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Magnetochiral properties are enriched in curved magnetic nanostructures, in which dipole-dipole and
exchange couplings are their physical sources. In such systems, direct implications are evidenced in the mag-
netization dynamics, where a noticeable frequency shift appears between two counterpropagating spin waves.
In this paper, the spin-wave asymmetry induced by the curvature is theoretically studied in thick ferromagnetic
nanotubes with a vortex ground state. The spin-wave spectra are obtained using semianalytical calculations and
the dynamical matrix method for thin and thick nanotubes. Under the thickness increase, radial standing spin
waves are observed at low frequencies, while the nonreciprocal properties are improved. Such standing waves
exhibit a nonreciprocal spin-wave dispersion, but it is not as prominent as the asymmetry of the low-frequency
in-phase modes. In the limit of small wave vectors, analytical expressions are reported for the spin-wave
dispersion, where the resonance frequency, the frequency shift of two counterpropagating waves, and the critical
field that destabilizes the vortex state are determined. The obtained frequency shift allows us to estimate the
influence of thickness and curvature on the nonreciprocity of the spin waves. These results constitute a significant
advance in the fundamental understanding of the spin-wave dynamics of ferromagnetic nanotubes, predicting
new phenomena and providing expressions that are easy to interpret and that allow us, therefore, to promote the
study of magnetization dynamics in curved structures.
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I. INTRODUCTION

Due to their curved surface and reduced nanometer size,
together with the competition among magnetic energies, the
magnetic properties of nanotubes (NTs) are unique [1,2]. For
example, the ubiquitous curling magnetization that wraps a
cylindrical crust appears in different magnetic textures to
reduce the demagnetizing energy and leads to magnetochi-
ral properties [3–8]. The occurrence of different magnetic
states and reversal paths depends strongly on the tube’s cross-
section and length [2,9–13], as well as on the material and
quality of the structure [14–19]. The magnetization almost
aligns with the tube axis for long nanotubes with a radius
(R) less than a few exchange lengths [9]. For slightly more
significant R, the dipolar term becomes relevant, and the mag-
netization at the tube boundaries prefers to develop vortex
domains to reduce such energy term [9,20,21], while for an
even larger radius, a flux-closure vortex state appears [22]. In
the case of solid cylindrical nanowires, it has been shown that
the presence of magnetic matter at the symmetry axis causes
a Bloch-point singularity [23–25], which complicates the re-
versal processes. In the nanotube, the inner void eludes the
formation of Bloch points, facilitating the domain-wall-based
reversal process and leading to ultrafast chiral domain walls
[3,26]. Moreover, magnetic NTs are potential candidates for
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biomedical applications, which principally includes imaging,
sensing, drug delivery, and magnetic hyperthermia [27–30].

The spin waves (SWs) are the elementary magnetic excita-
tions behind the rising field of magnonics [31], which has been
active for around 90 years, since the prediction of the spin
excitations by Bloch and further discovery of ferromagnetic
resonance in metals [32]. Spin waves can carry information,
and they are essential for low-consumption information tech-
nologies. They usually propagate reciprocally in frequency
but with different amplitudes in a thick film [33]. How-
ever, under given conditions, two counterpropagating waves
exhibit different wavelengths at the same frequency, thus pro-
ducing an asymmetric wave dispersion. See the discussion
about spin-wave nonreciprocity in Chap. 16 of Ref. [31].
In magnetic materials, this asymmetry in the SW disper-
sion has been observed in different types of systems, such
as coupled ferromagnetic bilayers [34–42], magnetization-
graded films [42,43], magnetic nanotubes [44–47], arrays
of nanopillars [48], noncentrosymmetric crystals [49–52],
heavy-metal/ferromagnetic interfaces [53–58], and magnonic
crystals [59,60]. Due to the peculiar characteristics of the
nonreciprocal waves, potential magnonic applications such as
circulators, isolators, phase shifters, diodes, and logic devices
have been envisioned [61,62].

In ferromagnetic thin films coupled with a heavy metal
(a material with strong spin-orbit coupling), the source of
the SW nonreciprocity is the antisymmetric exchange known
as Dzyaloshinskii-Moriya (DM) interaction [63–65], which
introduces an additional term in the SW dispersion that varies
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linearly with the wave vector [50,51]. Nevertheless, due to the
interfacial nature of the DM energy, the SW asymmetry is not
observed in thick FM films since the DM strength decays as
the inverse of the thickness [56,58]. On the other side, when
the classical dipole-dipole interaction causes the magnonic
nonreciprocity, the dependence with the thickness changes
since the frequency shift � f (frequency difference of two
counterpropagating waves evaluated at the same magnitude
of the wave vector) increases with the FM layer thickness.
Indeed, a giant increment of � f based on the dipole-dipole
coupling has been predicted to occur in magnetization-graded
films [42,43], ferromagnetic nanotubes [44–46], and anti-
ferromagnetically coupled bilayers [38–41]. In the coupled
bilayers, the dynamic dipolar interaction between the two
FM layers depends strongly on the wave-vector sign, thus
inducing a notable nonreciprocity that increases with the layer
thicknesses [38].

Early studies of magnetic excitations in ferromagnetic
NTs focused on calculating the dispersion relation where
elliptically polarized waves appeared from the competition
between exchange and magnetostatic interactions [66]. Ex-
perimental and theoretical research has been carried out
in cylindrical nanowires [67,68], short nanorings structures
[20,69,70], microtubes [71–73], long nanotubes [70,74,75],
coupled cylindrical multilayers [76], and tubes with rectangu-
lar [77] and hexagonal cross section [78,79]. The calculation
of spin excitations in an ultrathin nanotube hosting a vor-
tex domain wall texture resulted in scattered waves by the
wall (with an associated phase shift) and an increment in the
magnonic band gap [74]. However, the authors in Ref. [74]
did not find nonreciprocal wave propagation, perhaps because
the dispersion of backward-volume SWs is reciprocal for a
static magnetization along the axis or because the theory
considered the dipole term in a local thin-film approach,
where magnetochiral effects vanish [3,6]. Nonetheless, in
thin magnetic nanotubes (NTs) with a vortex magnetization
ground state, a notable SW asymmetry has been predicted
for waves propagating along the tube [44–46]. Here, it has
been theoretically demonstrated by numerical calculations
and micromagnetic simulations that the dynamic dipolar in-
teraction causes nonreciprocal spin-wave dispersion for the
zeroth-order and higher-order azimuthal modes [45]. Further
micromagnetic studies of the dynamic modes in NTs excited
by rotating magnetic fields evidence an asymmetric ferro-
magnetic resonance and azimuthal SW modes at the resonant
frequencies of the rotating fields [80,81]. The experimental
proof of the asymmetric SW dispersion has been recently
reported in hexagonal permalloy nanotubes measured with
time-resolved scanning transmission x-ray microscopy [47].

Due to the characteristics of dipole-dipole coupling, the
spin-wave asymmetry depends strongly on the tube radius
and its thickness. Indeed, the nonreciprocity becomes promi-
nent as the thickness of the NT increases [45]. Therefore, it
is interesting to study thick nanotubes, where such a thick-
ness can be several times larger than the exchange length.
Nonetheless, the analysis for thick NTs must consider the
inhomogeneous radial profile of the dynamic magnetization,
which has not been calculated so far in systems with a tubular
cross-section in a vortex ground state. See Refs. [67,68] for a
full description of spin dynamics in axially magnetized cylin-

drical wires that correctly incorporates magnetostatics with
its radial dependence. Furthermore, in the small wave-vector
regime, there are not fully analytical expressions for the SW
dispersion or frequency shift in nanotubes, since only semi-
analytical formulas have been derived, all of which require
us to carry out one or more numerical integrations [44,45].
Therefore, practical analytical expressions are highly desired
in this context since they allow easy analysis of the dynamic
behavior of the spin waves as a function of the geometrical
and magnetic parameters of the system.

In this paper, the spin-wave dynamics of thick ferromag-
netic nanotubes are theoretically studied. The ground state
of the tubular system is assumed to be a vortex configura-
tion, while the SWs propagate along the nanotube axis. Two
methods are used to calculate the SW spectra. The first one
calculates the magnonic modes (including the higher-order
azimuthal modes) of a thin NT, where the magnetostatic
coupling is treated in its nonlocal form. Then, the dynamic
matrix method (DMM) is employed to calculate the tempo-
ral evolution of the magnetization for thick NTs. Thus, the
theoretical methods allow calculating both the azimuthal and
radial standing SW modes, where the radial modes are ob-
served at lower frequencies as the thickness of the nanotube
increases. The SW nonreciprocity is also observed, where an
enhancement of the SW asymmetry is obtained as the NT
thickness increases, but principally for the low-frequency in-
phase mode. The small wave-vector limit is analyzed to get a
deeper insight into the SW asymmetry induced by the dipolar
field and the curvature, where fully analytical expressions
for the spin-wave dispersion and the critical magnetic field
destabilizing the vortex state are derived.

II. THEORY

A ferromagnetic nanotube with R (a) being the outer (in-
ner) radius and d = R − a the thickness is shown in Fig. 1.
Here an equilibrium vortex state is assumed, which can occur
naturally for certain sizes [9] or may also be induced with
an electric current in an inner conductor and its associated
circular field [82]. The dynamic matrix method is applied to
obtain the SW spectra for thick NTs [83–85]. This method dic-
tates the subdivision of one nanotube into N cylindrical layers
coupled by exchange and dipolar interactions (see Fig. 1).
Each cylindrical shell, say the nth one, has thickness ζ = d/N ,
inner radius r(n) = a + (n − 1)ζ , and outer radius r(n + 1).
Thereby, the magnetization dynamics of thick nanotubes can
be described correctly since the method considers the radial
modulation of the dynamic magnetization.

The temporal evolution of the nth cylindrical layer is de-
scribed by the Landau-Lifshitz (LL) equation,

d

dt
Mn(r, t ) = −μ0γ Mn(r, t ) × Hn(r, t ), (1)

where Mn is its magnetization, Hn is the effective field act-
ing on the nth layer, and γ is the absolute value of the
gyromagnetic ratio. Monochromatic plane waves propagat-
ing along the z-axis will be assumed. In the linear-response
regime, both the magnetization and the effective field
can be written as Mn(r, t ) = Mn

eq(ϕ) + mn(ϕ)ei(k·r+lϕ−ωt )

and Hn(r, t ) = Hn
eq(ϕ) + hn(ϕ)ei(k·r+lϕ−ωt ), where Mn

eq(ϕ) =
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FIG. 1. Thick nanotube system. The spin waves propagate along
the nanotube, while the equilibrium magnetization describes a vortex
ground state. Parameters a and R denote the inner and outer radius,
respectively. The coordinate system and the spin-wave propagation
directions are schematically illustrated. The thickness of the nan-
otube is given by d = R − a = Nζ , with ζ being the thickness of
the nth cylindrical layer and N the total number of layers.

Mn
s ϕ̂ and mn(ϕ) = mzẑ + mρ ρ̂, similarly for the effective

field. Here, Mn
s is the saturation magnetization of the nth

layer, k = kẑ is the wave vector, ω = 2π f is the angular
frequency, and l is an integer associated with the quantization
of the azimuthal standing modes [67,68]. Thus, the linearized
equation of motion (1) becomes

ωmn = iγμ0
(
Hn

eq × mn + hn × Mn
eq

)
(2)

for 1 � n � N . The dynamic effective fields can be written
as a linear combination of the dynamic magnetization com-
ponents, namely hn = −∑

p �np · mp. Therefore, once the
dynamic tensors �np = �

np
u + �

np
ex + �

np
dip and static fields

Hn
eq(ϕ) = HZ(ϕ) + Hn

ex(ϕ) are calculated, Eq. (2) can be
solved as an eigenvalue problem. Note that �

np
u , �

np
ex , and

�
np
dip are associated with the uniaxial, exchange, and dipolar

interaction, respectively. In the case of Zeeman interaction,
an external circular field HZ(ϕ) = H0ϕ̂ will be assumed,
which may originate with an electric current in an inner
conductor wire [44]. In contrast, for anisotropy the associ-
ated field is given by hn

u = [2Ku/(μ0M2
s )]mn

z ẑ. Hence, �
np
u =

−δnp[2Ku/(μ0M2
s )]ẑ ⊗ ẑ, with ⊗ denoting the tensor product.

To stabilize the vortex equilibrium state, a negative uniaxial
anisotropy constant will be used (Ku < 0).

On the other hand, the exchange interaction is accounted
for employing two terms. One of them is associated with
the exchange coupling within each nanotube. This inner ex-
change field is Hn

ex = 
2
ex∇2Mn, where 
ex = (2Aex/μ0M2

s )1/2

is the exchange length, and Aex is the exchange constant.
However, since this field depends on the radial coordinate
ρ, the radial average of the effective exchange field is cal-
culated, namely Hn

ex = (
∫


2
ex∇2Mndρ)/ζ , with integration

limits from r(n) to r(n + 1). The other term is related to the
exchange interaction between neighboring cylindrical layers.
In this case, the exchange energy density (energy/length) be-
tween two neighboring layers is ε

np
ex = −[Jnp

ex /(Mn
s M p

s )]Mn ·
Mp, wherein Jnp

ex is a coupling parameter. Then, the effec-
tive field is derived from Hn = −∑

p(δεnp
ex /δMn)/[μ0S(n)],

where S(n) = π [r(n + 1)2 − r(n)2] is the cross section of the
nth layer. Taking into account both exchange contributions, it
follows that

Hn
eq−ex(ϕ) =

(∑
p

Jnp
ex

μ0S(n)Mn
s

− 
2
exMn

s

r(n)r(n + 1)

)
ϕ̂ (3)

and

�np
ex = δnp


2
ex

(
ρ̂ ⊗ ρ̂ + l2I
r(n)r(n + 1)

+ k2I
)

− Jnp
ex

μ0S(n)Mn
s M p

s
I, (4)

where I is the identity matrix. In the continuous approach,
keeping in mind that there will be many coupled cylindrical
shells, it is straightforward to show that Jnp

ex = 2Aex{2πr[(n +
p + 1)/2]}/ζ [86]. It is worth mentioning that the exchange
interaction in curved structures can be written in three
categories containing isotropic exchange, chiral parts, and
anisotropic parts. In the present case, isotropic and anisotropic
parts are obtained, while chiral terms are null. This result
is in concordance with Ref. [6], where it is shown that the
circular nanotube geometry has zero chiral terms driven by
exchange, due to its constant radius of curvature. However, for
the particular case of an elliptical nanotube with a variable ra-
dius of curvature, a chiral term originating from the exchange
coupling is expected [6].

The dipole-dipole interaction is now calculated. The mag-
netic field due to the pth tubular layer is given by

H(p)
dip (r, t ) = ∇

4π

(∫ ∇′ · Mp(r′, t )

|r − r′| dV ′ (5)

−
∮

n̂′ · Mp(r′, t )

|r − r′| da′
)

. (6)

Notice the difference in notation between Hp and H(p). The
former denotes the effective field acting on the pth tubular
layer, while the latter refers to the field produced by the
pth layer. Due to the vortex configuration of the equilibrium
magnetization, the static dipolar field is zero [87]. Indeed,

∇ · Mp(r, t ) = (ikmz + mρ/ρ)ei(k·r+lϕ−ωt ), (7)

n̂ · Mp(r, t ) = sgn[ρ − r(p + 1/2)]mρei(k·r+lϕ−ωt ), (8)

where the term mρ/ρ corresponds to the contribution from the
geometrical magnetic charge that emerges from curvature [6].
Hence, H(p)

dip (r, t ) = h(p)
dip(ρ, ϕ)ei(k·r+lϕ−ωt ). Now, the demag-

netizing tensor �
np
dip is defined with the radial average on the

nth layer, namely

1

ζ

∫
h(p)

dip(ρ, ϕ)dρ = −�
np
dip · mp(ϕ), (9)
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where the integral goes from r(n) to r(n + 1) in such a way
that the dipolar field h(p)

dip(ρ, ϕ) due to the pth cylindrical layer
is averaged into the nth layer. Then, it follows that(

�
np
dip

)
ρρ

=
∫∫∫

ρ ′∂ρρ ′G(ρ, ρ ′, ϕ′)dρ dρ ′dϕ′, (10a)

(
�

np
dip

)
zρ = ik

∫∫∫
ρ ′∂ρ ′G(ρ, ρ ′, ϕ′)dρ dρ ′dϕ′, (10b)

(
�

np
dip

)
ρz = −ik

∫∫∫
ρ ′∂ρG(ρ, ρ ′, ϕ′)dρ dρ ′dϕ′, (10c)

(
�

np
dip

)
zz = k2

∫∫∫
ρ ′G(ρ, ρ ′, ϕ′)dρ dρ ′dϕ′, (10d)

where the ρ ′-integrals go from r(p) to r(p + 1), the ρ-
integrals go from r(n) to r(n + 1), the ϕ′-integrals go from
0 to 2π , and

G(ρ, ρ ′, ϕ′) = eilϕ′

2πζ
K0(|k|

√
ρ2 + ρ ′2 − 2ρρ ′ cos ϕ′). (11)

Equations (10) follow from writing (7) in polar coordi-
nates, using the identity

∫ ∞
−∞ dz eik·r′

/|r − r′| = 2K0(|k||ρ −
ρ′|)eik·r to solve the z′ integrals, noting that the ϕ′-integrals are
invariant under ϕ′ �→ ϕ′ + ϕ, correctly identifying the �

np
dip

components from (9), and then doing integration by parts
where appropriate. In Eq. (11), K0 denotes the zeroth modified
Bessel function of the second kind. The coefficients (10a) and
(10b) describe the contribution of the superficial and geomet-
ric magnetic charges to the demagnetization tensor (they are
mixed due to the integration by parts), while (10c) and (10d)
describe the contribution of the bulk magnetic charges. It is
also worth mentioning that if n = p, the ϕ′-integrals have to
be realized as limε→0+

∫ 2π−ε

ε
dϕ′ to avoid the singularities

at ρ = ρ′. In the following sections, different approaches to
solve Eq. (10) are discussed, which are based on (i) numeri-
cal integrations, (ii) the ultrathin approach, (iii) the ultrathin
approach plus the dynamic matrix method, and (iv) the small
wave-vector limit.

A. Numerical integration

In the case of only one cylindrical layer (N = 1), the SW
dynamics can be described by solving the integrals shown in
Eq. (10) numerically. Of course, this solution is limited to thin
nanotubes since, for N = 1, the radial profiles of the dynamic
magnetization components are assumed to be homogeneous.
For instance, the SW spectra of NTs with a thickness lower
than 10 nm can be correctly calculated. On the other side,
to calculate the magnon spectra of thick NTs, the dynamic
matrix method can be used. Nevertheless, because the DMM
requires the calculations of the SW dynamics of coupled
tubular layers (N > 1), the complete numerical integration
associated with the coordinates ρ, ρ ′, and ϕ′ is not a good
choice from a computational viewpoint. Thus, to reduce the
computation time and to allow the magnetization to change
along the tube thickness, other approaches are presented in
what follows.

B. Ultrathin approach

In the case of one ultrathin nanotube (d < 
ex), the inte-
grals depicted in Eq. (10) that are associated with the dipolar
energy can be solved in a more simplified way. Because
slight variations of the dynamic magnetization components
are expected along the NT thickness for the ultrathin shell, the
numerical radial integrals can be done by using a midpoint
approach, where ρ is replaced by the midpoint of the interval
[a, a + ζ ]. Namely, ρ = r(3/2) = a + ζ/2. Thereby, the SW
spectra are now calculated by carrying out only one numer-
ical integration on the variable ϕ′. Of course, the ultrathin
approach will be valid for a thickness lower than the exchange
length of the nanostructure. If the thickness of the NT in-
creases, the dipolar field is less uniform within the nanotube,
and hence the midpoint approximation fails, which becomes
more evident at large wave vectors where the dipolar interac-
tion is enhanced.

C. Ultrathin approach plus dynamic matrix method

According to the DMM, the thick nanotube is divided
into many cylindrical layers so that each one is ultrathin
(ζ ≈ 1 nm), and one can correctly describe tubes beyond the
ultrathin approach. Therefore, similar to the previous case, the
ρ and ρ ′ integrals are approximated by replacing ρ = r(n +
1/2) and ρ ′ = r(p + 1/2), respectively. Thus, the spin-wave
dispersion can be calculated once the numerical integration on
the variable ϕ′ is realized for each shell. The main advantage
of using the ultrathin approach plus DMM is that the dynamic
properties of thick NTs can now be calculated without signif-
icant computational efforts since the radial integrations have
been avoided by utilizing the midpoint approach.

D. Small wave-vector limit

It is also feasible to obtain analytical expressions for the
SW dispersion at the limit of small wave vectors for the case
of one NT (N = 1) and l = 0. In this case, the Bessel func-
tion is expanded as K0(z) = −αE − ln(z/2) + O(z)2, where
αE ≈ 0.577 stands for the Euler-Mascheroni constant. Thus,
matrix �11

dip is solved analytically, so that (�11
dip)ρρ = 1,

(�11
dip)zρ = −ik(A+ − A−) = −ikd/2, (�11

dip)ρz = ik(A+ +
A−) = ik R+a

4 ln( R
a ), and (�11

dip)zz = −k2B(k). Here, the fol-
lowing functions have been defined:

A± = 1

8

[
(a + R) ln

(R

a

)
± 2d

]
(12)

and

B(k) = 1

8d

{
4a3 ln

( |k|a
2

)
+ 4R3 ln

( |k|R
2

)
+ (a + R)

×
[

(4αE − 3)d2 − 2aR ln

(
k2aR

4

)]}
. (13)
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After some algebraic manipulations, the SW dispersion becomes

fan(k) = γμ0Ms

2π

[
kA+ +

√
k2A2− +

(
1 + k2
2

ex + H0

Ms

)(
H0

Ms
− 2Ku

μ0M2
s

− 
2
ex

aR
+ k2

[

2

ex − B(k)
])]

. (14)

Equation (14) has a similar structure to the SW dispersion
shown in Eqs. (34) and (35) of Ref. [45], inasmuch as the same
approach was realized (small wave-vector limit). Nonetheless,
such a reported SW dispersion is not strictly analytical since
it requires the numerical integration of terms associated with
the dipolar energy and, hence, the direct dependence with the
NT geometry is lost. In the current case, the SW dispersion is
fully analytical, and the role of the geometrical parameters is
clearly identified. Thus, the SW dispersion shown in Eq. (14)
is the first analytical expression reported so far when the dipo-
lar interaction is taken into account. Such an equation allows
us to obtain very simple expressions for (i) the frequency
shift of two counterpropagating waves, (ii) the critical field
that destabilizes the vortex state, and (iii) the ferromagnetic
resonance frequency [ f (k = 0)]. These three concepts will be
discussed in the next section.

III. RESULTS AND DISCUSSION

In the following discussion, permalloy (Py: Ni80Fe20)
material is used for the calculations. Namely, the satura-
tion magnetization is Ms = 796 kA/m, while the exchange
constant is Aex = 13 pJ/m. Also, the gyromagnetic ratio is
γ = 175.929 GHz/T. A negative uniaxial anisotropy constant
Ku = −50 kJ/m3 is used to stabilize the vortex ground state
of the system [46], in the absence of an external circular field
H0. Nonetheless, such easy-plane anisotropy or the applied
circular field could be unnecessary if the tube length is finite
with radii falling into the vortex state region [9]. Regarding the
application of the DMM for thick nanotubes, the NT system
is divided into N cylindrical layers where the thickness of
each shell is ζ = 1 nm. As a starting point, the approaches
mentioned in Secs. II A, II B, II C, and II D are discussed for
the cases l = 0, a = 20 nm, d = 10 nm, and N = 10. The
numerical integration (case described in Sec. II A) along the
azimuthal angle ϕ′ and the radial coordinate ρ and ρ ′ [see
Eq. (10)] allow us to calculate the spin-wave dispersion for
thin NTs, which is presented in Fig. 2 (open circles). This
result matches perfectly with the SW dispersion reported in
Ref. [46], because the thickness is still small and the same
parameters have been used. On the other side, the dashed
black line in Fig. 2 describes the ultrathin approach described
in Sec. II B, where even when the trend is very similar to the
numerically calculated case (open circles), one can observe
that the SW dispersion deviates for large positive wave vec-
tors. Of course, such a deviation is expected since the product
kd is large enough to fail the ultrathin approach.

Now, the ultrathin approach plus the dynamic matrix
method summarized in Sec. II C is discussed. In this case,
by using coupled cylindrical layers of thickness ζ = 1 nm,
the numerically calculated SW dispersion (open circles) is
recovered, which is represented by the solid blue line depicted
in Fig. 2. Note that the concordance between both methods

(numerical integration and ultrathin + DMM) confirms the va-
lidity of the combined use of the dynamic matrix method and
the ultrathin approach, where the integrations along the NT
thicknesses are avoided. Of course, the most crucial advantage
of the ultrathin limit plus DMM is that it allows us to predict
the magnonic spectra of thicker nanotubes (for small and large
k) with high accuracy by taking into reasonable account the
nonlocal nature of the demagnetizing fields. Finally, the ap-
proach shown in Sec. II D is also compared with the previous
cases. In Fig. 2, the solid red line depicts the small-k limit case
[Eq. (14)], where a good agreement is observed in the range
|k| < 10 rad/μm, that is, for |k|d < 0.1. Therefore, explicit
expressions for the frequency shift � fan can be derived at
the small wave vector limit, which will be analyzed in the
following discussion.

In what follows, the ultrathin approach plus DMM are used
to analyze the spin waves. The SW dispersion evaluated at
a = 20 nm is shown in Fig. 3(a), where the tube thickness
d is varied from 10 up to 40 nm. Here, it is seen that the
nonreciprocity increases as the thickness increases, and for
d = 30 and 40 nm the first high-order mode associated with
the radial standing SWs is observed (dashed lines) in the
considered frequency scale. In Fig. 3(b), the frequency shift
� f = f (+k) − f (−k) is shown, where one can observe that
it scales linearly for small wave vectors, and then as k in-
creases, � f behaves nonmonotonically (see the solid lines).
Such behavior has also been observed in synthetic antiferro-
magnets [38], where precisely the source of the nonreciprocity

FIG. 2. Calculated spin-wave dispersion for a Permalloy nan-
otube with internal radius a = 20 nm and thickness d = 10 nm,
showing the four theoretical approaches described in Sec. II. Open
circles depict the spectra obtained through the numerical integration
of Eq. (10), while the dotted line shows the ultrathin nanotube limit.
The solid blue line illustrates the calculations based on the ultrathin
NT limit and the dynamic matrix method (DMM). The solid red line
shows the analytical dispersion obtained for the small wave-vector
limit [see Eq. (14)].
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FIG. 3. Spin-wave dispersion and frequency shift for nanotubes with inner radius a = 20 nm [(a) and (b)] and a = 60 nm [(c) and (d)]. In
both cases, the thickness d is varied from 10 up to 40 nm. In (b) and (d), the circles denote the analytical frequency shift � fan [see Eq. (15)].
Panel (e) shows the behavior of � fmax (open symbols) and k∗ (filled symbols) as a function of the NT thickness for a = 20 nm (circles) and
a = 60 nm (squares), and (f) depicts the frequency shift � fan and � f U-thin

an as a function of the wave vector for d = 10 nm and different a.

is the dipolar interaction. On the other side, the frequency shift
in the small-k limit can be directly derived from Eq. (14),
namely

� fan ≈ γμ0Ms

2π
kd

[
1

2
+ R + a

4d
ln

(
R

a

)]
. (15)

In such a linear approximation of the frequency shift, the slope
depends on both the thickness and the curvature. Circular dots
in Fig. 3(b) show the behavior of � fan, where the easy-to-
handle expression shown in Eq. (15) matches perfectly with
the numerical calculations at small k, even for significant NT
thicknesses. Therefore, although the linear approximation for
� fan has been derived for thin NTs (assuming uniform radial
magnetization profile), expression (15) is not restricted to thin
curved structures. In the case a = 60 nm, the modes behave
similarly to the previous case (a = 20 nm). Nevertheless, at
a = 60 nm the low-frequency modes have almost the same
frequency at zero wave vector [see Fig. 3(c)], which can be
easily explained by using fan(k = 0) in Eq. (14), i.e.,

fan(0) = γμ0

2π

√
(H0 + Ms)

(
H0 + 2|Ku|

μ0Ms
− 
2

exMs

aR

)
. (16)

Note that the only term that depends on the radii is
−
2

exMs/(aR), thus as a (or R > a) increases, such a term
becomes negligible and, hence, the k = 0 modes are excited at
the same frequency. For instance, for a = 20 nm and d = 40
nm, the factor 
2

ex/(aR) ≈ 0.04, while for a = 60 nm and d =
40 nm, 
2

ex/(aR) ≈ 0.01. In other words, when the internal and
external radii (a and R, respectively) are comparable with the

exchange length 
ex, the SW modes, evaluated at zero wave
vector, are strongly influenced by the NT geometry. Never-
theless, if a 
 
ex (or R 
 
ex), the ferromagnetic resonance
(FMR) modes are not influenced by the curvature anymore.
It is worth noting that the FMR frequency shown in Eq. (16)
allows us to obtain the critical field at which the vortex ground
state becomes unstable. This field can be derived from the
condition fan(k) = 0 since, in such a case, the vortex state
is no longer stable. For the magnetic nanotube, indeed, the
minimum in frequency occurs at k = 0 (not shown), and then
it is easy to see that the critical circular field is

Hc = 
2
ex

aR
Ms − 2|Ku|

μ0Ms
. (17)

If the anisotropy is zero, the minimum field required to stabi-
lize the vortex state is μ0Hc ≈ 54 mT, considering a = 20 nm
and R = 30 nm. This result is consistent with the one reported
in Ref. [82]. In the current system, the external field has been
assumed zero; therefore, the critical condition to stabilize the
vortex state requires that |Ku| > Aex/(aR).

On the other side, in Fig. 3(d), one can see that the maxi-
mum value of the frequency shift decreases as the inner radius
a increases to 60 nm, which is in concordance with previ-
ously reported results [45]. The maximum of the frequency
shift � fmax and its respective wave vector k∗ [illustrated in
Fig. 3(b)] are presented in Fig. 3(e). One can observe that as
the thickness of the NT increases, � fmax (see the open cir-
cles and squares) behaves nonmonotonically, while the wave
vector k∗ (see the filled circles and squares) decreases. The
nonmonotonicity of the frequency shift is explained due to
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FIG. 4. Spin-wave dispersion for l = 0 [(a) and (b)] and l = ±1
[(c) and (d)] is calculated for an internal radius a = 20 nm and
zero bias field. In the cases (a) and (c) the tube thickness is d = 40
nm, while in (b) and (d) d = 80 nm. The zeroth-, first-, second-,
third-, fourth-, and fifth-order modes are shown through the solid,
dashed, dot-dashed, dotted, thin, and thin-dashed lines, respectively.
The insets in (a) and (c) denote the zero and first azimuthal order
modes, respectively.

the coupling between the zeroth- and first-order modes. For
large thicknesses, the high-order modes are excited at lower
frequencies and, hence, once the fundamental and first-order
modes hybridize, the nonreciprocal properties of the funda-
mental (zeroth-order) mode are depleted (see the discussion
of Fig. 4). One interesting issue is that, at small wave vectors,
� fan behaves in a similar way in the cases a = 20 and 60 nm
[see the circular dots in Figs. 3(b) and 3(d)]. To explain the
previous behavior, the analytical expression for � fan is further
analyzed. In the case of an ultrathin NT, � fan can be expanded
around R = a. Thus, it can be shown that

� f U-thin
an = γμ0Ms

2π
kd. (18)

Here, it is observed that the primary dependence of the fre-
quency shift is associated with the NT thickness. Then, as the
thickness increases, it can be demonstrated that a slight devi-
ation around � f U-thin

an occurs. Thereby, dipolar nonreciprocity
at small wave vectors mainly depends on the NT thickness d .
This explains the similar behavior of � fan in Figs. 3(b) and
3(d), because in both figures, the thicknesses are the same.

To complement the previous discussion, the behavior of
� f and � f U-thin

an is analyzed for different internal radius a.
Figure 3(f) depicts the calculated frequency shift (lines) and
the linear approximation � f U-thin

an (circles). Here, it is ob-
served that the linear approximation given in Eq. (18) matches
very well at small wave vectors. Of course, the analytical
expression � fan in Eq. (15) is even better, inasmuch as it con-
tains additional contributions associated with the curvature.
Nevertheless, as mentioned before, both expressions � fan

and � f U-thin
an are similar since the main dependence comes

from the NT thickness. Indeed, by defining the usual radii
ratio as β = a/R, one can write � fan = η(β )� f U-thin

an , where

η(β ) = 1/2 + 1+β

4(1−β ) ln(1/β ). Such a function approaches 1
when β ≈ 1, and it increases from it if β decreases beyond
0.5. As the internal radius increases, one can observe that the
wave-vector range where the linear approximation � f U-thin

an
works is slightly reduced, which is not explicitly contained
in Eq. (15). It is also observed that the curvature-induced
frequency shift could be quite larger compared to the one
measured in DM systems, around 1 or 2 GHz [55–58]. Re-
turning to Eq. (18), one can note that the thickness dependence
in � f U-thin

an has the same characteristics as the one calculated
for an antiferromagnetically coupled bilayer when the thick-
nesses of the ferromagnetic layers are ultrathin (see Eq. (7) in
Ref. [38]). Hence, the asymmetric SW dispersion measured
in ferromagnetic thin films coupled with heavy metals, where
the Dzyaloshinskii-Moriya interaction is active, can be em-
ulated for nanotubes in the regime of small wave vectors.
Nevertheless, a crucial advantage of the spin waves in the
tubular system is that the nonreciprocal properties are not
restricted to thin structures. On the contrary, the SW asym-
metry is enhanced as the thickness of the system increases.
Moreover, due to the strongly asymmetric dipolar field of the
curved magnetic system, there is no need for ultrathin FM
films and heavy-metal layers to induce DM coupling, which
undesirably increase magnetic damping and incorporate sur-
face anisotropy. Instead, the chiral feature is provided by the
classical dipole-dipole coupling.

Due to the geometrical characteristics of the NTs, az-
imuthal and radial standing spin waves can be excited.
Azimuthal standing waves are associated with the confine-
ment along the circumferential direction, which implicates
the emergence of quantized modes that describe different
azimuthal SW oscillations. The insets in Figs. 4(a) and 4(c)
schematically show the states with l = 0 and ±1, respectively,
where the normal magnetization component mρ is illustrated.
It is worth mentioning that the excitation of modes with l �= 0
depends on the external source. If a uniform excitation across
the perimeter of the NT section is realized, waves with l = 0
will be driven, while a nonuniform spatial external excita-
tion can stimulate standing modes with l �= 0. On the other
side, the radial standing waves are connected with the radial
confinement of the system, and they are always present at
high frequencies. A schematic representation of the zero and
first azimuthal order mode is depicted in Figs. 4(a) and 4(c),
respectively, for a = 20 nm and d = 40 nm. In Figs. 4(b)
and 4(d) the thickness is increased to d = 80 nm, where it
is evident that as the NT thickness increases, the radial stand-
ing modes are excited at lower frequencies, and hence these
modes can hybridize with the low-frequency one. The main
difference observed in the cases l = 0 and ±1 is the behavior
of the low-frequency mode, which is more asymmetric for
the coherent azimuthal magnetization motion (l = 0) than the
one calculated for l = ±1. Interestingly, Fig. 4 shows that
in the range of frequency where the high-frequency modes
do not interact with the fundamental one, the higher-order
modes have a similar dispersion for both cases l = 0 and ±1,
and even such higher-order radial standing waves exhibit a
nonreciprocal SW dispersion.

To explain the dynamical behavior mentioned before, the
exchange interaction is analyzed. From a qualitative point
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FIG. 5. Spin-wave profiles evaluated for the case d = 40 nm, l = ±1, and a = 20 nm. In the center of the figure, the SW dispersion is
shown, where the ( f , k) points (circles, squares, and triangles) indicate the states considered in the calculation of the SW spatial profiles. In
the radial profiles, the red (black) color is associated with the nanotube’s inner (outer) part. The cyan dots denote the t = 0 points, which allow
us to observe the phase of the respective magnetization modes.

of view, as the thickness decreases, the dynamic magnetic
moments have less space to describe their inhomogeneity, and
hence large dynamical exchange energy is required to describe
such a noncoherent magnetization motion, which implicates
that the modes are excited at high frequencies. Nevertheless,
as the thickness increases, the higher-order modes have more
space to describe their motion, and therefore the frequency
(or dynamical energy) is reduced. Thus, by comparing the
azimuthal and radial modes of the nanotube system, the az-
imuthal oscillations have a more significant space to describe
their spatial properties than the radial standing modes be-
cause the NT thickness is shorter than the NT perimeter.
Thereby, in both cases l = 0 and ±1, the higher-order modes
are dominated by the dynamical exchange energy correlated
with the modulation of the dynamic magnetization along the
thickness. Consequently, the frequencies of the higher-order
modes evaluated at l = 0 and ±1 are similar. Besides, one
can note that the higher-order modes also have a nonrecip-
rocal SW dispersion, but not as prominent as the � f of the
low-frequency mode, which is associated with the dynamic
exchange interaction that dominates over the dynamic dipolar
interaction.

In the following, the inhomogeneous radial characteristics
of the magnetization dynamics are discussed. Figure 5 shows
the magnetization profiles for the case a = 20 nm and d = 40
nm, and for different modes and wave vectors denoted by
the symbols. At k = 0, the low-frequency mode describes
an almost homogeneous profile along the NT thickness, and
thereby the dynamic magnetization oscillates coherently with
an approximately similar magnetization amplitude (see the
open circle in Fig. 5). This quasihomogeneous profile of the
modes evaluated at small wave vectors is expected since the
dynamic dipole-dipole interaction between cylindrical layers
is small at k → 0, being zero at k = 0. Hence, the exchange
interaction dominates and promotes a coherent oscillation
with the same magnetization amplitude. Moreover, the homo-
geneous profile observed at k = 0 explains why the analytical

SW dispersion [see Eq. (14)] is also valid for thick nanotubes
since, even when the analytical calculations are realized for
thin NTs, the idea behind such a thin approach is the as-
sumption that the amplitude of the dynamic magnetization
is uniform along the thickness. On the other hand, as the
wave vector increases, the classical dipole-dipole interaction
becomes prominent, and the dynamic magnetization ampli-
tude changes along the NT thickness. Basically, the dynamic
magnetization compensates the dipolar field asymmetry by
increasing its amplitude on one side of the nanotube. Thus,
the outer (ρ = R) and inner (ρ = a) magnetic moments oscil-
late with different amplitudes, as shown in the magnetization
profiles evaluated at k = −30 and 30 rad/μm in Fig. 5 (see
the blue and red squares). These results demonstrate that it
is crucial to take into account the magnetization modulation
along the thickness in the case of thick NTs, since if such
a profile is not considered (homogeneous magnetization as-
sumption), the frequency of the modes evaluated at k �= 0
will be high because the spins are forced to oscillate with
the same amplitude, which is not a state of the system. One
can also note that the magnetization amplitude of the higher
order modes is also modified along the thickness, which is
seen in Fig. 5 for the cases k = ±30 rad/μm (see the red
and blue circles). Nevertheless, in general, it is observed that
the higher-order modes have an almost reciprocal spin-wave
dispersion, which is associated with the dynamic exchange
interaction that dominates over the dynamic dipolar interac-
tion, and also with the fact that the higher-order modes are
more symmetric under inversion as compared with the modes
localized at the inner or the outer cylindrical surfaces. The
third mode (triangle) evaluated at k = −30 rad/μm shows
two nodes that are more asymmetric in amplitude with respect
to the modes with one node. A similar behavior is given for the
third mode evaluated at k = +30 rad/μm (not shown).

It is worth mentioning that the radial modes in the tubular
geometry share similarities with the perpendicular stand-
ing spin-wave modes in flat homogeneous films [88], or
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the quantized SW modes in confined magnets [89], where
the different modes are symmetrically quantized over the
thickness at zero in-plane wave vector. For nonzero wave
vectors, the modes are no longer symmetrically quantized,
because they exhibit nodal lines shifted from the center of
the film [90]. Such an asymmetric distribution of magnonic
modes also occurs in inhomogeneous magnetic systems, such
as graded-magnetization films [43,91], where the saturation
magnetization changes across the thickness, and it is demon-
strated here for the curvilinear geometry. The physical origin
of the shifting of nodal lines is simply the inhomogeneity of
the dipolar coupling in a confined magnetic nanostructure.

IV. CONCLUSIONS

The spin-wave spectra of a thick ferromagnetic nanotube
in a vortex ground state have been theoretically addressed. It
is found that the nonreciprocal features of the low-frequency
in-phase modes are notoriously enhanced as the thickness
of the nanotube increases, leading to a giant nonreciprocity,
while the radial high-order modes still manifest a small non-
reciprocal spin-wave dispersion. The profiles of the modes
are analyzed and discussed, where it is evidenced that the

dipolar interaction induces inhomogeneous radial profiles at
finite wave vectors. An analytical formula for the spin-wave
dispersion at the small wave-vector limit is reported, which is
nevertheless valid for thick nanotubes and allows us to derive
simple expressions for (i) the critical field that destabilizes
the vortex ground state, (ii) the ferromagnetic resonance, and
(ii) the frequency shift of two counterpropagating spin waves.
These simple analytical formulas are of the utmost impor-
tance for the scientific community concentrated on curvilinear
magnonics since they describe the onset of the nonrecipro-
cal effects induced by the classical dipole-dipole interaction,
when the thickness of the nanotube increases beyond the
2D approach. The results are relevant for envisioning future
applications associated with the asymmetric propagation of
magnetic excitations in curvilinear nanostructures.
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