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We theoretically investigate the stability of a square skyrmion crystal (SkX) in a centrosymmetric tetragonal
lattice structure with the emphasis on the role of the magnetic anisotropy arising from the absence of vertical
mirror symmetry. Our analysis is based on an effective bilinear and biquadratic model in momentum space, which
is a canonical model for itinerant magnets in a weak-coupling regime. By performing the simulated annealing for
the model on the two-dimensional square lattice, we find that the off-diagonal spin component in the interaction,
which becomes nonzero when the vertical mirror symmetry is broken, gives rise to the square SkX with a
definite helicity in an external magnetic field. We show that the helicity of the square SkXs is determined by the
competition between the off-diagonal and diagonal anisotropic interactions, the latter of which appears in the
discrete fourfold-rotational lattice structure. Furthermore, we discuss helicity-dependent physical phenomena
by introducing odd-parity multipoles, where electric (magnetic) and electric (magnetic) toroidal multipoles are
sources of an antisymmetric spin polarization and an Edelstein effect (a magnetoelectric effect). We also discuss
the stability of the SkXs with different helicities in a magnetic field rotation. Our results provide a way of
engineering the helicity-locked SkXs by the symmetric anisotropic interaction in centrosymmetric magnets,
which is distinct from that by the antisymmetric Dzyaloshinskii-Moriya interaction in noncentrosymmetric
magnets.
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I. INTRODUCTION

Noncollinear and noncoplanar spin configurations have
been extensively studied in condensed matter physics in re-
cent decades, as they exhibit unique physical phenomena and
potential device applications [1–5]. Among them, a noncopla-
nar spin configuration with a nonzero topological (skyrmion)
number, which is known as a magnetic skyrmion, is one of
the central subjects [3,6–12]. Owing to its topologically pro-
tected structure, the magnetic skyrmion behaves as a particle
that can be manipulated, which leads to information carries
in next-generation spintronic devices [13–20]. Moreover, a
periodic alignment of the magnetic skyrmion, i.e., a magnetic
skyrmion crystal (SkX), has also drawn considerable attention
since it shows various unconventional macroscopic response
properties related to topological and vortex spin textures in
both metals and insulators, such as the topological Hall and
Nernst effects [21–27], the magnetoelectric effect [12,28–34],
and the nonreciprocal transport [35–41].

The SkXs have been ubiquitously found in materials with
a variety of lattice structures including both noncentrosym-
metric and centrosymmetric structures [42]. The appearance
of the SkXs in the noncentrosymmetric lattice structures is
mainly owing to the Dzyaloshinskii-Moriya (DM) interaction
denoted as D · (Si × S j ) between two spins [D is so called
the DM vector and Si( j) is the spin at site i( j)], which arises
from the relativistic spin-orbit coupling without the inversion
symmetry at the bond center [8,43,44]. Although the form of
the DM vector depends on the point group symmetry, such
as the mirror and rotational symmetries in addition to the

spatial inversion symmetry in crystals, it is recognized that
the DM interaction plays an important role in the stabilization
of the SkXs in chiral [9–12,45–52], polar [53–55], and other
noncentrosymmetric magnets [56,57].

In the centrosymmetric lattice structures, the SkXs are
stabilized by considering the frustrated exchange interac-
tion [58–65] and effective long-range interactions originating
from the spin-charge coupling in itinerant electron systems
[66], such as the Ruderman-Kittel-Kasuya-Yosida interac-
tion [67–72] and the multiple-spin interactions [73–78]
with and without single-ion anisotropy. In contrast to the
DM-interaction mechanism, the spin interactions in these
mechanisms are characterized by the isotropic ones at least
for the two spin components, which are exemplified by Sx

i Sx
j +

Sy
i Sy

j , Si · S j , Sq · S−q, and (Sq · S−q)2, where Sq is the Fourier
component of Si with wave vector q. Such a stabilization
mechanism based on the isotropic exchange interactions rep-
resents a universal feature irrespective of the details of the
lattice symmetry. Moreover, the isotropic exchange interac-
tions result in the degeneracy of the SkXs and anti SkXs
with a different sign of the skyrmion number, which provides
a possibility of new types of the topological spin orderings
[58,72].

Meanwhile, magnetic anisotropy that arises from the ro-
tational and mirror symmetry breakings in the specific lattice
structures while keeping the inversion symmetry also becomes
a source of the SkXs [79]. Although the form of the spin
interactions depends on a way of breakings of the lattice sym-
metry, such an effect can appear in any discrete lattice systems
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via the spin-orbit coupling. For instance, the bond-dependent
anisotropic exchange interaction owing to the discrete rota-
tional symmetry gives rise to the square-shaped SkXs in the
tetragonal system [80–83] and the triangular-shaped SkXs in
the hexagonal system [84–86]. This bond-dependent interac-
tion often plays a similar role to the dipole-dipole interaction
in the stabilization of the SkXs [87,88]. Besides, bond-
dependent anisotropic exchange interaction originating from
the breaking of the horizontal mirror symmetry also leads to
the SkXs in the trigonal system [84,86,89]. More recently, it
was shown that the staggered DM interaction that originates
from the breaking of the local inversion symmetry becomes
the origin of the SkX in centrosymmetric magnets [90,91].
These mechanisms on the basis of the anisotropic interactions
account for an anisotropic directional response of the SkXs in
centrosymmetric magnets against an external magnetic field
[92].

In addition, magnetic anisotropy plays an important role
in lifting the degeneracy between the helicity and the
vorticity of the centrosymmetric SkXs. For example, the
bond-dependent anisotropic interaction in the hexagonal sys-
tems lifts the degeneracy between the Néel, Bloch, and anti
SkXs [84–86]. Similarly, their degeneracy is lifted in the
tetragonal [80–82,93] and trigonal systems [84,86,89]. In fact,
the SkXs observed in centrosymmetric magnets have definite
helicity and vorticity, which indicates the importance of the
anisotropic interaction and dipole-dipole interaction [25,94–
96]. As the magnetic anisotropy is different under the dif-
ferent lattice symmetry, it is desired to examine important
anisotropic interactions to stabilize the SkXs in each lattice
symmetry, which will give a guideline to search for further
SkX-hosting materials based on the crystallographic point
groups.

In this study, we aim at exploring the SkXs induced by the
magnetic anisotropy in a discrete lattice system. We focus on
the effect of the magnetic anisotropy that arises from the lack-
ing of vertical mirror symmetry (vertical twofold-rotational
symmetry) on the stabilization of the square SkX under the
centrosymmetric tetragonal C4h point group system. Specifi-
cally, we examine an effective spin model of itinerant magnets
consisting of itinerant electrons and localized spins, which
includes two types of bond-dependent anisotropic interactions
satisfying the C4h point group symmetry: one is the spin-
diagonal anisotropy in the presence of the fourfold-rotational
symmetry and the other is the spin-off-diagonal anisotropy
in the absence of the vertical mirror symmetry. By numeri-
cally analyzing the effective spin model at low temperatures
while changing the biquadratic interaction, anisotropic inter-
action, and magnetic field, we find that the interplay between
the magnetic anisotropic and biquadratic interactions induces
the square SkXs in an external magnetic field. We construct
the low-temperature phase diagrams while changing the bi-
quadratic interaction, anisotropic interaction, and magnetic
field to demonstrate a stabilization tendency of not only the
SkX, but also other double-Q states in a systematic manner.
We show that the helicity of the SkXs is locked depending
on the ratio and sign of two magnetic anisotropic interactions.
According to the different helicity, the SkXs accompany dif-
ferent types of odd-parity multipoles, which are related to the
emergence of a linear magnetoelectric effect, an antisymmet-

ric spin polarization, and an Edelstein effect [97]. We also
discuss the stability of the SkXs with the different helicities
when the magnetic field is rotated from the out-of-plane to
in-plane directions. Our result provides a close relation be-
tween the helicity of the SkXs and the magnetic anisotropic
interactions in centrosymmetric itinerant magnets, which will
be applicable to the other point groups without the vertical
mirror symmetry, such as C4, S4, C6, S6, and C6h.

The remainder of this paper is structured as follows. In
Sec. II, we present an effective spin model incorporating the
effect of the vertical mirror symmetry breaking in the cen-
trosymmetric tetragonal system. We also outline numerical
simulations based on the simulated annealing. In Sec. III, we
discuss the low-temperature phase diagrams in the effective
spin model, a helicity locking in the SkX, a relation to odd-
parity multipoles, and an effect of the magnetic field rotation.
Finally, Sec. IV concludes this paper.

II. EFFECTIVE SPIN MODEL

To investigate the effect of the vertical mirror sym-
metry breaking on the SkXs, we consider the tetragonal
system under the crystallographic point group C4h. Specifi-
cally, we analyze a phenomenological spin model with the
anisotropic interactions defined in momentum space on the
two-dimensional square lattice in the xy plane, whose Hamil-
tonian is given by

H = −2J
∑
η=1,2

∑
μ,ν

�
μν

Qη
Sμ

Qη
Sν

−Qη

+ 2K

N

∑
η=1,2

( ∑
μ,ν

�
μν

Qη
Sμ

Qη
Sν

−Qη

)2

−
∑

i

H · Si, (1)

where

�Q1
=

⎛
⎝I − Iv Ixy 0

Ixy I + Iv 0
0 0 Iz

⎞
⎠, (2)

�Q2
=

⎛
⎝I + Iv −Ixy 0

−Ixy I − Iv 0
0 0 Iz

⎞
⎠. (3)

The Hamiltonian in Eq. (1) consists of three terms. The first
term represents the bilinear exchange interaction with the
coupling constant J and the second term represents the bi-
quadratic exchange interaction with the coupling constant K
for the wave vectors Q1 = (π/3, 0) and Q2 = (0, π/3) (the
lattice constant is taken as unity); SQη

is the Qη component
of the spins obtained by the Fourier transform of the classical
localized spin Si with |Si| = 1 and N is the system size. It is
noted that Q1 and Q2 are connected by the fourfold-rotational
symmetry of the square-lattice geometry. The interaction ten-
sors in the Q1 and Q2 channels have an anisotropic form
in terms of the spin components μ, ν = x, y, z, as given in
Eqs. (2) and (3), which are obtained by the symmetry ar-
gument for the point group C4h; there are four independent
model parameters I , Iv , Ixy, and Iz, and �

μν

Qη
is invariant under

the twofold-rotational, the space inversion, and the horizontal
mirror symmetries, where �Q1

and �Q2
are connected by the

fourfold rotation. Among them, the anisotropic interactions
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Iz �= I and Iv become nonzero even in the tetragonal point
group with the vertical mirror symmetry, such as D4h. Mean-
while, the other anisotropic interaction Ixy only appears when
both the vertical mirror and vertical twofold rotational sym-
metries are broken. The third term represents the Zeeman
coupling to an external magnetic field in the form of H =
H (sin θ cos φ, sin θ sin φ, cos θ ).

The effective bilinear and biquadratic model in momentum
space in Eq. (1) is one of the canonical models to discuss the
multiple-Q instabilities in itinerant magnets [66,74,76,81,85].
The bilinear and biquadratic interactions are derived from the
classical Kondo lattice model consisting of the itinerant elec-
trons and localized spins by tracing out the itinerant electron
degree of freedom. According to the perturbative expansion in
terms of the exchange coupling between the itinerant electron
and localized spins, the bilinear and biquadratic interactions
are proportional to the second and fourth orders of the ex-
change coupling, respectively. The choice of the interactions
at the wave vectors Q1 and Q2 is based on the assumption
that the magnetic susceptibility of itinerant electrons shows
maximum peaks at the corresponding wave vectors in the
presence of the nested Fermi surfaces by Q1 and Q2 [74,98–
100]. We neglect the contributions from the other multispin
interactions for the same reason.

The multiple-Q instabilities in the effective model in
Eq. (1) have been discussed for the case of the centrosymmet-
ric tetragonal point group D4h, i.e., Ixy = 0, in the previous
literatures [74,81,93,101–103]. In the case of the isotropic
spin interactions I = Iz and Iv = 0, only topologically trivial
single-Q and double-Q states appear while changing K and
H in the unit of J [74]. Subsequently, it was shown that the
square SkX is realized by incorporating the effect of Iv in
addition to Iz > I , K , and H for θ = 0 [81,101]; the Bloch
(Néel) SkX is stabilized for Iv > 0 (Iv < 0), although there is
a degeneracy between the SkXs and anti-SkXs.

In the following, we discuss the role of the anisotropic
interaction Ixy characteristics of the point group C4h, which
appears when the vertical mirror symmetry of the point
group D4h is lost while keeping the inversion symmetry.
In order to investigate the low-temperature phase diagram
of the model including Ixy in Eq. (1), we carry out the
simulated annealing by means of Monte Carlo simulations.
The simulations have been done by following the manner in
Ref. [81] with the same final temperature as T = 0.01. In the
simulation processes, we reduce the temperature with a rate
of α = 0.999 95–0.999 99 at the nth Monte Carlo step from a
random spin configuration at a high temperature T0 = 1–10.
At the final temperature, we perform 105–106 Monte Carlo
sweeps for measurements. We also start the simulations from
the spin configurations obtained at low temperatures when
determining the phase boundaries in the phase diagram. We
set J = 1 as the energy unit of the model and I = 1 as the unit
of the anisotropic form factor. We fix Iz = 1.2, as the situation
satisfying Iz > I tends to stabilize the SkX. We change the
other parameters K , Iv , and Ixy in the interaction tensors and
the magnetic field H to discuss the stability of the square SkX
systematically. The system size is taken for N = 962 spins.
It is noteworthy that the effect of thermal fluctuations on the
model with long-range interactions similar to that in Eq. (1)
has recently been investigated, where the multiple-Q states

stabilized at low temperatures tend
to survive at finite temperatures
[104].

We identify each magnetic phase in the following results
by examining the spins in momentum space. For that purpose,
we calculate the spin structure factor for the μ = x, y, z com-
ponent defined by

Sμ
s (q) = 1

N

∑
j,l

Sμ
j Sμ

l eiq·(r j−rl ), (4)

where r j is the position vector at site j. We also use the nota-
tion Sxy

s (q) = Sx
s (q) + Sy

s (q). Then, the magnetic moments at

the Qη component are expressed as mμ

Qη
=

√
Sμ

s (Qη )/N . The

net magnetization is defined by Mμ = (1/N )
∑

i Sμ
i .

In addition, we evaluate the scalar chirality χ0 to inves-
tigate whether the obtained spin configurations are topologi-
cally nontrivial, which is calculated from

χ0 = 1

N

∑
i

χi, (5)

χi =
∑
δ=±1

Si · (Si+δx̂ × Si+δŷ), (6)

where x̂ (ŷ) is the unit vector in the x (y) direction [105].
This quantity becomes nonzero for noncoplanar spin config-
urations, which is related to a quantized skyrmion number.
Complementarily, we also compute the skyrmion number de-
fined by [106]

nsk = 1

2πNm

∑
i,δ=±1

tan−1 Si · (S j × Sk )

1 + Si · S j + S j · Sk + Sk · Si
, (7)

where Nm is the number of magnetic unit cells in the lattice
system, and j = i + δx̂ and k = i + δŷ; the range of the arct-
angent is set as [−π, π ). nsk is quantized at −1 (+1) for the
SkX (anti-SkX).

III. RESULT

In this section, we discuss the results obtained by the sim-
ulated annealing for the effective spin model in Eq. (1) on the
square lattice. We first present a magnetic phase diagram with
Ixy but without Iv while changing the biquadratic interaction
K and the out-of-plane field H (θ = 0) in Sec. III A. We find
that the square SkX is induced when K and H are nonzero. We
also discuss the stability of the square SkX while changing
Ixy for fixed K . In Sec. III B, we discuss the change of the
spin configurations in the presence of both Ixy and Iv . We
show that the helicity of the SkX is locked depending on the
ratio and sign of Ixy and Iv . Then, in Sec. III C, we show
that the different helicity makes different types of odd-parity
multipoles active, which is related to the linear magnetoelec-
tric effect and the antisymmetric spin polarization. Lastly,
we discuss the stability of the SkX when the magnetic field
is tilted from the out-of-plane to the in-plane directions in
Sec. III D. It is noted that the following results do not change
in the three-dimensional layered square-lattice structure with
the two-dimensional ordering vectors.
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FIG. 1. Phase diagram while changing the biquadratic interac-
tion K and the out-of-plane magnetic field H (θ = 0) at Iz = 1.2,
Ixy = 0.05, and Iv = 0 obtained by the simulated annealing. 1Q (2Q)
represents the single-Q (double-Q) state. CS represents the chiral
stripe state.

A. Skyrmion crystal in an out-of-plane field

We discuss the low-temperature phase diagram of the ef-
fective spin model in Eq. (1) by performing the simulated
annealing. We consider nonzero Ixy but Iv = 0 in this section,
although it has been already known that nonzero Iv without
Ixy can stabilize the Bloch or Néel SkX, where the stability
region of the SkX while changing the model parameters is
presented only for a few sets of model parameters [81,101]. It
is noted that the model for Ixy �= 0 and Iv = 0 is transformed
to that for Ixy = 0 and Iv �= 0 by permutating the in-plane
spins appropriately. We also take the magnetic field along the
z direction H = (0, 0, H ) by taking θ = 0 since the in-plane
field under the easy-axis anisotropic interaction (Iz > I) tends
to destabilize the SkX [76,81].

Figure 1 shows the phase diagram in the K-H plane at
T = 0.01, Iz = 1.2, Ixy = 0.05, and Iv = 0. There are four
phases in addition to the fully polarized state along the field
direction for H � 2.1. The spin and chirality configurations
in three double-Q phases are shown in Fig. 2. In the low-field
region, the single-Q state appears for small K , whose spin
configuration is characterized by the elliptical spiral one; the
spiral plane lies on the [110] or [11̄0] plane. While increasing
K , the second-Q component in the spin structure factor is
induced and developed, and then, the double-Q chiral stripe
(CS) I state is stabilized. The xy component of the spin
structure factor shows the double-Q peaks at Q1 and Q2 with
different intensities, while its z component exhibits the single-
Q peak at Q1, as shown in the right two panels in Fig. 2(a).
Then, the spin configuration obtained by the simulated an-
nealing as shown in the left panel of Fig. 2(a) is well des-
cribed by

Si ∝

⎛
⎜⎝

cos Q1 · ri + b cos Q2 · ri

cos Q1 · ri − b cos Q2 · ri

az sin Q1 · ri + M̃z

⎞
⎟⎠

T

, (8)

where az, b, and M̃z are parameters depending on the model
parameters (M̃z = 0 when H = 0). T in Eq. (8) represents

the transpose of the vector. Thus, the double-Q CS I state is
represented by the superposition of the elliptical spiral wave
along the Q1 direction and the sinusoidal wave along the Q2
direction. Owing to the presence of Ixy, the spiral plane and the
sinusoidal oscillating direction lie on the [110] or [11̄0] plane.
Simultaneously, the double-Q CS I state accompanies the
scalar chirality density wave along the Q2 direction without a
net component as shown in the middle left panel of Fig. 2(a),
which reflects the noncoplanar spin textures in Eq. (8). This
double-Q CS I state has been discussed in itinerant electron
models on various lattices, such as the square [74,81,100,107],
triangular [74,76,85], and cubic [108] lattices.

While increasing H , the SkX appears for K � 0.07, as
shown in the phase diagram in Fig. 1. The real-space spin
configuration is characterized by the periodic array of the
skyrmion in a square-lattice way, as shown in the left panel
of Fig. 2(b). This indicates the emergence of the square SkX
[81,82,87]. The spin structure factor exhibits the double-Q
peaks with equal intensity at Q1 and Q2 in both xy and z
components, as shown in the right two panels of Fig. 2(b).
The spin ansatz of the square SkX is given by the super-
position of two elliptical spiral waves along the Q1 and Q2
directions as

Si ∝

⎛
⎜⎝

cos Q1 · ri + cos Q2 · ri

cos Q1 · ri − cos Q2 · ri

az(sin Q1 · ri + sin Q2 · ri ) + M̃z

⎞
⎟⎠

T

. (9)

This state is also regarded as the vortex-antivortex crystal,
where the antivortices are found around the skyrmion core
with Sz

i � −1 and vortices are found in the region between
the neighboring skyrmion cores in the left panel in Fig. 2(b).
The core positions of the vortices and antivortices are locked
at the center of the square plaquette reflecting the discrete
lattice structure [109]. Since the z spin moment around the
vortices (antivortices) points along the +z (−z) direction, both
the vortices and antivortices give the positive scalar chirality.
It is noted that there are other antivortices with Sz

i > 0 in the
region surrounded by the four antivortices with Sz

i < 0 and
four vortices with Sz

i > 0, which contributes to the negative
scalar chirality. As the contributions of the scalar chirality
from the vortices and antivortices are different from each
other, the scalar chirality in the whole system is not canceled
out in contrast to the double-Q CS I state. The real-space
scalar chirality configuration is shown in the middle left panel
of Fig. 2(b). By calculating the skyrmion number nsk from
the spin and scalar chirality configurations, one obtains a
quantized skyrmion number of one, i.e., nsk = 1, which in-
dicates that the obtained state corresponds to the anti-SkX. It
is noted that the SkX with nsk = −1, which is expressed by
reversing the sign of cos Q2 · ri in Eq. (9), is also obtained in
the simulations with different initial spin configurations since
the energies between the SkX and anti-SkX are degenerate in
the present model.

While further increasing H , the SkX turns into the double-
Q fan state in Fig. 1. The real-space spin and scalar chirality
configurations are shown in the left and middle left panels
of Fig. 2(c), respectively. The xy spin component is similar
to that in the SkX in Fig. 2(b), while there is a difference
of the z spin component; in the double-Q fan state, there are
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FIG. 2. Left: Snapshots of the spin configurations in (a) the 2Q chiral stripe (CS) I state for H = 0.7, (b) the SkX for H = 0.8, and
(c) the 2Q fan state for H = 0.9 at K = 0.2, Iz = 1.2, Ixy = 0.05, and Iv = 0. The direction and the color of the arrows represent the xy and
z components of the spin moment, respectively. Middle left: The scalar chirality χi calculated from the left panel. Middle right and right: The
square root of the xy and z components of the spin structure factor. Black squares represent the first Brillouin zone.

almost no modulations in the z spin component shown in the
right panel of Fig. 2(c). Indeed, there are double-Q peaks at
Q1 and Q2 in the xy component of the spin structure factor,
while there is almost no peak for q �= 0 in the z component
of the spin structure factor, as shown in the right two panels
of Fig. 2(c) (There are small intensities at 2Q1 and 2Q2 in
the z component.) Reflecting such a spin configuration, the
contributions of the scalar chirality from the vortex and an-
tivortex become equivalent, which results in the cancellation
of the scalar chirality in the whole system [the middle left
panel of Fig. 2(c)]. The expression of the spin configuration
in the double-Q fan state is represented by

Si ∝
⎛
⎝cos Q1 · ri + cos Q2 · ri

cos Q1 · ri − cos Q2 · ri

M̃z

⎞
⎠

T

. (10)

This spin configuration corresponds to that in the SkX in
Eq. (9) when taking az = 0.

We show the H dependence of the magnetization Mz and
the scalar chirality (χ0)2 at K = 0.2 in Fig. 3(a). There are
clear jumps of Mz when the phase transitions occur at H �
0.78 and 0.86. This indicates the first-order phase transition

between the SkX and the other two double-Q states. One also
finds that only the SkX shows a nonzero scalar chirality (χ0)2.
Figure 3(b) shows the H dependence of mμ

Q1
and mμ

Q2
for μ =

x, y, z. The double-Q CS I state has anisotropic double-Q com-
ponents (mμ

Q1
�= mμ

Q2
), while the SkX and double-Q fan states

have isotropic double-Q components (mμ

Q1
= mμ

Q2
). The x and

y spin components in all the states are equivalent with each
other due to the nature of Ixy, i.e., mx

Q1
= my

Q1
and mx

Q2
= my

Q2
.

Next, we discuss the stability of the SkX while changing
Ixy. For that purpose, we fix K = 0.2 and construct the low-
temperature phase diagram in the Ixy-H plane with θ = 0.
Figure 4 shows the phase diagram obtained by the simulated
annealing. We here focus on the magnetic field region where
the SkX is stabilized. As shown in Fig. 4, the SkX appears
in the region for Ixy � 0.013, which means that small but
nonzero Ixy is important to stabilize the SkX. The stable field
range of the SkX becomes the largest around Ixy � 0.03. The
high-field phase of the SkX is always the double-Q fan state.
Meanwhile, the low-field phases of the SkX are different
depending on Ixy: the double-Q CS I state for Ixy � 0.037,
the double-Q CS II state for 0.016 � Ixy � 0.037, and the
double-Q CS III state for 0.013 � Ixy � 0.016.

104428-5



SATORU HAYAMI AND RYOTA YAMBE PHYSICAL REVIEW B 105, 104428 (2022)

 0.0

 0.1

 0.2

 0.0  0.2  0.4  0.6  0.8  1.0

 0.0

 0.2

 0.4

 0.6(a)

(b)

 0.0  0.2  0.4  0.6  0.8  1.0

FIG. 3. H dependences of (a) the magnetization Mz, the scalar
chirality (χ0)2, and (b) the Q1 and Q2 components of the magnetic
moments mμ

Q1
and mμ

Q2
, for μ = x, y, z at K = 0.2, Iz = 1.2, Ixy =

0.05, and Iv = 0.

We show the spin and scalar chirality configurations in the
double-Q CS II and III states in Fig. 5. The double-Q CS II
state is characterized by the anisotropic double-Q structure,
which is similar to the double-Q CS I state in Fig. 2(a).
Although the xy-spin component is similar between the two
states as shown in the middle right panel of Figs. 2(a) and
5(a), their difference is found in the z spin component: The
double-Q peaks appear at Q1 and Q2 in the double-Q CS II
state, while only the single-Q peak appears in the double-Q
CS I state, as shown in the right panel of Figs. 2(a) and
5(a). Reflecting the double-Q structure in both xy and z spin
components, the real-space spin configuration in the left panel
of Fig. 5(a) seems to be similar to that in the SkX in Fig. 2(b).
However, there is no net scalar chirality in this state. The
scalar chirality density wave occurs for q �= 0, as shown in the
middle left panel of Fig. 5(a); the dominant peak is found in
Q2 and the subdominant peaks are found in Q1 + Q2 and 2Q2.

In the small-Ixy region, the double-Q CS III state appears
in the phase diagram in Fig. 4. The spin configuration in this
state is characterized by the superposition of the horizontal
spiral wave along the Q2 direction and the sinusoidal wave
along the Q1 direction, as shown in the right two panels of
Fig. 5(b). Such a superposition is also found in the real-space

 0.7

 0.8

 0.9

 1.0

 0.00  0.05  0.10  0.15

SkX

2Q CS I

2Q fan

2Q CS II

2Q CS III

1Q conical

FIG. 4. Phase diagram in the plane of Ixy and H at K = 0.2,
Iz = 1.2, and Iv = 0 obtained by the simulated annealing. 1Q (2Q)
represents the single-Q (double-Q) state. CS represents the chiral
stripe state.

spin configuration, as shown in the left panel of Fig. 5(b). This
state also accompanies the chirality density wave along the Q1
direction, as shown in the middle left panel of Fig. 5(b). When
the magnetic field is increased in the small-Ixy region, the
sinusoidal Q1 component vanishes, and then, the state turns
into the single-Q conical state.

From the above phase diagrams in Figs. 1 and 4, one finds
that the interplay between the biquadratic interaction K and
the anisotropic interaction Ixy originating from the vertical
mirror symmetry breaking plays an important role in stabi-
lizing the square SkX. The result indicates that the set of large
K and moderate Ixy is preferable to obtain the robust square
SkX. Moreover, the identification of the low-field phase in
experiments provides information about the magnitude of Ixy;
the emergence of the 2Q CS I (III) state corresponds to the
large (small) anisotropic interaction.

B. Helicity locking of skyrmion crystal

In this section, we discuss the helicity of the SkX. As
discussed in Sec. III A, two types of the SkXs are obtained
in the simulations, which are characterized by the different
skyrmion number nsk = ±1. This means that there is a de-
generacy in terms of the vorticity of the skyrmion core. On
the other hand, the helicity of the skyrmion core is fixed at
π/4 or −3π/4 for the SkX with nsk = −1 and at −π/4 and
3π/4 for the anti-SkX with nsk = 1, where the helicity is
defined by the angle between Si and Ri [Ri = (Xi,Yi ) is the
position vector measured from the skyrmion core (center of
the square plaquette)]. For example, the snapshot in the left
panel of Fig. 2(b) corresponds to the helicity −π/4 and 3π/4.
When the sign of Ixy is reversed, the helicity takes opposite
values; the SkX with nsk = −1 has −π/4 or 3π/4 and the
anti-SkX with nsk = 1 has the helicity π/4 and −3π/4. The
spin textures around the skyrmion core in the presence of Ixy

are schematically summarized in the left panel of Fig. 6.
Meanwhile, another anisotropic interaction Iv that arises

from the discrete fourfold-rotational symmetry around the z
axis also fixes the helicity of the skyrmion core in a different
manner [81]. In the absence of Ixy where the lattice symmetry
changes to the D4h symmetry, the helicity of the skyrmion
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FIG. 5. Left: Snapshots of the spin configurations in (a) the 2Q chiral stripe (CS) II state for Ixy = 0.02 and (b) the 2Q CS III state
for Ixy = 0.01 at H = 0.8, Iz = 1.2, and Iv = 0. The direction and the color of the arrows represent the xy and z components of the spin
moment, respectively. Middle left: The scalar chirality χi calculated from the left panel. Middle right and right: The square root of the xy and
z components of the spin structure factor. Black squares represent the first Brillouin zone.

core is fixed at π/2 or −π/2 for the SkX with nsk = −1 and
at 0 and π for the anti-SkX with nsk = 1 for Iv > 0. In the
case of Iv < 0, the tendency is opposite; the helicity of the
skyrmion core is fixed at 0 or π for the SkX with nsk = −1
and at π/2 and −π/2 for the anti-SkX with nsk = 1. The
spin configurations around the skyrmion core for Iv �= 0 and
Ixy = 0 are schematically shown in the right panel of Fig. 6.

The different tendency with respect to the helicity locking
by Ixy and Iv indicates that the helicity in real materials is
determined by taking into account both Ixy and Iv . Such a
situation naturally happens in the C4h point-group system, as
discussed in Sec. II. In the following, we show that the helicity
of the SkX is determined by the ratio of two anisotropic
interactions Ixy and Iv . To demonstrate that, we denote two

FIG. 6. Schematic in-plane spin configurations (blue arrows)
around the skyrmion core (black circles) stabilized in the presence
of (left panel) Ixy and (right panel) Iv . The skyrmion number nsk in
each spin texture is also shown.

anisotropic interactions as (Ixy, Iv ) = Ia(cos �, sin �) and
change � for fixed Ia.

The results of Mz, (χ0)2, and (mμ

Qη
)2 at K = 0.3, Iz = 1.2,

Ia = 0.05, and H = 0.75 against � are shown in Fig. 7. The
data in Figs. 7(a) and 7(b) clearly represent no � dependence
of the quantities irrelevant of the helicity, Mz, (χ0)2, and
(mz

Qη
)2. Meanwhile, (mx

Qη
)2 and (my

Qη
)2 in Fig. 7(b) show a

� dependence to smoothly connect the result at Iv = 0 in
Sec. III A and that at Ixy = 0 in Ref. [81]. We show the
snapshots obtained by the simulated annealing for several � in
Figs. 8(a)–(e). For � � 0, the SkX with nsk = −1 and helicity
−3π/4 is realized, as shown in Fig. 8(a). While increasing �,
i.e., Iv , the helicity gradually changes from −3π/4 to −π/2,
as shown in Figs. 8(b)–(e). This result indicates a correspon-
dence between the helicity of the skyrmion and the ratio of Ixy

and Iv . Thus, one can estimate the ratio of Ixy and Iv , once the
helicity of the skyrmion is identified and vice versa. Although
it is difficult to estimate the helicity from the real-space obser-
vation owing to its resolution, the measurement of intensities
at magnetic moments with Q1 and Q2 components as shown
in Fig. 7(b) by using the resonant x-ray scattering with the
polarization analysis can be performed. Indeed, the change of
the skyrmion helicity at the surface has been observed in the
chiral magnet Cu2OSeO3 [110,111].

It is noted that the degeneracy between the SkXs with
nsk = ±1 still remains even in the presence of both Ixy and
Iv . We show the snapshot of the SkX with nsk = +1 for
� = π/4, which is obtained by the simulations starting from
a different random spin configuration, in Fig. 8(f). In this case,
the real-space spin configuration around the skyrmion core
is described by the superposition of the spin configuration
shown at Ixy > 0 and nsk = +1 and that shown at Iv > 0 and
nsk = +1 in Fig. 6.
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for

μ = x, y, z at K = 0.3, Iz = 1.2, Ia = 0.05, and H = 0.75.

C. Relation to odd-parity multipoles

The emergence of the skyrmion spin texture in centrosym-
metric magnets breaks both time-reversal and spatial inversion
symmetries spontaneously. Meanwhile, as the SkXs with the
different helicity are categorized into the different irreducible
representation under the point group, different physical re-
sponses can be expected. In this section, we present the
helicity-dependent physical phenomena from the viewpoint
of odd-parity multipoles with the spatial-inversion odd since
the concept of multipoles gives a systematic understanding of
transport properties and multiferroic phenomena [112–115].
The relevant odd-parity magnetic and magnetic toroidal mul-
tipoles that can be a source of the linear magnetoelectric
effect are discussed in Sec. III C 1 and the relevant odd-parity
electric and electric toroidal multipoles that can be a source of
the antisymmetric spin splitting in the band structure and the
Edelstein effect are discussed in Sec. III C 2.

1. Odd-parity magnetic and magnetic toroidal multipoles

The SkXs with the different helicity have the different spin
configurations around the skyrmion core, as shown in Fig. 6.
We here classify the spin configurations with the different
helicity on the basis of magnetic and magnetic toroidal mul-
tipoles. As the magnetic multipoles are characterized by an
axial tensor and the magnetic toroidal multipoles are charac-
terized by a polar tensor, the even-rank magnetic multipoles
and the odd-rank magnetic toroidal multipoles correspond to
the odd-parity multipoles in terms of spatial inversion symme-
try [112,115,116]. In other words, these odd-parity magnetic

-1

 0

 1

-1

 0

 1

(c)

(e)

-1

 0

 1
(a)

-1

 0

 1

-1

 0

 1

(d)

(f)

-1

 0

 1
(b)

FIG. 8. (a)–(e) Snapshots of the spin configurations in the SkX
with nsk = −1 for (a) � = π/200, (b) � = π/8, (c) � = π/4,
(d) � = 3π/8, and (e) � = π/2 at Ia = 0.05, K = 0.3, Iz = 1.2,
and H = 0.75. (f) Snapshots of the spin configurations in the SkX
with nsk = +1 obtained by the simulations when starting from a
different random spin configuration in (c).

and magnetic toroidal multipoles are fundamental multipole
degrees of freedom in the absence of both spatial inversion
and time-reversal symmetries, which have often been dis-
cussed in the field of multiferroics [117–126] including the
SkXs [12,28–34].

By using cluster multipole theory for the four-site cluster
around the skyrmion core [127,128], one finds that four types
of odd-parity multipoles can become active, whose expres-
sions are given by

M0 =
∑

i

Ri · Si, (11)

Tz =
∑

i

(Ri × Si )
z, (12)

Mv =
∑

i

XiS
x
i − YiS

y
i , (13)

Mxy =
∑

i

XiS
y
i + YiS

x
i , (14)

where M0 represents the rank-0 magnetic monopole, Tz rep-
resents the rank-1 magnetic toroidal dipole, and Mv and Mxy

represent the rank-2 magnetic quadrupoles, where we omit the
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(a)

(b)

FIG. 9. The correspondence between the skyrmion spin textures
and the odd-parity multipoles. M0 represents the magnetic monopole,
Tz represents the magnetic toroidal dipole, and Mv and Mxy represent
the magnetic quadrupoles.

irrelevant numerical coefficient [129]. M0 and Tz are induced
when the skyrmion core with nsk = −1, while Mv and Mxy

are induced when the skyrmion core with nsk = +1. The
schematic spin configurations for M0, Tz, Mv , and Mxy are
shown in Fig. 9. Under the point group D4h (C4h), the irre-
ducible representations of M0, Tz, Mv , and Mxy correspond to
A1u, A2u, B1u, and B2u (Au, Au, Bu, and Bu), respectively.

In the case of Iv �= 0 and Ixy = 0, one of four odd-parity
multipoles is activated depending on nsk and helicity, as shown
in Fig. 6. Meanwhile, for Iv = 0 and Ixy �= 0, the spin texture
is represented by the linear combination of Tz and M0 (Mv

and Mxy) for the SkX with nsk = −1 (nsk = +1), as shown
in Fig. 9. As the number of active multipoles is related to
the nonzero response tensor as described below, it is expected
that the SkXs under the point group C4h exhibit rich physical
phenomena than those under D4h. This argument is consistent
with the symmetry analysis based on the point group; the
irreducible representations A1g/u and A2g/u (B1g/u and B2g/u)
under D4h belong to the same irreducible representation Ag/u

(Bg/u) under C4h, which means that M0 and Tz (Mv and Mxy)
are not distinguished from the symmetry viewpoint.

The active odd-parity magnetic and magnetic toroidal mul-
tipoles are closely related to the linear magnetoelectric effect,
where the magnetization Mμ is induced by the electric field
Eν represented by Mμ = ∑

ν αμνEν for μ, ν = x, y. Here and
hereafter, we only consider the μ, ν = x, y components for
simplicity. The nonzero magnetoelectric tensor αμν has a cor-
respondence with four odd-parity multipoles in Eqs. (11)–(14)
as

αxx = M0 + Mv, (15)

αyy = M0 − Mv, (16)

αxy = Mxy + Tz, (17)

αyx = Mxy − Tz. (18)

Active M0 and Mv give rise to the longitudinal magnetoelec-
tric effect, while active Tz and Mxy lead to the transverse one.
From the correspondence between the active odd-parity mul-
tipoles and the anisotropic form factors as discussed above,

TABLE I. Active odd-parity magnetic and magnetic toroidal
multipoles (OMP) and nonzero magnetoelectric tensor components
αμν for a set of (nsk, Iv, Ixy ). The sign in the columns Iv and Ixy

represents the sign of their anisotropic form factors.

nsk Iv Ixy OMP αμν

−1 + 0 Tz αxy = −αyx

+1 + 0 Mxy αxy = αyx

−1 − 0 M0 αxx = αyy

+1 − 0 Mv αxx = −αyy

−1 0 + M0 + Tz αxx = αyy = αxy = −αyx

+1 0 + Mv + Mxy αxx = −αyy = αxy = αyx

−1 0 − M0 − Tz αxx = αyy = −αxy = αyx

+1 0 − Mv − Mxy αxx = −αyy = −αxy = −αyx

−1 ± ± M0, Tz αxx = αyy, αxy = −αyx

+1 ± ± Mv, Mxy αxx = −αyy, αxy = αyx

one finds that αμν has one independent component for Iv �= 0
and Ixy = 0 or Ixy �= 0 and Iv = 0, whereas αμν has two inde-
pendent components for Iv �= 0 and Ixy �= 0. The conditions in
each set of (nsk, Iv, Ixy) to induce nonzero (M0, Tz, Mv, Mxy)
and (αxx, αyy, αxy, αyx ) are summarized in Table I.

2. Odd-parity electric and electric toroidal multipoles

Considering that there is a uniform magnetization in the
SkX phase, odd-parity electric and electric toroidal multipoles
become active in addition to odd-parity magnetic and mag-
netic toroidal multipoles owing to the breaking of the product
symmetry of spatial inversion and time-reversal symmetries.
Here, the electric (electric toroidal) multipoles are charac-
terized by a polar (axial) tensor with the time-reversal even
[112,115,116]. Specifically, the odd-rank electric multipoles
and the even-rank electric toroidal multipoles correspond to
the odd-parity multipoles. For example, the electric dipole is
active in the polar systems like the Rashba system, and the
electric toroidal monopole is active in the chiral systems like
the Weyl system. Recently, electric toroidal quadrupole order-
ing has been suggested in Cd2Re2O7 [130–132] and CeCoSi
[133]. The active odd-parity electric and electric toroidal mul-
tipoles can be a source of the antisymmetric spin splitting in
the band structure and the Edelstein effect, as discussed below.

From the symmetry viewpoint [112,115], we focus on
four types of the electric and electric toroidal multipoles,
which become active in the presence of (M0, Tz, Mv, Mxy)
under the magnetic field: the rank-1 electric dipole Qz, the
rank-0 electric toroidal monopole G0, and the rank-2 electric
toroidal quadrupoles Gv, Gxy [134]. The correspondence be-
tween them is given by M0 ↔ Qz, Tz ↔ −G0, Mv ↔ −Gxy,
and Mxy ↔ Gv [115]. These four types of multipoles are re-
lated to the antisymmetric spin-split band structure as [112]

G0 = k · σ, (19)

Qz = (k × σ )z, (20)

Gv = kxσx − kyσy, (21)

Gxy = kxσy + kyσx, (22)
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TABLE II. Correspondence between active odd-parity multi-
poles among magnetic, magnetic toroidal, electric, and electric
toroidal multipoles under the square SkX. The functional form of
the antisymmetric spin splitting in momentum space kμσν and the
magnetocurrent tensor components α̃μν are also shown.

Correspondence kμσν α̃μν

M0 ↔ Qz kxσy − kyσx α̃xy = −α̃yx

Tz ↔ −G0 −kxσx − kyσy α̃xx = α̃yy

Mv ↔ −Gxy −kxσy − kyσx α̃xy = α̃yx

Mxy ↔ Gv kxσx − kyσy α̃xx = −α̃yy

where k is the wave vector and σ is the spin. We consider the
expression of k → 0 for simplicity. As the active multipoles
depend on the helicity of the SkXs, the different types of
the antisymmetric spin splitting occur according to the dif-
ferent helicity. Such a different k-resolved spin polarization
can be detected by the spin- and angle-resolved photoe-
mission spectroscopy measurements. In other words, the
spin- and angle-resolved photoemission spectroscopy mea-
surements are one of the probes for the helicity through the
k-resolved spin polarization.

In addition, the active odd-parity electric and electric
toroidal multipoles lead to the Edelstein effect where the mag-
netization Mμ is induced by the electric current Jν in metals:
Mμ = ∑

ν α̃μνJν (α̃ represents the magnetocurrent tensor).
The nonzero α̃μν is related with four odd-parity multipoles
in Eqs. (19)–(22), which is obtained by replacing (M, T ) in
Eqs. (15)–(18) with (G, Q) [112]:

α̃xx = G0 + Gv, (23)

α̃yy = G0 − Gv, (24)

α̃xy = Gxy + Qz, (25)

α̃yx = Gxy − Qz. (26)

Similar to (M0, Tz, Mv, Mxy), active G0 and Gv induce the
longitudinal Edelstein effect, while active Qz and Gxy induce
the transverse one. The correspondence between four types
of odd-parity multipoles and its relation to the antisymmetric
spin splitting and the magnetocurrent tensor are summarized
in Table II.

It is noted that the present antisymmetric spin-split band
structure in the SkX is caused by the magnetic phase transi-
tions rather than the antisymmetric spin-orbit coupling in a
noncentrosymmetric lattice structure. There, the noncollinear
magnetic texture plays an important role in inducing the an-
tisymmetric spin-split band structure [135–137]. Indeed, it
was shown that the spin textures with the chiral-type bilin-
ear spin product Sq × S−q, which becomes nonzero in the
spiral spin texture, are related to the appearance of the an-
tisymmetric spin splitting [138]. For example, the SkX spin
texture in Eq. (9), which possesses Mxy + Mv , has nonzero
SQ1

× S−Q1
and SQ2

× S−Q2
, which leads to kxσx − kxσy and

−kyσx − kyσy, respectively. In other words, the SkX shows
the antisymmetric spin splitting in the form of (kx − ky)σx +

FIG. 10. θ dependences of (a), (c) Mμ, (χ0)2, (b), (d) mμ

Q1
, and

mμ

Q2
for μ = x, y, z at H = 0.75, K = 0.3, Iz = 1.2, Ixy = 0.05, and

Iv = 0 for (a), (b) φ = 0 and (c), (d) φ = π/4.

(−kx − ky)σy = Gv − Gxy, which is consistent with the above
multipole argument.

D. Stability of skyrmion crystal in a rotated field

Finally, let us discuss the stability of the square SkX in a
magnetic field rotation, i.e., θ �= 0. We consider two cases in
a rotating field, φ = 0 and π/4, while changing θ . We first
discuss the situation with Ixy = 0.05 and Iv = 0. The other
model parameters are taken at H = 0.75, K = 0.3, and Iz =
1.2, where the square SkX is stabilized for θ = 0 as discussed
in Sec. III A.

Figures 10(a) and 10(b) show the θ dependences of the
magnetization Mμ and the scalar chirality (χ0)2 and the Qη

component of the magnetic moment mμ

Qη
for μ = x, y, z, re-

spectively. When the magnetic field is tilted from θ = 0 to the
x direction (φ = 0), (χ0)2 gradually decreases in Fig. 10(a). In
addition, mμ

Qη
perpendicular (parallel) to the x axis increases

(decreases) to gain the Zeeman energy, as shown in Fig. 10(b).
Thus, the SkX is deformed in a rectangle way. While increas-
ing θ , the SkX is replaced by the other double-Q state at
θ � 24◦. Although this double-Q state seems to have similar
mμ

Qη
to the SkX, but this state does not have (χ0)2; the local

scalar chirality is distributed in a checkerboard way, where
the real-space spin and chirality configurations are shown
in the left and right panels of Fig. 11, respectively. With a
further increase of θ , the amplitude of mμ

Q1
and mμ

Q2
becomes

different for θ � 63◦. This anisotropic double-Q state exhibits
a nonzero net magnetization along the y direction, as shown
in Fig. 10(a), which is owing to the inequivalence between the
Q1 and Q2 components of spins under the in-plane magnetic
field.

Meanwhile, when the magnetic field is tilted from the z di-
rection to the [110] direction (φ = π/4), there are no isotropic
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FIG. 11. Left: Snapshots of the spin configurations at θ = 45◦

and φ = 0. The direction and the color of the arrows represent the xy
and z components of the spin moment, respectively. Right: Snapshots
of the scalar chirality configuration χi calculated from the left panel.

double-Q states while varying θ , as shown in Figs. 10(c) and
10(d). The intensities of mμ

Q1
and mμ

Q2
become different for

infinitesimally small θ . It is noted that the x and y components
of Mμ and mμ

Qη
show the same behavior, as we only consider

the anisotropic magnetic interactions Ixy.
Next, we discuss the case for Ixy = Iv = 0.05, where the

results for φ = 0 and π/4 are shown in Figs. 12(a), 12(b)
and Figs. 12(c), 12(d), respectively. In both cases for φ = 0
and π/4, a single phase transition occurs from the SkX to
the anisotropic double-Q state, which is similar to the result
in Fig. 10(d). In other words, the isotropic double-Q state
shown in Fig. 11 does not appear for Ixy = Iv = 0.05. As both
[100] and [110] directions are not high-symmetry lines in the
presence of both Ixy and Iv , the in-plane magnetizations Mx

and My are different from each other.

IV. SUMMARY

To summarize, we have investigated the effect of mag-
netic anisotropic interactions that originate from the lacking
of the mirror symmetry in the centrosymmetric tetragonal
crystal systems on the formation of the square SkXs. Through
the analyses by the simulated annealing for the effective
spin model with the bilinear and biquadratic interactions
in momentum space on the two-dimensional square lattice,
we mainly discussed two important features in the present
system: One is that the anisotropic interaction in the form
of Ixy(Sx

Qη
Sy

−Qη
+ Sy

Qη
Sx

−Qη
) can be a microscopic origin of

the square SkX in centrosymmetric itinerant magnets. The
other is that the helicity of the SkXs is fixed by two types
of anisotropic interactions, Ixy and Iv . We have shown that
different types of active odd-parity multipoles appear for the
different helicity, where odd-parity magnetic and magnetic
toroidal multipoles are related to the linear magnetoelectric
effect and odd-parity electric and electric toroidal multipoles
are related to the antisymmetric spin-split band structure and
the Edelstein effect. We have also discussed the stability and
the related phase transitions of the SkXs in the magnetic field
rotation. We found the isotropic double-Q state without the
net scalar chirality in the [101] magnetic field when Iv = 0.

The helicity locking of the magnetic skyrmion in cen-
trosymmetric magnets with the anisotropic interactions can
extend the scope of the application to the skyrmion-based

FIG. 12. θ dependences of (a), (c) Mμ, (χ0)2, (b), (d) mμ

Q1
, and

mμ

Q2
for μ = x, y, z at H = 0.75, K = 0.3, Iz = 1.2, Ixy = 0.05, and

Iv = 0.05 for (a), (b) φ = 0 and (c), (d) φ = π/4.

racetrack memories. Our results regarding the helicity locking
in the presence of magnetic anisotropy can be applied to the
isolated skyrmion, which is important from the viewpoint
of practical applications [17,19]. One of the challenges for
the application is to realize the situation where the skyrmion
moves in a parallel direction to an external electric cur-
rent without moving to the perpendicular direction like the
skyrmion Hall effect. Although such a situation has been usu-
ally discussed in antiferromagnetic skyrmions [139,140], our
result indicates that the lattice systems without vertical mirror
symmetry might be an alternative system by avoiding the
skyrmion Hall effect based on the helicity degree of freedom.
In fact, such an attempt of controlling the skyrmion transport
by using the helicity degree of freedom has been studied in
noncentrosymmetric systems [141], which can be extended to
the centrosymmetric systems in the present model. The candi-
date materials are GdRu2Si2 [96,101,142], EuAl4 [143–145],
EuGa4 [145,146], and EuGa2Al2 [147], where the square SkX
was observed and suggested in experiments. Since the crystal
structures in these compounds belong to the D4h point group,
the symmetry lowering by external stimuli, such as chemical
doping, is required [42].

The present result provides a further possibility of the SkXs
induced by the anisotropic interactions that arise from the
mirror symmetry breaking. The similar SkX and its helicity
locking can be expected to occur in the hexagonal point group
C6h. Furthermore, although we have shown that the different
helicity in the SkXs leads to different physical phenomena,
a similar argument would hold for the different multiple-Q
states with the helicity degree of freedom, which are stabilized
by the anisotropic interactions, such as the hedgehog lattice
[148] and meron-antimeron crystal [149].
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