, with Ĥ given by Eq. (3). In
particular from Eq. (14), by writing ĤSO = ∑

a fa(r)L̂a · Ŝ,
it is easy to show that

[L̂a, ĤSO] = (R̂a − r̂) ×
Ni∑

b=1

[P̂a, fb(r̂)]L̂b · Ŝ

+
Ni∑

b=1

fb(r̂)[L̂a, L̂b] · Ŝ, (15)

where the first term on the right-hand side is exactly zero.
Furthermore, given the fact that L̂a is a generator of the
spatial rotation group and satisfies the commutation relations
[L̂a,x, L̂b,y] = ih̄δa,b

∑
z εxyzL̂a,z, we easily obtain dL̂a/dt =

fa(r)Ŝ × L̂a. Since dŜ/dt = ∑Ni
a=1 fa(r)L̂a × Ŝ we conclude

that d Ĵ/dt = 0 with Ĵ = ∑Ni
a=1 L̂a + Ŝ.

Nonconservation of the orbital momentum
in noncollinear TDDFT

The nonconservation of the total angular momentum in the
rtTDDFT simulations presented in Figs. 1 and 2 and reported
previously in Ref. [31] is due to the fact that the system’s
spin-orbit coupling operator (introduced via the pseudopoten-
tial approximation) is given by ĤSO(r) = ∑Ni

a=1 V̂ SO
ps (r − Ra)

and it is a function of the isolated atom orbital momentum
operator L̂0. As a consequence dL̂a/dt �= fa(r)Ŝ × L̂a and Ĵ
is not a constant of motion. Note that also

∑Ni
a=1 L̂0

a + Ŝ is not
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a constant of motion, since
∑Ni

a=1 L̂0
a does not commute with

the crystal field Hamiltonian Ĥ0
ie.

IV. RESULTS

In this section we consider a set of different atomic clusters
and we analyze their temporal evolution by using the cor-
rect orbital-momentum-conserving spin-orbit coupling [see
Eq. (14)]. The results are then compared with the approxi-
mated, non-orbital-momentum-conserving evolution. For the
analysis we use a TB approximation, whose Hamiltonian
writes as follows:

Ĥ (t ) =
Ni∑

a=1

P2
a

2M
+ ˆ̃H [R]

ie (t ) + Vii(R) +
Ni∑

a=1

Z∗
a eRa · E(t ),

(16)

ˆ̃H [R]
ie (t ) =

Ni∑
a=1

∑
i

εaiĉ
†
aiĉai −

∑
a<b

∑
i< j

[
t i j
ab(R)ĉ†

b j ĉai + H.c.
]

+ Ĥ [R]
SO + D̂ · E(t ). (17)

In the electronic Hamiltonian, ˆ̃H [R]
ie , the first two terms on

the right-hand side correspond to Ĥ0
ie, namely to the electron-

ion interaction and the electronic kinetic energy (this term
can also eventually include a mean-field expression for the
electron-electron interaction, not considered here). The last
term on the right-hand side is the electric dipole interac-
tion (D̂ = −er̂). We have further defined Z∗

a as the effective
atomic number and E(t ) as the externally applied electric
field.

A. Comparison between the two types of evolution

Here we compare the temporal evolution of an atomic
dimer under the effect of the two different spin-orbit coupling
operators introduced in the previous section. The basis set is
built of the s and p orbitals of the two atoms. The model here
for explanatory reasons does not have to be physically realistic
and we will focus on more realistic systems in future works.
In addition the model depends on a set of free parameters that
are set arbitrarily and varied in order to look at their influence
on the dynamics. These are hopping terms tss, tsp, and tpp, the
spin-orbit strengths λa, the on-site energies εai, and the electric
dipole parameters. The atoms are assumed from now on to
be identical. The two spin-orbit operators considered here
are

Ĥ0
SO =

Ni∑
a=1

λaL̂0
a · Ŝ, (18)

ĤSO =
Ni∑

a=1

λaL̂a · Ŝ, (19)

where L̂a is the previously defined COM operator

L̂a = L̂a −
Ne∑

i=1

r̂i × P̂a. (20)

Note that the first is of the type commonly used in tight-
binding calculations and similar to that employed in rtTDDFT,

while the second represents its generalization, as discussed in
the previous section. Further details on the evaluation of the
orbital momentum matrix elements are given in Appendix C.
In particular, we should notice that the total COM commutes
with the crystal field Hamiltonian and therefore it is conve-
nient to expand it over the Ĥ0

ie eigenstates; the local orbital
momentum operator L̂0

a, instead, is independent of the prop-
erties of the full system’s Hamiltonian.

In Fig. 3 we evolve the electronic system under the ac-
tion of the Hamiltonian (17), by approximating the spin-orbit
coupling operator with Eq. (18) or with the complete spin-
orbit coupling of Eq. (19). The different sets of parameters
used in the calculations are provided in the figure’s caption,
and we assume the atoms to be fixed in their initial posi-
tions. We distinguish the evolution of the observables obtained
with spin-orbit coupling (19) from the ones obtained with
spin-orbit (18) by using respectively 〈. . .〉 and 〈. . .〉0 for the
expectation values.

As expected 〈Ĵz〉 = 〈L̂z〉 + 〈Ŝz〉 is a constant of motion
after the external electric-field pulse has vanished (see the
solid blue line in the three plots on the right-hand side of
Fig. 3 after t = 10 fs), while 〈Ĵz〉0 = 〈L̂0

z 〉0 + 〈Ŝz〉0 is not (see
dotted blue lines). Thus, the total orbital momentum is, in
general, not conserved under the Hamiltonian including the
approximated spin-orbit coupling interaction. The expectation
value of the total orbital momentum 〈L̂0

z 〉 is also not conserved
for both types of evolution (see red dotted and solid lines).
The dynamics of 〈L̂0

z 〉0 is oscillatory with the frequency that
depends on the strength of the spin-orbit interaction, while the
dynamics of 〈L̂z

0〉 appears to be not as strongly dependent on
the spin-orbit interaction.

The plots on the left-hand side of Fig. 3 show the tem-
poral evolution of the two observables 〈Ŝz〉 and 〈Ŝz〉0. Their
evolution is, not surprisingly, quite different, due to the fact
that the operator L̂ is dependent on the strength of the hop-
ping terms, since [Ĥ0

ie, L̂] = 0 must always be satisfied. The
spin decay appears more pronounced for stronger spin-orbit
interaction, although, for the same value of λ, it seems that
the effect of the hopping terms should not be neglected either.
In Fig. 4 we study the time evolution of a three-atom system
initiated by an externally applied laser pulse and driven by two
different models of spin-orbit coupling. The figure shows the
evolution of the spin expectation values 〈Ŝz〉 and 〈Ŝz〉0 when
the spin-orbit coupling strength is fixed and the hopping terms
are set to the values given in the caption. This choice of the
parameters has no particular meaning from a physical point of
view, and our purpose is to show how the choice may affect
the orbital momentum operator L̂ and in turn the spin-orbit
coupling, while its strength λ is kept fixed. The evolution
under the two spin-orbit operators is clearly different; in par-
ticular we observe that the nonapproximated one [Eq. (19)]
leads to a greater loss of spin magnetization compared to the
results obtained with the approximated evolution [Eq. (18)].
The effect in the case of real magnetic system is still to be
investigated, but already at this level it is clear that the two
spin-orbit operators may lead to different rates of spin decay
thanks to the different nature of the orbital operators L̂ and
L̂0. The fact that the COM operator describes in addition to
the localized orbital properties also the orbital properties of
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(a.u.) (a.u.)

(a.u.) (a.u.)

(a.u.) (a.u.)

FIG. 3. Time evolution of different observables for the atomic
dimer excited by the application of an external laser field Ex (t )
slightly tilted with respect to the bond axis, with the effect of the
atomic motion being neglected. In the upper plots we use a spin-
orbit strength λ = 0.5 eV and hopping parameters tss = 0.01 eV,
tpp = 0.05 eV; we consider the expectation values 〈. . .〉 obtained by
evolving the system’s Hamiltonian with spin-orbit coupling from
Eq. (19) and 〈. . .〉0 obtained by using the Hamiltonian with ap-
proximated spin-orbit from Eq. (18). In the plots on the left-hand
side we compare the expectation value of the spin, Ŝz, for the two
calculations, while in the plots on the right-hand side we compare
instead the expectation values of L̂0

z , Ĵz for the two calculations with
〈L̂z〉. For the middle plots we perform the same calculations with
parameters λ = 0.1 eV and tss = 0.03 eV, tpp = 0.07 eV, while in
the lower plots we use λ = 0.5 eV and tss = 0.03 eV, tpp = 0.07 eV.

the delocalized electronic states leads to an additional contri-
bution to the spin-orbit operator with a nontrivial influence on
the dynamical evolution of the magnetic system.

FIG. 4. Time evolution of the observables 〈Ŝz〉 (solid lines) and
〈Ŝz〉0 (dashed lines) for the different models of spin-orbit coupling
in the case of a three-atom system. The spin-orbit strength is fixed
to a value λ = 0.2 eV, tss = 0.03 eV while tsp � tpp have values
� 0.12 eV (black curves), � 0.22 eV (red curves), and � 0.32 eV
(blue curves). The external electric field is applied along one of the
bond axes.

B. Coupling between electrons and molecular vibrations

In this section we briefly consider the effect of molecular
vibrations on the spin dynamics. In order to account for this
effect our tight-binding Hamiltonian is modified to write

ˆ̃H [R]
ie (t ) =

Ni∑
a=1

∑
i

εaiĉ
†
aiĉai −

∑
a<b

∑
i< j

[
t i j
ab(R)ĉ†

b j ĉai + H.c.
]

−
∑
a<b

δR(t ) ·
∑
i< j

[∇t i j
ab(R)ĉ†

b j ĉai + H.c.
] + Ĥ [R]

SO

+ Ĥ [R](1)
SO + D̂ · E(t ), (21)

where all the terms have the usual meaning and in addition
δRa(t ) indicates the atomic vibration associated to atom a,
∇t i j

ab(R) represents the transition matrix elements of the gra-
dient of the electron-ion Hamiltonian Ĥ0

ie, and Ĥ [R](1)
SO is an

additional contribution to the spin-orbit coupling of Eq. (19)
arising when the atomic vibrations carry orbital momentum.
From Eq. (14) it is straightforward to show that

Ĥa
SO = − ∂r ṽie(r)

2m2
ec2|r̂ − R̂a|

Ŝ · [
L̂0

a + δR̂a × P̂a
]

(22)

with the second term on the right-hand side corresponding
to the spin-vibration contribution Ĥ [R](1)

SO , while L̂0
a = (R0

a −
r̂) × P̂a is the orbital momentum in the absence of atomic
vibrations. In Fig. 5 we analyze the effect of these additional
terms to the overall spin dynamics of a magnetic cluster of
5 atoms excited by the application of an external laser pulse
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FIG. 5. Time evolution of the observables 〈Ŝz〉 (solid red lines)
and 〈Ŝz〉0 (solid black lines) for the different models of spin-orbit
coupling and without considering molecular vibrations in the case of
a five-atom system. The other two lines represent 〈Ŝz〉 obtained by
using two different amplitudes of atomic vibrations, namely 0.03 Å
[green dotted line (2)] and 0.1 Å [blue dashed line (1)].

(the cluster has a pyramidal geometry with 4 atoms in plane
and an additional atom out of plane). The vibrational orbital
momentum acts also as an external field and its effect on the
spin is shown in the figure for two different amplitudes of
the vibrations 0.1 Å (blue dashed line) and 0.03 Å (green
dotted line) and compared with the evolution in absence of
vibrations for the exact (red line) and the approximated (black
line) spin-orbit interaction. The effect does not seem par-
ticularly relevant at these timescales with only a noticeable
change in the amplitude of the oscillations, while the evo-
lution under the approximated spin-orbit interaction leads to
huge modifications in the spin dynamics, as we have already
observed.

V. CONCLUSIONS AND FUTURE WORKS

In this work we have discussed how to properly account
for the conservation of the total orbital momentum in state-
of-the-art ab initio simulations of ultrafast demagnetization
processes. We have identified the main problem behind the
observed breaking of the full rotational invariance to be as-
sociated with the standard implementation of the spin-orbit
coupling operator. We have then explained why an approx-
imated spin-orbit coupling operator, built as a function of
the isolated atom orbital momentum, L̂0, may lead to diffi-
culties in the estimation of the spin and orbital momentum
temporal evolution. A proper analysis of the ultrafast de-
magnetization process should not be limited to the correct
description of the electron-atom (phonon) channel of energy
and orbital momentum dissipation, but should be based also

on a more accurate description of the spin-orbit coupling
interaction. In Sec. IV we have then shown how, even for
simple models, an oversimplified description of the spin-orbit
coupling may affect the temporal evolution of the spin mag-
netization. These results are preliminary and based on simple
tight-binding Hamiltonians. At this point they only aim to
show the importance of these new effects. In the future, the
model will be extended to describe more realistic systems
(bulk materials and transition metal atomic clusters).

This new description of the ultrafast spin dynamics has
some interesting consequences and it may help in shedding
some light on the issue of the nonconservation of the orbital
momentum observed in experiments [26,42]. Experimentally,
the measure of the electronic orbital momentum is performed
by means of x-ray magnetic circular dichroism (XMCD),
which provides separate information on the dynamics of the
spin and the electronic orbital momentum. However, it is the
expectation value of L̂0, which is not a globally conserved
quantity, to be directly accessible through these methods. In
transition metals, the COM L̂a is expected to significantly
differ from L̂0

a around each atom, suggesting that the missing
orbital momentum observed in experiments does not neces-
sarily have to be instantaneously transferred to the nuclei, but
it could remain hidden in the form of delocalized electronic
orbital momentum for a longer time before being transferred
to the lattice.

The transfer of orbital momentum to the nuclear degrees
of freedom is, in fact, controlled by the electron-phonon cou-
pling strength and it is expected to take place, in transition
metals, on the slightly longer timescale of a few hundred
femtoseconds (see for instance [43,44] for calculations of
relaxation rates in metals such as iron and nickel and compar-
ison with experimental data). The relaxation rate in the case
of these metals has been computed and it is of the order of
τE � 400 fs, approximately twice as long as the reported value
of the orbital momentum relaxation time τL � 200 fs [26]
even if both are related to the equilibration time of phonon
and electron subsystems. The fact that 〈L̂0

a〉 is not a measure
of the total electronic orbital momentum of the system may
explain why the measured rate τL is faster than τE, given that
the dynamics of 〈L̂0

a〉 is not expected to follow the temporal
evolution of the lattice orbital momentum (the two quantities
should not be correlated). Of course in the limit of an en-
semble of isolated atoms the two approaches are completely
equivalent, but this is only an idealized case, which does not
correspond to any observed condition in real materials. In
general, the two models are expected to differ at a rate that is
inversely proportional to the degree of spin localization of the
electronic system. In transition metals this effect may become
rather relevant, even if a more detailed analysis is required in
order to draw more definitive conclusions.
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FIG. 6. Picture of the homonuclear dimer that we are using as a
model system for the analysis of the orbital momentum conservation.
In its initial configuration the bonding axis is along directed along
x; in its successive configuration the entire dimer is rotated by an
infinitesimal angle δθ around the out-of-plane z axis.

APPENDIX A: PROOF OF EQ. (7)

We take Eq. (6) and we sum over all the ions a on the left-
and the right-hand side,

d

dt

Ni∑
a=1

L̂a = − 1

me

Ne∑
i=1

p̂i ×
Ni∑

a=1

P̂a +
Ne∑

i=1

r̂i ×
Ni∑

a=1

∇RaV̂ii

−
Ni∑

a=1

R̂a × ∇RaV̂ii. (A1)

The first term on the right-hand side is exactly zero due to the
conservation of the linear momentum,

∑Ne
i=1 p̂i = −∑Ni

a=1 P̂a.
The second term is also zero. In Gaussian units we write

Ne∑
i=1

r̂i ×
Ni∑

a=1

∇RaV̂ii =
Ne∑

i=1

r̂i ×
Ni∑

a=1

∑
a′ �=a

∇Ra

(Ze)2

|Ra − Ra′ |

=
Ne∑

i=1

r̂i ×
Ni∑

a=1

∑
a �=a′

[
− (Ze)2R̂a

|Ra − Ra′ | + (Ze)2R̂a′

|Ra − Ra′ |
]

= 0. (A2)

Analogously for the third term we have

Ni∑
a=1

R̂a × ∇RaV̂ii =
Ni∑

a=1

∑
a′ �=a

(Ze)2 R̂a × R̂a′

|Ra − Ra′ |3

= (Ze)2

2

Ni∑
a=1

∑
a′ �=a

[
R̂a × R̂a′

|Ra − Ra′ |3 − R̂a × R̂a′

|Ra − Ra′ |3
]

= 0, (A3)

which finally proves Eq. (7), namely, that the opera-
tor

∑Ni
a=1 L̂a is a constant of motion for the system’s

Hamiltonian Ĥ .

APPENDIX B: PROOF OF INEQUALITY (8)

Here we explicitly verify the inequality (8) for the elec-
tronic orbital momentum. The simplest possible case we may

consider here is that of a homonuclear diatomic molecule (see
Fig. 6; the nature of the atoms is not relevant), with wave
functions expanded over a minimal basis of s, px, py, and
pz orbitals with no spin polarization. Here we do not want
to describe a realistic situation, just prove conceptually that
the orbital momentum of the atomic plus electronic subsystem
cannot be conserved in general if we employ the operators
L̂0

a to describe the electronic orbital momentum. According
to Fig. 6 we assume that the dimer is uniformly rotating
around the z axis (out of plane) by an infinitesimal angle
δθ , the length of the bond is d , the Hamiltonian and orbital
momentum operators are expanded over the atomic basis
set {|1; s〉 , |1; p−1〉 , |1; p0〉 , |1; p1〉 , |2; s〉 , |2; p−1〉 , |2; p0〉 ,

|2; p1〉}, and in the new rotated configuration we can write

L̂0
z =

(
L0

1,z 0
0 L0

2,z

)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

which corresponds to the total electronic orbital momentum
operator, obtained as a direct sum of the orbital momentum
operators corresponding to the two isolated atomic sites, L̂0 =
L̂0

1 ⊕ L̂0
2. The Hamiltonian Ĥie of the system, in turn, depends

on 4 free parameters, the on-site orbital energies εs, εp (we
assume degeneracy of the p orbitals for simplicity), and the
hopping coefficients depend on a set of primitive integrals tss,
tsp, tσ

pp, and tπ
pp that here are left arbitrary but in general are a

function of the distance between the two atoms of the dimer
molecule. These integrals t nlma;n′l ′m′

a
i j are diagonal in the angu-

lar momentum projection ma along the bond axis and do not
depend on its sign [45], t nlma;n′l ′m′

a
i j = t nl|ma|;n′l ′ |ma|

i j δma,m′
a
. These

can be written through the following general expression:

t nlma,n′l ′ma
i j =

∫
V

d3rψ∗
nlma

(r − Ri )hi j (r)ψn′l ′ma (r − R j ),

(B2)

where ψnlma is an atomic wave function and hi j (r) =
−h̄2∇2/2me + vie(r − Ri ) + vie(r − R j ); the free hopping
parameters are given by the following two-center integrals:

tss = 〈n = 2, l = 0, ma = 0|ĥ12|n = 2, l ′ = 0, ma = 0〉,
tsp = 〈n = 2, l = 0, ma = 0|ĥ12|n = 2, l ′ = 1, ma = 0〉,
tσ
pp = 〈n = 2, l = 1, ma = 0|ĥ12|n = 2, l ′ = 1, ma = 0〉,

tπ
pp = 〈n = 2, l = 1, ma = 1|ĥ12|n = 2, l ′ = 1, ma = 1〉.

In addition we also have the exact relation t nlma,n′l ′ma
i j =

(−1)l+l ′t nlma,n′l ′ma
ji that leads to the final expression for the

dimer’s Hamiltonian,
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Ĥie =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs 0 0 0 tss
λ−tsp√

2
tspλz − λ+tsp√

2

0 εp 0 0 − λ−tsp√
2

tσ
pp+tπ

pp−λ2
z �tpp

2
λzλ−�tpp√

2
− λ2

−�tpp

2

0 0 εp 0 −tspλz
λzλ−�tpp√

2
λ2

z �tpp + tπ
pp − λzλ+�tpp√

2

0 0 0 εp
λ+tsp√

2
− λ2

−�tpp

2 − λzλ+�tpp√
2

tσ
pp+tπ

pp−λ2
z �tpp

2

tss − λ+√
2
tsp −tspλz

λ−√
2
tsp εs 0 0 0

λ+√
2
tsp

tσ
pp+tπ

pp−λ2
z �tpp

2
λzλ+√

2
�tpp − λ2

−
2 �tpp 0 εp 0 0

tspλz
λzλ+√

2
�tpp λ2

z �tpp + tπ
pp − λzλ−√

2
�tpp 0 0 εp 0

− λ−√
2
tsp − λ2

+
2 �tpp − λzλ−√

2
�tpp

tσ
pp+tπ

pp−λ2
z �tpp

2 0 0 0 εp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we have used �tpp = tσ
pp − tπ

pp; the dimer bond length
is d = |R1 − R2| with λx,y,z = (R1 − R2)x,y,z/|R1 − R2| and
λ± = λx ± iλy.

In the rotated configuration we have (R1 − R2)x =
d cos δθ , (R1 − R2)y = d sin δθ , and we can substitute in the
Hamiltonian

λ± = 1 − δθ2

2
± iδθ, (B3)

λz = 0. (B4)

The new atomic coordinates according to Fig. 6 are given by
R1 = d

2 (cos δθ, sin δθ, 0), R2 = − d
2 (cos δθ, sin δθ, 0). The

time derivative of the orbital momentum of the two atoms is
given by

L̇1 = −R1 × ∇R1〈δĤie〉 = −R1 × ∇R1δθ · ∂δθ 〈δĤie〉,
L̇2 = −R2 × ∇R2〈δĤie〉 = −R2 × ∇R2δθ · ∂δθ 〈δĤie〉,

and the total orbital momentum time derivative becomes

L̇atom = L̇1 + L̇2 = −∂δθ 〈Ĥie〉 · (R1 − R2) × ∇R1δθ

= −4êz · ∂δθ 〈Ĥie〉. (B5)

In order to simplify the calculation we proceed by assuming
that we have a single electron in a state given by the super-
position of |1; s〉 around atom 1 and |2; p−1〉 around atom
2; |〉 = [1, 0, 0, 0, 0, 1, 0, 0]/

√
2 in the same basis of the

Hamiltonian. By explicitly computing Eq. (B5) we obtain at
first order in δθ

∂δθ 〈Ĥie〉 = − tsp√
2
δθ,

L̇atom = 2
√

2 · êztspδθ. (B6)

The time derivative of the expectation value of the electronic
orbital momentum is given by (h̄ is set to 1)

d

dt
〈L̂0

z 〉 = i
〈[

Ĥie, L̂0
z

]〉
, (B7)

which explicitly computed by using the wave function |〉
previously defined gives

d

dt

〈
L̂0

z

〉 = − tsp√
2
δθ. (B8)

The time derivative of the total orbital momentum L̇atom +
d
dt 〈L̂0

z 〉 along the z axis is

L̇atom
z + d

dt

〈
L̂0

z

〉 = 3√
2

tspδθ, (B9)

which proves Eq. (7) in the main text.

APPENDIX C: COM OPERATOR MATRIX ELEMENTS

By assuming that the atoms behave as classical particles,
while the electrons, as mentioned in the main text, are treated
as effective noninteracting particles, the operator

∑
a L̂a may

be written as (
∑

a P̂a = −p̂)

Ni∑
a=1

L̂a =
Ni∑

a=1

Ra × Pa + r̂ × p̂, (C1)

corresponding to the expression of the system total angular
momentum. The atomic part is just a number, and in all the
cases considered is set to zero, so we focus on the electronic
part that can be expressed in a more suitable form,

L̂e = ime

h̄
r̂ × [

Ĥ0
ie, r̂

]
. (C2)

The matrix elements between two atomic basis centered states
on the atomic sites R1 and R2 are [by labeling α = (n, l, m)
and β = (n′, l ′, m′)] after some manipulation

〈α; R1|L̂e|β; R2〉

= ime

h̄
R1 × R2〈α; R1|Ĥ0

ie|β; R2〉

+ ime

h̄

∑
γ

Dαγ (R1) × (R2 − R1)〈γ ; R1|Ĥ0
ie|β; R2〉

+ ime

h̄

∑
η

R1 × [〈α; R1|Ĥ0
ie|η; R2〉Dηβ (R2)

− Dαη(R1)〈η; R1|Ĥ0
ie|β; R2〉

] + ime

h̄

∑
γ ,η

Dαγ (R1)

× [〈γ ; R1|Ĥ0
ie|η; R2〉Dηβ (R2)

− Dαη(R1)〈η; R1|Ĥ0
ie|β; R2〉

]
, (C3)
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where we have used 〈α; R1|r̂|γ ; R2〉 = [R1δα,γ + Dαγ

(R1)]δ(R1 − R2).
In the limit of a system of isolated atoms the operator

L̂e must reduce to the sum of the isolated atoms’ orbital
momenta,

∑
a L̂0

a = L̂0. In this limit the Hamiltonian matrix
elements are 〈α; R1|Ĥ0

ie|β; R2〉 = εα,1δα,βδ(R1 − R2) and we
can rewrite the orbital momentum matrix elements as follows:

L0
αβ (R) = ime

h̄
R × Dαβ (R)(εα − εβ )

+ ime

h̄

∑
γ

εγ Dαγ (R) × Dγ β (R)

− ime

h̄

∑
γ

εβDαγ (R) × Dαβ (R). (C4)

We can then set

〈α; R1|L̂e|β; R2〉 =
{

L0
αβ (R1), R1 = R2,

Eq. (C3), R1 �= R2,

in such a way to recover the correct limit for isolated atoms.
The temporal evolution of the electronic orbital momentum is
then written as (in the absence of spin-orbit coupling)

d

dt
L̂e =

Ni∑
a=1

Ra × ∇Ra Ĥ
0
ie. (C5)

With no atomic motion, as are all the cases considered here,
the right-hand side of the previous expression is zero and L̂e

does not need to be updated in time. In order to preserve the
commutation rules, L̂ = L̂e is expanded over the eigenvector
basis set of Ĥ0

ie, {|λm〉},

L̂e =
∑

n

|λn〉〈λn|L̂e|λn〉〈λn|. (C6)

L̂e
a is then obtained by projecting over the local atom basis set

L̂e
a = �̂†

aL̂e�̂a. In the presence of spin-orbit coupling the con-
siderations are the same and the procedure must be repeated
with the only difference that now the conserved quantity is
Ĵ = L̂ + Ŝ and it should be projected over the eigenstates
of the crystal field Hamiltonian with spin-orbit interaction.
We would like to conclude by mentioning that in the pres-
ence of atomic motion, the phonons should be also evolved
in time and the formalism must be revisited with the COM
operator now defined over a basis set of both phononic and
electronic degrees of freedom. However, during the first few
femtoseconds of dynamics we expect the atomic effects to be
very small and negligible given that the electronic effects are
dominant.
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