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Manipulating the shape of flexible magnetic nanodisks with meronlike magnetic states
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The control of the magnetic properties of shapeable devices and the manipulation of flexible structures by
external magnetic fields is a keystone of future magnetoelectronics-based devices. In this work we study the
elastic properties of a flexible magnetic nanodisk that hosts a meron as the magnetic state and can be deformed
from structures with positive to negative Gaussian curvature. We show that the winding number of the hosted
meron is crucial to determine the curvature sign of the stable obtained shape. Additionally, we show that the
curvature that minimizes the total energy of the nanodisk depends on geometrical and mechanical parameters. It
is shown that an increase in the external radius and Young’s modulus leads to a decrease in the curvature absolute
value. Finally, it is shown that the nanodisk’s shape also depends on the connection between the polarity and
chirality of the meronlike state.
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I. INTRODUCTION

The possibility to reshape electronic systems has promoted
the concept of flexible and stretchable electronics to a hot
topic in soft matter research [1,2]. This class of structures has
been explored as applications of shapeable systems in sensory
devices [3–6], solar cells [7], electronic skins [3,8–10], soft
robotics [11], wearable devices [12], and for manipulating
the shape of liquid interfaces [13]. Also, the inclusion of the
magnetic degree of freedom into soft systems is fascinating
because there are several possibilities to manipulate the mag-
netic properties by changing the system’s shape or to produce
effects on the geometry of the system by applying external
magnetic stimuli [1]. For instance, one can cite the possibility
of using stretchable magnetoelectronics for the emerging field
of soft robotics [11], and manipulating the shape of elas-
tomeric actuators [14,15].

In general, most field-controllable materials with mag-
netically switchable properties consist of elastomers, which
are magnetic nanoparticles embedded into a nonmagnetiz-
able polymer matrix [16]. Because the intrinsic properties
of the magnetic particles do not affect the other ones, the
proper description of the magnetic properties of elastomers
is performed by considering a dipole-dipole interaction [17].
Therefore, when an external magnetic field is applied to
the system, there are particle rearrangements, which changes
the mechanical properties of the elastomer matrix [18]. As
a result, both the external field and initial arrangement of
the magnetic particles influence the final stabilized shape of
the magnetic elastomer [19]. In this case, the competition
between magnetic interactions with membrane bending and
stretching can drive the membrane to expand, contract, or

twist in such a way that many shapes can be obtained as a
function of an external magnetic field [15,20].

Nevertheless, the imbibition of magnetic microparticles
in an elastic matrix avoids the possibility of leading with
flexible magnetic systems in the nanoscale range of sizes.
This problem can be circumvented by constructing systems
where a short-range exchange plays the role. Examples of
such systems include organic, organic-inorganic hybrid, and
molecule-based magnets, which exhibit different types of
magnetic ordering [21–24], even in a room-temperature en-
vironment [25]. Therefore, due to the short range of magnetic
interactions, one can reduce the size of the flexible magnetic
system whose shape can be manipulated by external magne-
tic fields. Theoretical works have considered magnetic subsys-
tems where the short-range exchange interaction determines
the magnetic properties of the particle, and stretching and
bending are responsible for describing the energetic cost to
deform the elastic subsystem. In this case, the nucleation
of periodic solitons in the magnetic system induces the ap-
pearance of periodic shrinking of the membrane [26], and
curvature-induced geometrical frustration in magnetic sys-
tems in both cases under the absence and presence of external
magnetic fields [27–30]. By considering flexible systems
whose properties are controlled by short-range interactions,
Yershov et al. [31] showed that a unidimensional flexible
magnetic ring presents a shape depending on the magnetic
configuration. An onion or a vortex magnetic state leads the
nanoring to assume an elliptical or circular shape, respec-
tively. Additionally, due to the magnetochirality induced by
the intrinsic Dzyaloshinskii-Moriya interaction (DMI), a flex-
ible ribbon can be spontaneously deformed [32]. This ribbon
deformation depends on the symmetry of the DMI and the
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mechanical, magnetic, and geometric parameters of the flexi-
ble magnetic body.

Regarding magnetic properties, it is known that the
introduction of curvature in quasi-2D systems induces ef-
fective interactions [33] that are responsible, for instance,
for a curvature-driven polarity-chirality connection for vor-
tex [34] and skyrmion [35,36]. These effective interactions
also yield a curvature-induced selection on the domain wall
phase [37–39], and the nucleation of a vortex/antivortex
pair in toroidal nanoshells [40]. The exchange-driven curva-
ture induced polarity-chirality connection was evidenced by
Elías et al. [41], who have shown the existence of a curvature-
induced winding number of merons hosted in rigid curved
magnetic elements, where vortices and antivortices are nu-
cleated in structures with positive and negative Gaussian
curvatures, respectively. The authors also showed that the
minimum energy configuration of the meron depends on
the relative directions defined by the meron’s polarity and
chirality. Nevertheless, in that work, the range of considered
parameters leads to minimum magnetic energy for the max-
imum (vortex) and minimum (antivortex) curvatures. Based
on these results, if we consider that the considered structures
are flexible, the new freedom degree brought by the elastic
subsystem should yield an optimum value for the curvature
minimizing the energy. Therefore, in this work, we propose
the study of the static magnetic and mechanical properties
of a flexible magnetic disk hosting a meron as the magnetic
state. It is shown that the modulus of the optimum curvature
of the stable structure decreases as the disk radius increases.
As expected, the mechanical properties of the elastic subsys-
tem also influence the obtained stable shape. Indeed, due to
the increase in the structure rigidity, the optimum curvature
decreases as Young’s modulus increases. We also show that
the proper control of the meron’s chirality can be used to
deform the shape of the disk from a paraboloidal structure,
with positive curvature, to a saddle-like shape, with negative
Gaussian curvature.

This work is divided as follows: Section II presents the
adopted theoretical model to describe the flexible magnetic
disk. In Sec. III we present the obtained results and discus-
sions. Section IV brings our conclusions and prospects.

II. THEORETICAL MODEL

In this work we analyze a flexible magnetic nanodisk,
defined as a nanostructure with magnetic and elastic degrees
of freedom interacting and exhibiting a meron as a metastable
magnetic configuration. Although the stray field energy of the
infinite thin film provides an effective easy-plane anisotropy,
resulting in the single-domain ground state [42], planar vor-
tices can appear as topological states in planar and curved
spin systems described by the anisotropic Heisenberg model
(XY model) [30,43–45]. Nevertheless, because magnetic vor-
tices described by the anisotropic Heisenberg model develop
an out-of-plane component to the magnetization, avoiding
spurious divergences from the exchange interaction, the
meronlike magnetic configurations described in our theoret-
ical model do not have topological stability, appearing as
metastable states of quasi-2D systems. One of the main fea-
tures of a metastable state relies on the fact that it has a

FIG. 1. Schematic representation of the considered geometry
with R = 10� and h = 0.1�. In (a), from left to right, we present
the geometries for c = 2 × 103 m−1/2, 0, and −2 × 103 m−1/2. The
vector field of the parabola and disk consists of a meron with q = 1
and γ = π/2, while the magnetization field in the surface negative
curvature is a meron with q = −1 and γ = π/2. Panel (b) depicts a
meron with q = 1 and different values of γ hosted in the paraboloidal
surface. Yellow region depicts a circumference of radius r0, repre-
senting the meron’s core.

finite lifetime, after which the system goes toward a state with
lower energy. Therefore, merons can be, at least, artificially
imposed and hosted in a nanodisk. For instance, these mag-
netization patterns have been explicitly named as metastable
states in previous works [46,47]. Following these ideas, the
stability of the meronlike configurations is not considered in
this work, and some of the analyzed magnetic states could
not be naturally observed. Thus, we assume distinct magnetic
configurations as metastable states without paying special at-
tention to how such metastability was reached. We assume
that the nanostructure consists of a thin shell, whose thickness
h is much smaller than the external radius R of the disk
(h � R). In this context, the border effects can be neglected,
and the magnetostatic energy can be safely approximated by
an effective in-surface anisotropy [42].

The geometrical description of the considered system is
given by

r = xx̂ + yŷ + c(cx2 + |c| y2)ẑ, (1)

where x = ρ cos φ, y = ρ sin φ, ρ ∈ [0, R], φ ∈ [0, 2π ],
{x, y, z} corresponds to the unitary vectors of the three-
dimensional Cartesian space, and c ∈ [−∞,∞] is a number
that determines the surface curvature, given by

K = 4 c3|c|
[1 + 4 c4(x2 + y2)]2

. (2)

Therefore, c < 0 describes a hyperbolic paraboloid, which
has a negative Gaussian curvature, and c > 0 defines a
paraboloidal surface, presenting a positive Gaussian curva-
ture. If c = 0, the parametrization describes a planar nanodisk.
Figure 1(a) depicts the shapes of the flexible magnetic struc-
tures for the cases c = 2 × 103 m−1/2, c = 0, and c = −2 ×
103 m−1/2, evidencing the relation between the sign of c and
the surface shape.
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To properly describe the magnetic properties of the
nanodisk, we use the micromagnetic approach, in which the
magnetization is a continuous function of the position inside
the magnetic element. Therefore, the magnetization field can
be parametrized as a spherical coordinate system lying in a
curvilinear basis, that is,

M = cos � sin ��ρ + sin � sin ��φ + cos ��n, (3)

where �ρ = gρ/‖gρ‖ and �φ = gφ/‖gφ‖ are unitary vectors
pointing along the tangential direction on the surface, and�n =
�ρ ×�φ is the unitary vector pointing perpendicularly to the
surface. Because the parametrization given in Eq. (1) yields a
nonorthogonal basis, the radial direction in the surface�ρ is not
necessarily orthogonal to �φ. Here, we define the natural tan-
gential basis gμ = ∂μr with ∂μ ≡ ∂

∂xi
, i = 1, 2, from which

one can obtain the metric tensor elements gμν = gμ · gν .
In the considered parametrization, M has not, in general,

a constant modulus. Thus, it is convenient to define the nor-
malized magnetization, given by m = M/‖M‖, with ‖M‖ =√

1 + sin(2�)(cos2 �)�ρ ·�φ. Following the ideas presented in
Ref. [41], we assume that the magnetization pattern of the
nanodisk consists of a meronlike configuration, which can be
well described by the following ansatz [48]:

�(ρ) = arccos

(
p

1 + (
ρ

r0

)s

)
,

�(φ) = (q − 1)φ + γ , (4)

where q is the winding number of the magnetic configura-
tion, and represents the curl of the field around the meron’s
core when projecting the field onto the surface. Therefore, a
vortex or antivortex structure can be described for q = 1 or
q = −1, respectively (see Fig. 1). The meron is also char-
acterized by the polarity p of the core, which can be 1 or
−1 when the central magnetic moment points parallel or an-
tiparallel to n. It can be noticed that the magnetization field
is parametrized in terms of a curvilinear basis. Therefore,
the parabolic/hyperbolic deformation of the elastic subsystem
produces a similar symmetry of deformation for the magnetic
subsystem. Similar magnetization parametrizations of vor-
tices have been used to describe vortices in paraboloidal [49]
and spherical [50] magnetic nanoparticles. The chirality of the
meron is determined by the parameter γ , which consists of a
phase that gives the orientation of the field with respect to
the radial direction �ρ on the surface. The parameter s is a
positive integer that determines the meron’s core size, with
radius r0, and is defined as the minimum radial distance be-
tween the surface’s center and that when m ·�n = 0 occurs.
The described magnetization vector field for different values
of q and γ , hosted in structures with different curvatures
is presented in Fig. 1. The meron’s core is represented by
the smaller yellow circle. The adopted ansatz describing the
meron’s profile defines a vortex (antivortex) as a configuration
that lies asymptotically in the in-surface direction.

The total energy of the system is given by E = Em + Eel ,
where Em and Eel are respectively the magnetic and elastic
contributions to the total energy. Since we are dealing with
very thin shells, we can approximate the dipolar energy by an
easy-surface anisotropy. Therefore, the magnetic contribution

to the total energy is determined by the exchange and effective
anisotropy, given respectively by

Ex = Ah
∫

gμν ∂m
∂xμ

· ∂m
∂xν

√
gdxμ dxν (5)

and

Eani = Kah
∫

(m · n)2√gdρ dφ, (6)

where the Einstein summation convention over repeated in-
dices is assumed. The parameter A is the exchange stiffness.
Considering that for thin films the magnetostatic contribution
can be reduced to an effective easy-surface anisotropy [51],
we adopt Ka = μ0M2

s /2. Additionally,
√

g = √‖det gμν‖, and
the covariant (gμν) and contravariant (gμν) metric elements
are obtained from the parametrization given in Eq. (1) (see
Appendix A for details on the calculation of these geo-
metrical quantities). The competition between exchange and
anisotropy interactions characterizes a magnetic length � =√

A/Ka, which determines the length scale of the system (and
the core’s size of the meron configuration).

The elastic energy of flexible systems is determined from
the sum of different terms regarding energy costs appearing
in the system when it deforms. It is important to note that
three-dimensional (3D) architectures as curved systems are
fabricated using a strategic and consolidated route, which in-
duces a strain gradient across the bilayers [52]. Such systems
have a tensile and compressive hybrid state along the radial
direction simultaneously without any need to maintain exter-
nally applied strain. This complex strain state is associated
with the geometric configuration of these systems, such as
rolled-up tubes [52], where the diameter can be dimensioned
through the control of the built-in elastic strain distribution
that arises due to lattice mismatch between bilayers and bi-
layer thickness [53,54]. However, in our work, we consider a
quasi-2D system, and we do not take into account the complex
strain distribution along the normal direction, as discussed in
Sec. II. In this context, the magnetization is uniform along
the normal direction, and the physical effects of this thin disk
emerge from the system curvature. Under these assumptions,
the elastic energy is determined from the approximation for
2D systems [32,55,56], given by the sum between stretching
and bending energies, as follows:

Eel =
∫

[h ws + h3 wb]
√

gdρ dφ, (7)

where the stretching and bending energy densities are respec-
tively

ws = Y

8(1 + ς )

(
ς

1 − ς
gαβgγ δ + gαγ gβδ

)
× (gαβ − gαβ )(gγ δ − gγ δ ) (8)

and

wb = Y bαβbγ δ

24(1 + ς )

(
ς

1 − ς
gαβgγ δ + gαγ gβδ

)
. (9)

Here, the parameters Y and ς are Young’s modulus
and the Poisson ratio [57], respectively, and bμν = n ·
∂μgν . In addition, gμν is the metric tensor for a nan-
odisk without deformation. From Eqs. (8) and (9), one
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can notice that both stretching and bending terms of the
elastic energy increase with Young’s modulus when the
planar disk deforms to the paraboloid or hyperbolic
paraboloid geometries. Additionally, because we focus on
analyzing deformations of a very thin structure, the stretching
energy (proportional to h) is much bigger than the bending
cost (proportional to h3) to deform the flexible magnetic
disk. The explicit elastic energy density expressions written
in terms of the geometrical parameters of the considered
structures are cumbersome and therefore they are presented
in Appendix A. An important point is that both magnetic and
elastic subsystems interact through the anisotropy energy.

III. RESULTS

A. Winding-number-induced curvature

The model described above allows us to determine the
magnetic and elastic properties of the considered structures
by calculating the total energy as a function of different geo-
metrical and material parameters. All results presented in this
section were obtained through numerical calculations of the
total energy of the flexible magnetic system and consider a
Poisson ratio ς = 1/3. For each value of c, we have evalu-
ated the meron’s core radius minimizing the energy. Several
results presented in this work regard the optimum curvature
c∗, defined as the value of c that minimizes the total energy
for a given set of parameters. In the numerical calculations
we have used the magnetic parameters of Permalloy [58],
that is, A = 10 pJ/m and Ms = 800 kA/m. To analyze the
influence of a range of parameters in the possibility of con-
trolling the shape of a flexible magnetic membrane through
modifying its magnetization configuration, we have consid-
ered different values for the Young’s modulus. Depending on
the nanodisk geometrical parameters, the magnetic vortex-like
distribution can appear as the ground state in the magnetic
disk, while the antivortex-like magnetization distribution can
be the ground state in asteroid-like geometries [59,60]. Ad-
ditionally, curved systems present effective chiral interactions
that produce a curvature-induced selection on merons [41] in
such a way that vortices are energetically more favorable on
surfaces with positive Gaussian curvatures, while antivortices
appear on surfaces with negative ones. Therefore, to present
a complete analysis of magnetization profile influence on the
system geometry, we analyze the total energy of both vortex
and antivortex metastable states for the complete range of the
considered values of c. Additionally, in all examined cases,
the presented results regard the meron’s core size that mini-
mizes the magnetic energy, ensuring that we are considering
a magnetic metastable state. Finally, the results presented in
this section regard merons with p = +1 and γ = 0.

First, we determine the behavior of the total energy as a
function of the disk radius R for a fixed value of h = 0.1�,
and A/(Y h2) = 40. The obtained results are depicted in Fig. 2
for R = 4� (a), 6� (b), 8� (c), and 10� (d). In all cases,
we observe that the meron’s winding number determines the
curvature’s sign that minimizes the total energy. That is, vor-
tices make the flexible magnetic nanodisks assume a shape
with positive Gaussian curvature, while the antivortex yields
a disk deformation to surfaces with negative curvature. These

FIG. 2. Total energy as a function of c for different disk radius.
Panels (a), (b), (c), and (d) present the results for R = 4�, 6�, 8�,
and 10�, respectively. The thickness is h = 0.1�, and A/(Y h2) = 40.

results agree with those obtained by Elías et al. [41], which
considered merons hosted in rigid structures, showing the
emergence of a curvature-induced selection of the meron’s
winding number. In the present study, the radius dependence
of the curvature minimizing the total energy results from
the competition between magnetic and elastic interactions.
While the magnetic energy diminishes as |c| increases, the
elastic energy cost to deform the nanostructure increases as
a function of |c|. From the analysis of Figs. 2(a) and 2(b),
the flexible magnetic structure deforms until its curvature
reaches the maximum value in the considered range (c =
2.5 × 103 m−1/2). This behavior can be explained by the high
energy cost to nucleate the meron’s core, which, for small
radii, occupies a substantial area in the nanodisk in compar-
ison with its external radius. Therefore, the structure presents
a large deformation to diminish the anisotropic energy. As the
radius of the nanostructure increases, the meron’s core energy
gives a lower contribution compared to other energy terms.
Therefore, there is a limit in the maximum curvature that
the flexible magnetic disk can reach. For instance, Fig. 2(d)
reveals that a nanodisk with an external radius of 10� can
deform until it reaches a curvature of c ≈ 1.8 × 103 m−1/2 or
c ≈ −2.1 × 103 m−1/2 when it hosts a vortex or an antivortex,
respectively. The insets in Fig. 2(d) show the surface shape
for the minimum energy states. The obtained value of c for
the minimum energy configuration is associated with a pro-
nounced increase in the stretching energy near to this value
(see Fig. 6 in Appendix B). Therefore, when the structure
reaches the curvature determined by this value of c, the elastic
term to the total energy dominates, defining the stable shape
of the system.

Let us now explore the impact of changes on the mechan-
ical properties in the deformation of the flexible magnetic
membrane. Specifically, we are interested in studying the op-
timum curvature (c∗) dependence on the effect of changing
Young’s modulus, which is the parameter controlling the
elastic stiffness of the material under external forces. In this
context, in Fig. 3 we depict the total energy of the system as
a function of the curvature for four distinct values of Y . As
expected, for small Young’s modulus [A/(Y h2) = 400], the
reached optimum curvature does not appear in the range of
parameters considered here, evidencing that the nanostructure
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FIG. 3. System energy as a function of the curvature for a
nanodisk with radius R = 10� and h = 0.1� for different Young’s
modulus. Panels (a), (b), (c), and (d) depict a nanostructure with
A/(Y h2) = 400, 40, 8, and 4, respectively.

deforms until it reaches high values of |c| [see Fig. 3(a)]. Fig-
ures 3(b) and 3(c) present the obtained results for A/(Y h2) =
40 and A/(Y h2) = 8, respectively. One can notice that the
optimum curvature of the system decreases as the Young’s
modulus increases. That is, the curvature that minimizes the
energy diminishes in modulus, indicating the increase in the
structure rigidity. Indeed, the greater the value Y , the smaller
the value of c for which the stretching energy presents a
pronounced increase (see Appendix B for details). Finally, for
A/(Y h2) = 4 [Fig. 3(d)], the elastic energy cost to deform the
nanostructure is very high, and the nanodisk shape becomes
independent of the winding number of the hosted meron,
which eventually reads the optimum curvature |c∗| ≈ 0.

From the obtained results, one can see that depending
on the meron’s winding number, the flexible disk with R =
10� and A/(Y h2) = 40, hosting antivortices or vortices as
metastable states, deforms until it reaches optimum curva-
tures in the range of c∗ ∈ [−2.1 × 103, 1.8 × 103] m−1/2.
This change in the system curvature yields a stretching in
the nanodisk, evidenced by the increase in the area of the
flexible system when it curves. We have then calculated the
variation in the area of the structure, obtaining �A/A0 =
100[A(c) − A0]/A0 ∈ [2%, 6%], where A(c) is the area of the
structure with curvature c∗ and A0 is the area of the planar
nanodisk.

Because the magnetic texture can determine the shape
of a flexible magnetic system, we have also analyzed the
possibility of deformations in nanodisks made of Permalloy,
whose magnetoelastic properties are similar to those of bulk
Fe83Ga17 (Y = 100 GPa) [58]. Our results suggest that the
influence of the magnetic subsystem on the elastic one yields
a slight deformation in these nanodots. Indeed, we have ob-
tained that when a vortex is nucleated in this structure, the
optimum curvature of the system reveals a tiny deformation
on the order of � 10−11 m in the nanodot diameter.

B. Influence of chirality on curvature

A remarkable feature of curved magnetic shells is the
appearance of exchange-driven effective anisotropy and
Dzyaloshinskii-Moriya interactions [33], which are respon-

FIG. 4. Optimum curvature [(a) and (c)] and total energy [(b) and
(d)] as a function of γ for an unchanged (top graphics) and variable
(bottom graphics) polarity.

sible, for instance, for the increase in the skyrmion sta-
bility in hills and valleys [35,36], and the emergence of
curvature-induced forces in particlelike magnetization con-
figurations [61,62]. Additionally, such effective interactions
yield a curvature-induced phase selection in the domain wall
(DW) phase, where the kind of DW head-to-head or tail-to-
tail are always directed outward and inward from the bend,
respectively [37]. Moreover, this phase selectivity also deter-
mines a polarity-chirality connection, where depending on the
vortex chirality, there is a preferential direction for where its
core points [34,41].

Based on the above described, we explore the possibility
of manipulating the shape of the flexible magnetic particle by
using meronlike configurations with a fixed polarity p = 1
(outward) and controlling the vortex chirality. It is worth
noticing that although the dipolar interaction related to mag-
netostatic charges appearing at the borders of the disk fixes the
vortex chirality in two values (γ = ±π/2), the dipolar cost
to host vortices with different chiralities in very thin flexible
magnetic systems is small. Therefore, external stimuli (i.e.,
external magnetic fields) could produce smooth changes in
the vortex chirality depending on the competition between this
small magnetostatic interaction and the extra energy coming
from the external stimulus. To better understand the influence
of the vortex chirality on the optimum curvature, before an-
alyzing the shape of the nanostructure as a function of the
vortex chirality in the presence of external stimuli, we have
studied how the vortex chirality influences the shape of the
nanostructure in the absence of a magnetic field. In Fig. 4
we have obtained both the optimum curvature c∗ and the total
energy when the system reaches its optimum curvature E∗ as
a function of γ for a nanodisk with R = 10�, h = 0.1�, and
A/(Y h)2 = 40. The analysis of Fig. 4(a) reveals that changes
in the vortex chirality yield a variation in the shape of the
nanostructure, including a change in the curvature sign when
γ = π/2. Therefore, the flexible magnetic system changes
its shape from a paraboloid-like to a saddle-like geometry.
To understand this chirality-induced shape variation, we have
determined the total energy as a function of γ , whose results
are presented in Fig. 4(b), revealing that the energy increases
with γ . Thus, when hosting a vortex state for certain values
of γ , the system is deformed in a negatively curved surface to

104430-5



BEATRIZ MIRANDA-SILVA et al. PHYSICAL REVIEW B 105, 104430 (2022)

FIG. 5. Optimum curvature and total energy for fixed [(a) and
(b)] and variable [(c) and (d)] polarity as a function of the vortex
chirality for a nanodisk under the action of a magnetic field B =
−Bẑ. Black dots and red squares represent the results for B = 0.5 mT
and B = 5.0 mT, respectively.

control the increase in the magnetic energy due to the polarity-
chirality connection [34,41]. To prove the above statement, we
have analyzed the optimum curvature and the total energy as
a function of γ , but now, we consider a change in the vortex
polarity from p = 1 to p = −1 when γ = π/2. In this case, as
presented in Figs. 4(c) and 4(d), we observe that this change
in the vortex polarity makes the system remain with positive
curvature for any value of γ .

An external magnetic field can drive the proper control
of the vortex chirality and polarity [63–65]. Therefore, we
have analyzed the effects that a uniform magnetic field ap-
plied along the z-axis direction produces on the shape of the
nanodisk hosting a vortex as a magnetization state. In this
context, we determine the optimum curvature as a function
of the vortex chirality for a flexible magnetic nanodisk under
the action of an external magnetic field B = −Bẑ. Figures 5(a)
and 5(b) show, respectively, the optimum curvature and total
energy as a function of the vortex chirality (γ ) when we fix
its polarity p = +1. Red squares and black dots show the
behavior of a nanodisk under the action of a magnetic field of
strength 0.5 mT (black dots) and 5 mT (red squares), respec-
tively. It can be noticed that the obtained optimum curvature
is a result of the competition between the curvature-induced
polarity-chirality connection and Zeeman interaction. That is,
a direct comparison between Figs. 4(a) and 5(a) evidences that
the magnetic field forces the system to diminish the modulus
of its optimum curvature for all values of γ . Additionally,
because the magnetic field direction favors the magnetic mo-
ments pointing along the −z direction, the optimum curvature
is positive for any value of γ , if we consider that the polarity
changes when γ � π/2. In this case, c∗ increases as function
of the magnetic field [see Fig. 5(c)]. Finally, as expected, when
the vortex polarity changes and points along the magnetic
field direction, the total energy decreases, evidencing that this
state minimizes both Zeeman and exchange interactions in the
magnetic subsystem [see Fig. 5(d)].

From the above results, one can propose that such flexible
magnetic systems could be used in applications such as small-
scale robotics. Indeed, the actuation of the nanodisk could
be performed, for instance, by applying an external magnetic

field controlling the vortex chirality (γ ) and/or polarity (p).
The chirality-polarity connection of a magnetic vortex could
produce changes in the shape of the nanodisk from a struc-
ture with negative to a system presenting positive curvature,
depending on the relative directions of the magnetization,
determined by γ and p.

IV. CONCLUSIONS

We studied the properties of a flexible magnetic nanodisk
hosting merons as a magnetic state for a large range of geo-
metrical, elastic, and magnetic parameters. Although we did
not analyze the stability of the meron’s magnetic state in
the considered system, we claim that such configurations can
be, at least, artificially imposed and hosted in a nanodisk, as
evidenced by the presence of metastable (stable) antivortices
(vortices) in nanodisks [46,47,66]. Thus, interesting results
regarding the interplay between magnetic and elastic subsys-
tems were presented that should be considered even if the
magnetic states have a finite lifetime. It is obtained that in
the absence of an external magnetic field, the meron’s wind-
ing number curvature determines whether the nanoparticle’s
shape presents a positive or negative curvature. Additionally,
the optimum curvature adopted by the nanodisk is a function
of its radius, Young’s modulus, and the meron’s chirality. It
was obtained that due to an increase in the stretching energy
as a function of the system curvature, the absolute value of
the system’s optimum curvature decreases with the Young’s
modulus. Therefore, because the Young’s modulus value in-
fluences the deformation magnitudes, our model is sensitive
to this parameter, and, within linear elasticity theory, more
significant effects can be expected as Young’s modulus is
greater.

It was also shown that due to the exchange-driven
curvature-induced effective DMI, changes in the vortex chi-
rality yield changes in the nanoparticle’s shape. Finally, it was
shown that external magnetic fields can be used to change
the nanoparticle’s shape by the proper control of the vortex
chirality. Indeed, because uniform magnetic fields favor the
parallel magnetic moments’ alignment, the lower energy state
is obtained when the Zeeman energy is favored while respect-
ing the polarity-chirality connection.

The above-described results do not consider the shape’s
dynamical evolution of the flexible magnetic disk under the
action of a magnetic field, but present several static properties
of flexible magnetic disks hosting merons as magnetization
states. We also call attention to the fact that this work has the
limitation of considering deformations of the magnetization
textures using a specific basis to parametrize the geometry of
flexible magnetic disks. Nevertheless, the main focus of our
work is describing the main aspects of the interaction between
elastic and magnetic subsystems in the surface curvature of
circular thin structure hosting a meron magnetic texture. Thus,
as a first approximation, we have successfully described how
specific deformations emerge when changing the magnetic
configuration. A complete study considering different coor-
dinate systems to parametrize different deformations to the
nanostructure and the magnetization texture would be inter-
esting for future works.

104430-6



MANIPULATING THE SHAPE OF FLEXIBLE MAGNETIC … PHYSICAL REVIEW B 105, 104430 (2022)

ACKNOWLEDGMENTS

In Brazil, we acknowledge the financial support of
FAPEMIG and CNPq (Grants No. 302084/2019-3 and No.
309484/2018-9). In Chile, N.V.-S. acknowledges Fondecyt
Postdoctorado Grant No. 3190264, and A.R. acknowledges
financial support from the CONICYT + PAI/Convocatoria
Nacional Subvención a la Instalación en la Academia, Con-
vocatoria 2019 + Folio 77190042. R.G.E. acknowledge the
support by Fondecyt Iniciación No. 11171122 and CE-
DENNA.

APPENDIX A: GEOMETRICAL ASPECTS OF THE
CONSIDERED STRUCTURES AND EXPRESSIONS FOR

ENERGY DENSITIES

1. Metric elements

The considered structures are parametrized by Eq. (1),
which allows us to obtain the covariant metric matrix,
given by

g =
(

g11 g12

g21 g22

)
, (A1)

where

g11 = 1 + 4ρ2(c2 cos2 φ + c|c| sin2 φ)2,

g12 = 2ρ3(c2 cos2 φ + c|c| sin2 φ)(2c|c| − 2c2),

g21 = g12,

g22 = ρ2[1 + (2c|c| − 2c2)2ρ2 cos2 φ sin2 φ]. (A2)

It can be noticed that the metric elements of the reference
system (g) are obtained from taking c = 0 (planar disk) in the
above equation. Therefore, we obtain gρρ = 1, gφφ = ρ2, and
gρφ = gφρ = 0. The contravariant metric elements gμν can be
obtained from the relation gμνgμν = δμ

ν .

2. Elastic energy densities

a. Stretching energy

The stretching energy consists of the cost to produce
changes in the size of the elastic subsystem. In the adopted
theoretical model, the stretching energy density can be ob-
tained from substituting the metric elements given in Eq. (A2)
in Eq. (8). After some algebra, we obtain

ws = Y

8(1 − ν)2
[4ρ2(c2 cos2 φ + c|c| sin2 φ)]2. (A3)

b. Bending energy density

The introduction of bends in the elastic subsystem also
yields an energetic cost, the so-called bending energy, whose
energy density is given in Eq. (9), where the matrix elements
bμν are evaluated as

b11 = ∂2

∂ρ2
(
r · 
n),

b12 = b21 = ∂

∂φ

∂

∂ρ
(
r · 
n),

FIG. 6. Stretching Estr and bending energy Eb as a function of c
for different disk radius. Panels (a), (b), (c), and (d) present the results
for R = 4�, 6�, 8�, and 10�, respectively. The thickness is h = 0.1�,
and A/(Y h2) = 40.

b22 = ∂2

∂φ2
(
r · 
n). (A4)

Therefore, the substitution of the metric elements and the
matrix elements b + μν in Eq. (9) leads to the bending energy
density written as

wb(ρ, φ) = Y

24(1 + ν)

[
1

1 − ν
b2

11 + ρ−4b22b21

+2
ν

1 − ν
ρ−2b22b11 + ρ−2b2

12

]
. (A5)

APPENDIX B: STRETCHING AND BENDING ENERGIES

The value of c for the minimum energy configuration pre-
sented in Fig. 2 can be understood from the separated analysis
of the elastic term to the total energy. Therefore, we have
obtained the stretching and bending energies as a function
of c for R = 4�, 6�, 8�, and 10�. The results are depicted in
Fig. 6. Because the bending energy (Eb) is much smaller than
the stretching term (Es), in the obtained graphics we present
the results for 104 Eb (red dots) and Es (black squares).

Figures 6(a) and 6(b) evidence that for systems with small
values of Y , the stretching energy almost does not present
variations when the system deforms. Additionally, despite
that the bending energy presents pronounced variations in the
interval of values of c considered in this work, it is an order
of magnitude smaller than the other terms to the energy, and
therefore the minimum energy configuration is determined
by the magnetic energy (see Fig. 2). On the other hand, as
Y increases, one can observe a pronounced increase in the
stretching energy [see Figs. 6(c) and 6(d)]. In this case, the
competition between magnetic and elastic subsystems deter-
mines the value of c that minimizes the total energy and the
final shape of the nanostructure.
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