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Experimental and theoretical studies of the magnetoelectric properties of a series of Fe langasite multiferroics
(Ba3NbFe3Si2O14, Ba3TaFe3Si2O14, and Sr3TaFe3Si2O14) with planar triangular spiral magnetic structure and
double chiral magnetic order have been carried out. Magnetic field induced electric polarization is observed to
emerge in the basal ab∗ plane of the trigonal crystal, depending on both the magnitude (up to 60 T) and orientation
of the magnetic field. Remarkably, the induced polarization is very sensitive to the projection of the field onto
the c axis, with a sharp increase in polarization found for small deviations of the field from the basal plane and
the sign of polarization determined by the direction of the field deviation. At high magnetic fields, the electric
polarization behavior changes qualitatively and strongly depends on the magnetic field orientation. A detailed
group theoretical analysis of the magnetic and magnetoelectric properties of Fe langasites is presented, and a
relationship between the polarization and magnetic order parameters in an external magnetic field is established.
We show that, in a magnetic field, the spiral magnetic structure is rotated and canted with respect to the original
structure under zero field. The competition between these two processes, rotation and canting, strongly depends
on the magnetic field orientation, and determines the polarization behavior. We propose a simplified description
of the Fe langasites’ triangular spiral magnetic structure at low temperatures and with saturated moments,
characterized by the spiral plane orientation and the field-induced magnetization only. We establish that, at weak
fields, the appearance of polarization occurs mainly due to the reorientation of the magnetic spiral (analogous to
a spin-flop transition) and could be explained by the inverse Dzyaloshinskii-Moriya interaction. At high fields
(above 8 T), the polarization change occurs via canting of the magnetic spiral, owing to Fe-Fe exchange and
single-ion contributions.

DOI: 10.1103/PhysRevB.105.104424

I. INTRODUCTION

In recent years multiferroic materials with coexisting, dif-
ferent types of orderings (i.e., electric, magnetic, etc.) have
been intensively studied [1–5]. They offer a possibility to
change electric polarization by magnetic field or, conversely,
to control magnetic properties by applying electric field [6–8].
The magnetoelectric effect can be used in spintronics for
highly efficient control of magnetization by external electric
field since no energy losses for the creation of a magnetic field
by electric current are involved. However, most commonly,
electric and magnetic properties are weakly coupled with each
other and rarely coexist in the same material [2,9]. There-
fore, the search for multiferroics with strong magnetoelectric
coupling remains a challenge. Compounds belonging to the
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so-called group of langasites La3Ga5SiO [10] are interesting
materials in this respect. They also exhibit large piezoelectric
and nonlinear optical effects [11–13].

Recently, iron-containing langasites (Ba3NbFe3Si2O14,
Ba3TaFe3Si2O14, and Sr3TaFe3Si2O14), which are emerging
as a new class of compounds exhibiting magnetoelectric prop-
erties [14,15], were synthesized. They have attracted attention
due to their nontrivial magnetic structure and the presence of
magnetoelectric effect [16–18].

The Fe-langasite structure belongs to the noncentrosym-
metric Р321 space group. The only magnetic ions Fe3+ with
spin S = 5/2 occupy three nonequivalent positions 3 f of C2

symmetry, with local twofold axes at 120° to each other and
lying along the crystallographic directions a, b, and –a–b
[Fig 1(a)]. Below TN = 27 K, they order antiferromagnetically
into a structure with double chirality. The structure is charac-
terized by (a) in-plane (in ab) rotation of spins in positions
1, 2, and 3 with anticlockwise or clockwise rotation angles
∈T 2π/3, where ∈T = ±1 specifies the direction of rotation
in a “triangular” structure [Fig. 2(a)] [19], and (b) rotation of
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FIG. 1. (a) The left-handed [14] crystal structure of
Ba3NbFe3Si2O14 in projection on the basal plane (ab); the red
dashed lines represent the paths of in-plane exchange interactions
J1 and J2 between Fe3+ ions. (b) The interplanar Fe-Fe exchange
interactions J3, J4, and J5 are represented in red, blue, and green,
respectively (for the left-handed crystal J5 > J3 and corresponding
parameter ∈St = sign(J5–J3) = +1).

the spins along the c axis with a wave vector k ≈ (0, 0,±1/7)
[Fig. 2(b)] [14,15,20].

In exchange approximation, the Hamiltonian H =∑
mν,lμJmνlμSν (k, rm)Sμ(k, rl ) (where ν and μ are the

in-plane unit cell position numbers, and m and l are the
unit cell numbers), and also the interaction between magnetic
Fe3+ ions is described by five exchange interactions J1, . . . , J5

[14,15]. The superexchange interaction J1 occurs through one
O2– atom, while J2, . . . , J5 occur through two O2– atoms and
are of super-superexchange type. The in-plane interactions
J1 and J2 [Fig. 1(a)] are the strongest (J1 ≈ 1.6 meV and
J2 ≈ 0.31 meV [21]), and minimization renders a 120°
(triangular) arrangement of the in-plane spins [Fig. 2(a)].
The three nonequivalent interplane interactions J3, J4, and

FIG. 2. (a) Magnetic structure of Fe3+ ions in left-handed
(∈St = 1) crystal Ba3NbFe3Si2O14 for the three Fe positions 1, 2, and
3 in the ab plane placed at angle −120 ◦ (∈T = –1, right) or +120°
(∈T = 1, left), and (b) imaginary (B′′

i ) and real (B′
i) components of

vectors B1 and B2. (c) General view of moment’s distribution in the
three nonequivalent positions for ∈T = 1, ∈H = –1 with the corre-
sponding envelope curves, which form a planar triangular magnetic
spiral with a wave vector k ≈ (0, 0, 1/7∈H ).

J5 [Fig. 1(b)] are responsible for the incommensurate spiral
structure along the c axis, with a wave vector k ≈ (0.0,±1/7)
[Fig. 2(b)].

Besides the strong exchange interactions, there are also
weaker magnetic interactions in the Fe langasites, which lead
to additional distortions of the magnetic structure. It was
shown [22] that local (single-ion) anisotropy exists at the
3 f positions of the Fe3+ ions with an easy axis along the
second-order axes a, b, and –a–b. It leads to a distortion of
the magnetic spiral (spin bunching) and influences the mag-
netic chirality [19]. Dzyaloshinskii-Moriya interaction is also
present in the Fe langasites [21,23] which results in deviation
of magnetic moments from the basal plane at low temper-
atures and additional modulation of the magnetic structure
along the c axis, called a “helical butterfly” [24].

The Fe-langasite space group is compatible with mag-
netoelectric effect existence, as reported in several works.
Nevertheless, recent studies turned out to be contradic-
tory. The authors of [14] reported spontaneous polarization
(∼9 μC/m2) along the c axis; this value was supported also
by density functional theory (DFT) calculations [25]. How-
ever, the spontaneous polarization was not confirmed by other
studies. In particular, electric polarization was found only as
induced by magnetic field in the ab plane or at small devi-
ations from it [16,26]. The effect was attributed [26] to the
inverse Dzyaloshinskii-Moriya interaction [27]. On the other
hand, in a recent paper [28], was pointed out that the field-
induced polarization in the basal plane is related to structural
chirality, as well as to the distortions of the 120° magnetic
structure by the field and the long-wave modulation of the
spins in the basal plane. Thus, there are certain contradictions
in the known experimental data on the magnetoelectric effect
in Fe langasites. There is still no univocal understanding of
its mechanisms and the conditions for its manifestation in the
field and the orientation properties of the electric polarization.

In this article, we investigate magnetoelectric properties
of Ba3NbFe3Si2O14, Ba3TaFe3Si2O14, and Sr3TaFe3Si2O14

single crystals in a wide range of magnetic fields (up to 60 T).
A strong dependence of magnetoelectric properties on the
field orientation relative to the crystallographic axes is estab-
lished. Based on a phenomenological approach, which takes
into account the crystal symmetry, we propose a simplified
description of Fe langasites’ complex spiral magnetic struc-
ture. We describe spiral structure evolution in the magnetic
field, and analyze the mechanisms of field-induced electric
polarization. Since the preliminary studies indicated that all
the magnetoelectric features of the three langasites under
study are practically the same, Ba3NbFe3Si2O14 was studied
in more detail and reported as representative.

II. METHODS

Ba3NbFe3Si2O14, Ba3TaFe3Si2O14, and Sr3TaFe3Si2O14

single crystals were grown by floating-zone melting with
radiation heating [29,30]. The x-ray analysis confirmed the
presence of a single-phase structure belonging to the P321
space group; the orientation of the crystals was determined
by the Laue method. The magnetic properties were studied
by the MPMS-50 (Quantum Design) in fields up to 5 T and
at temperatures from 2 to 300 K. Pyroelectric studies were
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FIG. 3. Temperature dependences of DC susceptibility in
Ba3NbFe3Si2O14 along the crystallographic directions b∗ (red sym-
bols) and c (blue symbols) measured in field μ0H = 0.1 T. The
susceptibility along the a axis coincides with the one along the b∗

axis. Inset: inverse susceptibility along b∗ (red) and c (blue) axes as
a function of temperature in a wide range.

performed using a Keithley 6517A electrometer in static fields
(in an electromagnet up to 1.4 T, in MPMS up to 5 T, and in
a cryocooler cryogen-free system up to 8 T). Magnetoelectric
measurements were also carried out in pulsed fields up to 60 T
with a pulse duration of 200 ms at the Dresden High Magnetic
Fields Laboratory. Dielectric polarization P was measured by
a pyroelectric technique [31]. The pyrocurrent was captured
through the voltage variation in a shunt resistor connected in
series with the measurement circuit by a digital oscilloscope
Yokogawa DL750 with a high sampling rate of 1 MS s–1 and
a resolution of 16 bits. Then P was calculated by integrating
the pyrocurrent numerically. The accuracy of the sample’s
orientation in the high field experiment was about 2°–5°. No
effect on the electric polarization was observed when cooling
the samples from temperatures exceeding TN in an external
electric field. Therefore, all measurements were performed
without poling the samples.

III. EXPERIMENT

Temperature dependence of the DC susceptibility χ =
σ/H measured in a field of 0.1 T for Ba3NbFe3Si2O14 is
shown in Fig. 3. It demonstrates an anomaly at TN ≈ 27 K
above which the magnetic susceptibility obeys the Curie-
Weiss law and does not show anisotropy, while below TN

the anisotropy of the susceptibility in the basal plane and
along the c axis is noticeable. The susceptibility anisotropy
decreases with increasing magnetic field, as illustrated by the

FIG. 4. Magnetization curves along c axis (blue), a axis (black),
and b∗ (red) at 2 K. Symbols: experiment; lines: model simulations
(see text). Magnetization along a and b∗ axes practically coincide.

magnetization curves σ (H ) measured at temperatures T < TN

(Fig. 4). In a field applied within the basal plane σ (H ) remains
linear, while for H ||c there is a slight deviation from the
linear dependence in fields H<2 T. The results agree with the
previously published data [15,16].

No spontaneous electric polarization was observed along
the main crystallographic directions (a, b∗, c) by pyro-
electric temperature measurements (within an accuracy of
∼1 μC/m2) at 2 K.

Measurements of the angular dependences of the electric
polarization in a small magnetic field of about 1.4 T allowed
finding the symmetry conditions for inducing it. In particular,
the polarization along the a axis (Pa) emerges when the field
H rotates in the b∗c plane and is proportional to sin(2θH )
[Fig. 5(a)], where θH is an angle between the H direction and
the ab∗ plane. Pa is absent (with an accuracy of ∼0.1 μC/m2)
when H rotates in the ab∗ and ac planes. Similarly, the po-
larization in the orthogonal direction Pb∗ ∼ sin(2θH ), but it
appears when H is in the orthogonal ac plane [Fig. 5(b)] and
is absent when H rotates in the ab∗ and b∗c planes. In this
field range the observed values of Pa and Pb∗ are proportional
to the square of the magnetic field [Fig. 5(c)]. As to the polar-
ization along the c axis, it is absent (within the experimental
accuracy) for all orientations of the field.

Considering the spiral magnetic structure in the stud-
ied system, the inverse Dzyaloshinskii-Moriya interaction
emerges as one of the possible mechanisms behind the
observed magnetoelectric effect. According to Ref. [7], it
determines the electric polarization P ∼ n × k, where k =
(0, 0, k) is the wave vector of the magnetic helix, and n ∼
Si × Si+1 is the spin-rotation axis being normal to the spin
helix plane, determined by its chirality (Si and Si+1 are the
spins of Fe in the i and i + 1 helix planes). Since n||k in
H = 0, there is no spontaneous polarization, and a deviation
of n from k (c axis) is required for it to appear. Due to the
absence of net magnetic moment, the spin-rotation axis n does
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FIG. 5. Angular dependencies of the electric polarization P (a) along a axis in magnetic field applied in b∗c plane, and (b) along b∗ axis
in field within ac plane [black points: experiment; red lines: fit by sin(2θH ), where θH is the angle between the field and the basal plane].
The applied field is ∼1.4 T and temperature is 4.2 K. (c) Pa and Pb∗ components of polarization versus square of magnetic field applied along
different directions indicated in the insets.

not deviate from the c axis in small fields, either for H ||c or
H⊥c. Deviation of n (i.e., nx,y appearance) could occur only
in the presence of both Hz and Hx,y field’s components, which
provide torque due to the anisotropy of the magnetic suscepti-
bility parallel (χ||) and perpendicular (χ⊥) to the plane of the
spin spiral and nonzero �χ = χ⊥–χ||. On the other hand, the
crystallographic magnetic anisotropy KS2

zi stabilizes the basal
ab∗ plane and opposes the deviation. Therefore, the plane
deviation is determined by the balance of these two factors,
nx,y ∼ �χHzHx,y/K . Thus, when the helix spin-rotation axis
n deviates from the wave vector, polarization Px ∼ nyk ∼
HyHzk and Py ∼ –nxk ∼ –HxHzk appears and produces the
observed angular dependence ∼H2sin2θH (Fig. 5). In addition
to inverse Dzyaloshinskii-Moriya interaction, the noncen-
trosymmetric trigonal crystal lattice symmetry of the Fe
langasites allows a magnetic field induced quadratic contribu-
tion to the electric polarization (analogous to pd hybridization
[32–34]). Such mechanism is not directly associated with
the magnetic structure and was previously observed in trigo-
nal rare-earth iron borates [35], aluminum borates [36], and
recently in rare-earth langasites [37]. In these systems, an
external magnetic field induces electric polarization, which
manifests itself in the quadratic magnetization terms Px ∼
β1MyMz + β2(M2

x − M2
y ), Py ∼ –β1MxMz–2β2MxMy, where

M = (Mx; My; Mz ) is the magnetization of the system, and
β1 and β2 are magnetoelectric constants [35,36]. Since in
low fields Mx,y,z ∼ Hx,y,z, the terms β1MyMz and –β1MxMz

will be proportional to H2sin(2θH ), which is also in agree-
ment with the observed angular dependences. According to
the experimental dependences [Figs. 5(a) and 5(b)], the role
of the terms β2(M2

x − M2
y ) and –2β2MxMy, having another

angular dependence ∼cos2θH , is insignificant in weak fields.
Thus, the angular dependences of polarization in small fields
are qualitatively consistent with both mechanisms described
above (i.e., the inverse Dzyaloshinskii-Moriya interaction and
field-induced magnetization). Hence, high field measurements
are required for their separation.

The electric polarization features obtained in weak fields
were confirmed in fields up to 8 T. In particular, the polariza-
tion along the c axis (Pc) was negligible for all directions of
the magnetic field. No polarization along the a and b∗ axes

was observed (within the accuracy of ∼0.2 μC/m2) for the
field along the c axis.

Electric polarization, measured along the a or b∗ axes, is
found to be very sensitive to the presence of the external
magnetic field component along the c axis (Fig. 6). With
slight controlled deviations of the magnetic field from the
basal plane at nominal angles (accuracy in orientation ≈ ±3◦),
θH = +9◦ and –3◦ in Figs. 6(a) and 6(b), the polarization
remains small up to critical fields of about 4–6 T, after which
a sharp increase up to values over 8 μC/m2 occurs. This is
associated with the magnetic spiral reorientation to the direc-
tion almost perpendicular to the magnetic field (see below).
In small fields, deviated from the basal plane by nominal
angles θH ∼ ±45◦, the polarization quadratically increases
while its field dependence changes above ∼5 T. This feature
could be associated with a change of interrelation between
the two contributions, i.e., the inverse Dzyaloshinskii-Moriya
interaction determined by the orientation of the spin helix
and the field-induced magnetization β1MyMz and –β1MxMz

[Figs. 6(a)–6(c)].
We note that for all studied geometries Pa(Hb∗θc)

[Fig. 6(a)], Pb∗(Haθc) [Fig. 6(b)], and Pa(Ha45b∗θc) [Fig. 6(c)]
the relation P(θH ) ≈ –P(–θH ) is fulfilled in fields up to 6
Т; i.e., when the magnetic field projection on the c axis
changes sign, the polarization sign also changes. This results
from the change of the magnetic helix plane reorientation
direction. Above 6 T, this rule is somewhat violated for nom-
inal angles θH = +45◦ and –45◦ in the Pa(Hb∗θc) geometries,
since there is a slight asymmetry in the polarization curves.
At lower nominal angles θH = +9◦ and –3◦, the Pa(Hb∗θc)
curves [Fig. 6(a)] become very different from the Pb∗ (Haθc)
ones [Fig. 6(b)], which Is due to the quadratic contribution
β2(M2

x − M2
y ). We obtained more symmetric dependences [see

Fig. 6(c), θH = ±5◦] for the Pa(Ha45b∗θc) geometries where
the field projection lies along the diagonal of the ab∗ plane
(Mx = My) and the contribution β2(M2

x − M2
y ) to the polariza-

tion is absent.
In pulsed fields up to 60 T, we found stronger contributions

to polarization associated with the induced magnetization.
It is primarily manifested in the violation of the relation-
ship P(θH ) ≈ –P(–θH ) and qualitative changes in the field
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FIG. 6. Dependencies of the a and b∗ components of the electric polarization on magnetic field H in different orientations with respect to the
crystal axes (T = 9 K): (a) Pa(Hb∗θc ), (b) Pb∗ (Haθc ), (c) Pa(Ha45b∗θc ). The cumbersome subscript in the magnetic field denotes its orientation,
for example, Ha45b∗θc indicates that the field deviates from the ab∗ plane at an angle θH towards the c axis in the vertical plane crossing
the ab∗ plane at an angle of 45° to the a axis. Note that the values θH are nominal (accuracy in orientation ≈±3°). The insets show the
corresponding orientations of the magnetic field vector and the polarization. At small deviations of the field from the basal plane, a sharp
increase of polarization occurs which is associated with the triangular spiral magnetic structure reorientation perpendicular to the field. Solid
lines: experiment; dotted lines: model simulations (see text).

dependences [Figs. 7(a)–7(c)]. This is most clearly seen in the
Pa(Hb∗±10c) geometries, for which the quadratic contribution
β2(M2

x − M2
y ) leads to a drastic decrease (up to –170 μC/m2)

of the polarization, regardless of the magnetic field projection
(±10°) [Fig. 7(a)]. On the contrary, we expected symmetric
curves for geometries Pa(Ha45b∗±10c) when the field projection

lies along the diagonal of the ab∗ plane (Mx = My), and this
quadratic contribution should be absent. However, there is
still quadric contribution in polarization [Fig. 7(b)], which
we attribute to slight field deviation from the diagonal of the
ab∗ plane due to possible sample misalignment. Interestingly,
the contributions associated with the induced magnetization

FIG. 7. Dependencies of the electric polarization on a pulsed magnetic field up to 60 T in different orientations with respect to the
crystallographic axes (T = 1.4 K): (a) Pa(Hb∗±10c ), (b) Pa(Ha45b∗±10c ), and (c) Pa(Ha45b∗±45c ), where notations of the complex subscript in
the magnetic field are similar to ones in the Fig. 6 caption. The insets show the corresponding orientations of the magnetic field and the
polarization. Solid lines: experiment; the dashed lines: model simulations (see text).
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strongly depend on the field deviation θH from the basal plane
[Figs. 7(b) and 7(c)].

Thus, we revealed qualitatively different behavior of the
polarization depending on the orientation and magnitude of
the magnetic field. It could be due to a competition between
different contributions associated with a reorientation of the
spiral spin structure (via inverse Dzyaloshinskii-Moriya inter-
action) and the field-induced magnetization.

IV. THEORY AND DISCUSSION

In this section, we will introduce magnetic order pa-
rameters describing the evolution of the magnetic structure
of Fe langasites in a magnetic field. Next we construct a
nonequilibrium phenomenological thermodynamic potential,
the minimum of which gives the equilibrium value of the or-
der parameters, and analyze the magnetization curves. Then,
based on the symmetry of the system, the relationship of
the electric polarization in the ab∗ plane (Px,y) and the order
parameters is established and the observed dependences of
polarization in the magnetic field are analyzed. A simplified
(reduced) description of the Fe langasites’ behavior in the
low temperature region, when the magnetic moments are sat-
urated, is proposed.

A. Magnetic order parameters

Fe-langasite crystal structure belongs to the P321 non-
centrosymmetric space group. Fe3+ magnetic ions (spin 5/2)
occupy three nonequivalent 3 f positions in the basal plane
[14,15]. Each of these positions is characterized by a spin
Sν (k, rm) where ν = 1, 2, 3 determines its site in the triangle;
rm is a position of triangle m along the c axis (Fig. 2); and
k = (0, 0, k) is a wave vector of the spin helix.

Dominant isotropic exchange interactions form a helicoidal
magnetic structure with a wave vector k in Fe langasites
[14], [15]. Thus, the spin of the magnetic helix plane rm is
represented as a Fourier transformation with a given wave
vector: Sν (k, rm) = Svkeikrm + S∗

vke−ikrm [38,39]. In general,
taking into account three nonequivalent positions ν, the sys-

tem is characterized by 18 order parameters: imaginary and
real components of the vectors Sνk.

To describe the magnetic behavior of the Fe langasites
in a frame of k vector’s little group, it is convenient to use
symmetrized combinations of the spin order parameters S1k,
S2k, S3k in three nonequivalent sites (spirals), namely, ferro-
(F) and antiferromagnetic (B1,2) vectors:

F = S1k + S2k + S3k,

B1 =
√

3(S1k − S2k),

B2 = S1k + S2k − 2S3k. (1)

Taking into account the spiral magnetic structure, we intro-
duce a cyclic coordinate system. In this case, the νth position
spin’s Fourier component is represented as

Sνk = Sνk(+1)e+1 + Sνk(0)e0 + Sνk(−1)e−1, (2a)

where e+1 = –(ex–iey)/
√

2, e0 = ez, e–1 = (ex + iey)/
√

2
are covariant unit vectors in terms of orthogonal ones
ex,y,z, and Sνk (+1) = –(Sνk (x) + iSνk (y) )/

√
2, Sνk(0) = Sνk (z),

Sνk (–1) = (Sνk (x)–iSνk (y) )/
√

2 are contravariant spin compo-
nents in terms of their usual components Sνk(x,y,z) in an
orthogonal coordinate frame [40]. Symmetrized order pa-
rameters F, B1 B1, and B2 have a similar form in a cyclic
coordinate system.

Table I, obtained using the Bilbao crystallographic server
[41], represent the order parameters F, B1, and B2 transfor-
mation properties in the k = (0, 0, ± k) group, which include
the symmetry elements {3c} and {2a}. We note that exactly
ferromagnetic components,

F(0)e0 =
∑

ν

Sνk(z)ez,

F(±1)e±1 = 1

2

∑
ν

(Sνk(x) ± iSνk(y) )(ex ∓ iey), (2b)

and combinations of the antiferromagnetic vectors compo-
nents,

(B2 ± iB1)(0)e
0 = [(S1k(z) + S2k(z) − 2S3k(z) ) ± i

√
3(S1k(z) − S2k(z) )]ez

(B2 ± iB1)(±1)e
±1 = 1

2
[{(S1k(x) + S2k(x) − 2S3k(x) ) ± i(S1k(y) + S2k(y) − 2S3k(y) )}

± i
√

3{(S1k(x) − S2k(x) ) ± i(S1k(y) − S2k(y) )}](ex ∓ iey), (2c)

in a cyclic basis transform according to three different two-dimensional representations, DT1–DT3.
We consider the main types of magnetic structures arising in exchange approximation. Based on Table I, one can find

invariant quadratic combinations of the order parameters F and B1,2 and construct the thermodynamic potential in the exchange
approximation:

	0 = αM |F|2 + β+[|(B2 + iB1)(+1)|2 + |(B2 + iB1)(−1)|2 − |(B2 + iB1)(0)|2]

+ β−[|(B2 − iB1)(+1)|2 + |(B2 − iB1)(−1)|2 − |(B2 − iB1)(0)|2] + · · ·
= αM |F|2 + (β+ + β−)(|B1|2 + |B2|2) + i(β+ − β−)(B1B2

∗ − B1
∗B2) + · · · , (3)

where αM , β± are phenomenological constants. Thus, in ex-
change approximation, the order parameters F and B1,2 are
independent and correspond to two spin structures in the

group of wave vector k. One (with F �= 0 and B1,2 = 0)
corresponds to the helicoidal structures in three nonequivalent
positions of Fe3+ with a parallel spins orientation in the spiral
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TABLE I. Irreducible (two-dimensional) representations of the k = (0, 0, ± k) wave vector group of the Р321 space group and transforma-
tion properties of the symmetrized combinations F = S1k + S2k + S3k, B1 = √

3(S1k–S2k ), B2 = S1k + S2k–2S3k of spin Fourier components
and their complex conjugated parts in 3 f sites. The complex components F, B2 ± iB1 are given in a cyclic basis. The last column represents
these order parameters in a frame of reduced description in terms of the polar (ω) and azimuthal (ϕ) angles of the real part of B2 for
the left-handed enantiomorphic crystal modification with J5 > J3 and the triangular chirality ∈T = +1 that determines the helix chirality
∈H = –∈T ∈St ; a = exp[2π i/3] and a∗ = exp[–2π i/3].

Parametrized B2 + iB1 in
cyclic basis for the

Matrices of the F components B2 ± iB1 components certain chiral state
representations of the group in cyclic basis in cyclic basis (∈H = –∈T = –1), for

Repr. E 3+ 2a F B2 − iB1 B2 + iB1 which B2 − iB1 = 0

DT1

(
1 0
0 1

) (
1 0
0 1

) (
0 1
1 0

) (
F

−F ∗

)
(0)

(
B2 − iB1

(B2 − iB1)∗

)
(−1)

(
B2 + iB1

(B2 + iB1)∗

)
(+1)

−3S(1 + sin ω)

(
eiϕ

e−iϕ

)
(+1)

DT2

(
1 0
0 1

) (
a 0
0 a∗

) (
0 1
1 0

) (
F
F ∗

)
(+1)

(
B2 − iB1

−(B2 − iB1)∗

)
(0)

(
B2 + iB1

(B2 + iB1)∗

)
(−1)

−3S(1 − sin ω)

(
e−iϕ

eiϕ

)
(−1)

DT3

(
1 0
0 1

) (
a∗ 0
0 a

) (
0 1
1 0

) (
F
F ∗

)
(−1)

(
B2 − iB1

(B2 − iB1)∗

)
(+1)

(
B2 + iB1

−(B2 + iB1)∗

)
(0)

3S
√

2 cos ω

(
1

−1

)
(0)

plane (“ferromagnetic” state). Another one, with B1,2 �= 0
and F = 0, represents a triangular helicoidal structure with
a 120° phase shift in each plane for the three nonequivalent
positions. Note that the symmetry of the system allows for
the coexistence of antiferromagnetic and ferromagnetic com-
ponents. However, such components are determined by the
weaker exchange-relativistic interactions. For this reason, in
what follows we will omit them.

Taking into account the existing data for the hierarchy of
in-plane (J1,2) and interplane exchange interactions [14,15],
see Fig. 1, we consider the exchange Hamiltonian to specify
the magnetic structure and the parameters of the thermody-
namic potential (3). Using Fourier components of the spins
and expressing them in terms of the order parameters (1), we
represent the exchange part of the thermodynamic potential at
T = 0 (per one magnetic ion) in the form

	exch = 4

9
[(J1 + 2J2) + (J3 + J4 + J5) cos kz]|F|2 − 1

9
[(J1 + 2J2) + (J3 + J5 − 2J4) cos kz](|B1|2 + |B2|2)

− i

√
3

9
(J3 − J5) sin kz(B1B∗

2 − B∗
1B2). (4)

Here, the exchange energy depends on the order parameters F and B1,2 as obtained in Eq. (3), and also on the wave vector k =
(0, 0, kz ), the equilibrium value of which should minimize Фexch. As a result, the helix equilibrium configuration is determined
by the angle of rotation kz along the c axis:

tgkz = −
√

3i(J5 − J3)(B1B∗
2 − B∗

1B2)

(J3 + J5 − 2J4)(|B1|2 + |B2|2) − 4(J3 + J4 + J5)|F|2 ≈ −
√

3(J5 − J3)

(J3 + J5 − 2J4)
εT . (5)

Thus, the values of the exchange interactions J1, . . . , J5, and the order parameters determine the wave vector. The wave vector
depends on the stability of a particular structure. For instance, the minimum energy for F �= 0 and B1,2 = 0 corresponds to a
magnetic structure with a wave vector k = 0. Next, we will discuss another case: F = 0 and B1,2 �= 0 and k �= 0, which occurs
in Fe langasites.

One can consider the spins (magnetic moments) saturated up to the value of S at low temperatures. Then their values,

S2 = |Sν (k, rm)|2 = (
S+

νkS′′2
νk

) + 2
(
S′2

νk − S′′2
νk

)
cos (2krm) + 2S′

νkS′′
νk sin (2krm), (6)

should be preserved. At such condition, imaginary and real
parts of spins are orthogonal, S′

vkS′′
vk = 0, and their moduli

are equal, S′2
vk = S′′2

vk = S2/2.
Taking into account that in Fe langasites all exchange

interactions are antiferromagnetic (Ji > 0) as well as J1 +
2J2 > (J3 + J4 + J5)coskz [22,21], one can conclude that the
“ferromagnetic” state with F �= 0 is energetically unfavor-
able and the triangular helical structure with B1,2 �= 0 and
F = 0 is stabilized instead. Considering the constraints on

the imaginary and real parts of the spins at low temperatures
and the condition F = 0, one can obtain that imaginary and
real parts of the same vectors B1 (or B2) are orthogonal
(B′

1B′′
1 = B′

2B′′
2 = 0), as well as vectors of real and imaginary

parts of the different B1 and B2 are also orthogonal (B′
1B′

2 =
B′′

1B′′
2 = 0) [Fig. 2(b)]. This results in the following relation-

ship between B1 and B2 : B1 = ±iB2 (or B′
1 = ∓B′′

2, B′′
1 =

±B′
2), which determines their mutual orientation as well the

magnitudes of real and imaginary counterparts: B′2
1 = B′′2

1 =

104424-7
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B′2
2 = B′′2

2 = (3S)2/2 in such simplified (reduced) magnetic
structure.

We specify the above constraints for simple planar mag-
netic structure in ab∗ plane. The order parameters B1 and B2

can be presented in the form B2 = − 3S
2 (u − iv) and B1 =

3S
2 iεT (u − iv), where u = (1, 0, 0) and v = (0, 1, 0), and pa-

rameter ∈T = ±1 characterizes mutual orientation of B1 and
B2 as B1 = –i∈T B2. Obviously, for an arbitrarily orientated
plane of the magnetic structure, such ratio holds. This en-
ables us to obtain the second (simplified) form of Eq. (5),
which was found earlier in [21,23]. For the known values
of exchange integrals [21] the energy minimum corresponds
to the wave number kz ≈ ±1/7 = (1/7)∈H , where ∈H char-
acterizes anticlockwise (∈H = +1) or clockwise (∈H = –1)
rotation of the spins in helix (helical chirality). For left- and
right-handed crystal structures the sign of parameter ∈St =
sign(J5–J3) is opposite and can define its structural chirality.
Using Eq. (5) for magnetic structure with F = 0 and B1,2 �= 0
we express helical chirality as ∈H = –∈T ∈St , where ∈T =
i(B1B2

∗ − B1
∗B2)/(|B1|2+|B2|2).

One can specify the sense of ∈T in terms of mutual orienta-
tion of neighbor spins in triangular plane structure. According
to Eq. (1) and B1 = –i∈T B2 the Fourier components of spins
are determined only by the vector B2 = B′

2+iB′′
2 and take the

form S3k = − 1
3 B2, S1k,2k = − 1

3 B2e±i 2π
3 εT , where ∈T = ±1

represents triangular chirality characterizing anticlockwise
(+1) or clockwise spin rotation (–1) in the triangle [Fig. 2(b)],
in agreement with [19]. For a crystal in the left-handed enan-
tiomorphic modification (∈St = +1), in which J5 > J3, and
the triangular chirality ∈T = +1 the helix chirality is ∈H =
–1, while for ∈T = –1 it is ∈H = +1. Further, we will use
the chirality ∈T = +1, ∈H = –1, observed earlier by the x-ray
and neutron experiments [14,19].

Thus, in exchange approximation, the magnetic structure is
characterized by two orthogonal complex vectors, B1 and B2.
They determine three magnetic helixes with k = (0, 0,∈H k)
wave vector, with planes parallel to each other and, in general,
oriented arbitrarily with respect to the crystal axes. This struc-
ture can be characterized by two spherical angles, determining
the orientation of one of the four vectors B′

1,2, B′′
1,2, for exam-

ple, B′
2 = (3S/

√
2)(cosϕsinω, sinϕsinω, cosω). Since B′

2 and
B′′

2 are orthogonal (B′
2B′′

2 = 0), one can choose the phase of
the arbitrarily orientated helix so as the imaginary component
is placed in the basal plane: B′′

2 = (3S/
√

2)(sinϕ, –cosϕ, 0)
while the relative orientation of B1 and B2 is deter-
mined by the relation B1 = –iB2. This structure can be
also characterized by the normal to the helixes n(ϕ′, ω′) =
B1 × B∗

2/|B1 × B∗
2| = (cosϕ′sinω′, sinϕ′sinω′, cosω′), where

FIG. 8. (a) The ground state of the planar triangular helical mag-
netic structure in Fe langasites (n||k). Spins S1, S2, and S3 are oriented
at angles 120° to each other, and the ellipses indicate planes of the
spins’ rotation along the c axis. (b) Reorientation of the helix plane
and its spin-rotation axis n in magnetic field H lying in the ac plane
(ϕH = π/2) at angle θH to the ab∗ plane. ω′ is the deviation of n from
the c axis (or the wave vector k).

ω′ = π/2–ω is the deviation of n from the c axis and ϕ′ =
π + ϕ is the deviation of the n projection onto the basal plane
from the a axis (Fig. 8). The combinations of order parameter
components B1,2 in a frame of the reduced description are
shown in the last column of Table I in terms of ϕ and ω angles.

In an external magnetic field, which affects not only the he-
lixes’ orientation but also results in their canting and induces a
homogeneous magnetization M, at least two order parameters,
specifically the B′

2 (or the normal to the helixes n) and magne-
tization M should characterize the systemreduced description.
Due to the relatively weak single-ion anisotropy, we neglect
any nonequivalent spin canting in Fe ions’ local positions and
consider only the total homogeneous magnetization M.

B. Thermodynamic potential and magnetic properties

To describe the evolution of the magnetic structure in
external magnetic fields, we consider a nonequilibrium ther-
modynamic potential 	(M, F, B1,2), which depends on the
magnetization M corresponding to the wave vector k = 0
and order parameters F and B1,2 relating to the wave vec-
tor’s k = (0, 0, ± k) group. Taking into account the simplest
biquadratic coupling between M and F, B1,2 it can be repre-
sented in the form

	(M, F, B1,2) = 	0(F, B1,2) + A

2
M2 + 3D

2

∑
ν

|MSνk|2 − MH + · · ·

= 	0(F, B1,2) + A

2
M2 + D

2

(
|MF|2 + 1

2
|MB1|2 + 1

2
|MB2|2

)
− MH + · · · , (7)
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where Ф0(F, B1,2) is the exchange thermodynamic potential
determined by (3); A is the isotropic exchange interaction
constant; D takes into account the biquadratic coupling and
leads to the dependence of the magnetic helix orientation
on M and, consequently, on the magnetic field H (see
below).

Minimization of the thermodynamic potential with respect
to the magnetization M makes it possible to establish a linear
relationship between M and H , as well as a nonlinear one
with F, B1,2 in the general case. At low temperatures, when
the spins are saturated [B′2

1 = B′′2
1 = B′2

2 = B′′2
2 = (3S)2/2],

considering a triangular structure formation (B1,2 �= 0 and
F = 0) and the orthogonality condition B1 = –iB2 fulfilled
for vectors B1,2, the magnetization M takes the following
form:

M = 1

A

{
H − D(

A + D|B2|2
) [B2(HB∗

2 ) + B∗
2 (HB2)]

}

= 1

A

{
H − 2D(

A + D|B2|2
) [

B′
2(HB′

2) + B′′
2

(
HB′′

2

)]}
, (8)

where the second part of the expression is written in terms
of real vectors B′

2 and B′′
2, and the sum B

′
2(HB

′
2) + B′′

2 (HB′′
2 )

characterizes the plane of the magnetic helix. Thus, depending
on the orientation of the field relative to the magnetic helix
plane (or orthogonal vectors B′

2 and B′′
2), anisotropy of the

magnetization arises. When the field is perpendicular to the
helix plane (H⊥B′

2⊥B′′
2), the susceptibility χ⊥ = 1/A deter-

mines the magnetization M, which is related to the magnetic
field vector as M = χ⊥H . When the field lies in the helix
plane, the magnetization is also proportional to the magnetic
field vector, but it is determined by the parallel susceptibility
χ|| = 1/(A + |B2|2D). In both cases, magnetization results
from helical structure canting.

Substituting M from Eq. (8) in the thermodynamic poten-
tial (7) we arrive to a potential depending only on B2 or its
normalized value b2 = B2/(3S):

	(b2) = 	0(b2) − 1
2χ⊥H2 + 1

2 (χ⊥ − χ||)|Hb2|2

+ 1
2 K|cb2|2 + · · · , (9)

where the effective magnetic anisotropy (K > 0), which sta-
bilizes the spiral in the basal plane, is added; c = (0, 0, 1) is
a unit vector. As we noted above, the real and imaginary parts
of the vector b2 are orthogonal and are determined by the
angles ω and ϕ: B′

2 = (1/
√

2)(cosϕsinω, sinϕsinω, cosω),
B′′

2 = (1/
√

2)(sinϕ, –cosϕ, 0) which also determine an orien-
tation of the normal n = B1 × B∗

2/|B1 × B∗
2| to the helix plane

taking into account that B1 = –iB2. By minimization of the
thermodynamic potential (9) with respect to the angles ϕ and
ω one can obtain for them

tg2ω = H2 sin 2θH

H2
s f − H2 cos 2θH

, ϕ = ϕH . (10)

Here, θH is a deviation of the magnetic field from the ab∗
plane and 	H characterizes the field projection on the ab∗

plane relative to the a axis. We note that the magnetic helix
deviation ω depends only on the angle θH and does not depend
on field orientation in the basal plane (	H ).

For H ||c (θH = π/2), the helix plane remains in the basal
plane (i.e., ω = π/2) at any value of the external mag-
netic field and the magnetization occurs due to canting of
the magnetic moments along the field. When the field is
in the basal plane (θH = 0), a spin-flop transition occurs
in field H2

s f = K/(χ⊥ − χ||), which is accompanied by the
helix reorientation perpendicular to the magnetic field (i.e.,
ω = π/2 → ω = 0). When the field deviates from the basal
plane (θH �= 0), the magnetic transition occurs more smoothly
and becomes less pronounced, while the spiral plane con-
tinuously reorients (Fig. 8), which leads to a decrease in
symmetry and inducing of electric polarization. Direct mag-
netization measurements did not reveal the spin-flop transition
perhaps due to the small �χ and weak magnetic anomaly
or a smooth character of the transition. We estimated the
value of Hs f ∼ 8 T from a comparison of the experimental
and theoretical dependences of the magnetoelectric effect (see
below). To do this we calculated orientational dependences of
order parameters using the values of parallel and perpendic-
ular susceptibilities, χ|| ≈ 6.6 × 10–5 cm3/g and χ⊥ ≈ 6.9 ×
10–5 cm3/g, estimated from our magnetic data (Fig. 4).

C. Analysis of magnetoelectric phenomena

As already mentioned, the Fe-langasite space group allows
the existence of a magnetoelectric effect, which agrees with
experimental results reported in [16,17,26]. Further, we will
establish the relationship between the electric polarization and
the order parameters based on the symmetry of the system.

To analyze the polarization Pγ , we construct the mag-
netoelectric part of the thermodynamic potential in a form
of quadratic expansion with respect to spins Sνα (k, rm) and
linear expansion with respect to polarization, similarly to
Refs. [35,42], which, after Fourier transformation, can be
represented as

	ME =
∑
αβγ

c′
αβγ SναkS∗

νβkPγ + c.c. (11)

It is convenient to replace the Fourier spin components
with symmetrized order parameters M,F, B1,2.

Table II shows the transformation properties of the magne-
tization M, its quadratic combinations M (2), and polarization
Р in the group of the wave vector k0 = (0, 0, 0). In addi-
tion, using transformation properties of the symmetrized spin
combinations in the k = (0, 0,±k) group from Table I, we
constructed the basic quadratic combinations of F, B1, and
B2, which transform according to the �3 representation of the
k0 group (Table II).

As a result, bilinear combinations of polarization com-
ponents and actual quadratic magnetic order parame-
ters (B1

(2), B2
(2)· · · ) belonging to the same components

of the two-dimensional representation allow us to de-
rive the corresponding magnetoelectric contribution in the

104424-9



A. YU. TIKHANOVSKII et al. PHYSICAL REVIEW B 105, 104424 (2022)

TA
B

L
E

II
.

Ir
re

du
ci

bl
e

re
pr

es
en

ta
tio

ns
of

th
e

k
=

0
gr

ou
p

of
th

e
Р

32
1

sp
ac

e
gr

ou
p

an
d

tr
an

sf
or

m
at

io
n

pr
op

er
tie

s
of

th
e

ho
m

og
en

eo
us

m
ag

ne
tiz

at
io

n
M

(M
±

=
M

x
±

iM
y
),

el
ec

tr
ic

po
la

ri
za

tio
n

P
(P

±
=

P x
±

iP
y
),

an
d

qu
ad

ra
tic

co
m

bi
na

tio
ns

of
M

,a
s

w
el

la
s

qu
ad

ri
c

co
m

bi
na

tio
ns

of
or

de
r

pa
ra

m
et

er
s

F
,B

1,
2

fr
om

th
e

k
=

(0
,
0,

±k
)

w
av

e
ve

ct
or

gr
ou

p,
w

hi
ch

al
so

re
al

iz
e

re
pr

es
en

ta
tio

ns
fo

r
th

e
k

=
0

gr
ou

p.
T

he
la

st
co

lu
m

n
re

pr
es

en
ts

qu
ad

ra
tic

co
m

bi
na

tio
ns

of
or

de
r

pa
ra

m
et

er
s

B
1,

2
in

a
re

du
ce

d
de

sc
ri

pt
io

n
(s

ee
te

xt
).

Pa
ra

m
et

ri
ze

d
qu

ad
ri

c
co

m
bi

na
tio

ns
of

th
e

B
2
+

iB
1

in
cy

cl
ic

ba
si

s
M

at
ri

ce
s

of
th

e
H

om
og

en
eo

us
Q

ua
dr

ic
co

m
bi

na
tio

ns
of

th
e

F
,B

1
,

fo
r

th
e

ce
rt

ai
n

ch
ir

al
st

at
e

re
pr

es
en

ta
tio

ns
of

th
e

gr
ou

p
m

ag
ne

tiz
at

io
n

an
d

B
2

cy
cl

ic
co

m
po

ne
nt

s
(∈

H
=

–∈
T

=
–1

),
fo

r
w

hi
ch

R
ep

r.
E

3+
2 a

P
M

M
(2

)
F

(2
)

B
(2

)
1

;B
2

(2
)

B
2
−

iB
1

=
0

Г
1

1
1

1
|F

|2
,

|B
1
|2

+
|B

2
|2

,
|B

1
|2

+
|B

2
|2

+
i(

B
1
B

∗ 2
−

B
∗ 1
B

2
)

M
2
,

|F (
+1

)|2
,

|B
1
|2

+
|B

2
|2

±
i(

B
1
B

∗ 2
−

B
∗ 1
B

2
)

=
(3

S
)2

[2
(1

+
si

n
ω

)2
+

2(
1

−
si

n
ω

)2

M
+M

−,
M

2 z
|F (

−1
)|2

,|F
(0

)|2
=

|(B
2
±

iB
1
) (

+1
)|2

+
|(B

2
±

iB
1
) (

−1
)|2

+4
co

s2
ω

]
=

4(
3S

)2

−|
(B

2
±

iB
1
) (

0)
|2

Г
2

1
1

–1
P z

M
z

Г
3

( 1
0

0
1)

( a
0

0
a∗)

( 0
1

1
0)

( P + P −

)
( M

+

M
−)

( M
2 −

M
2 +)

( F
∗ (+

1)
F (

−1
)

F (
+1

)F
∗ (−

1)

)
( (B

2
±

iB
1
)∗ (−

1)
(B

2
±

iB
1
) (

0)

−(
B

2
±

iB
1
) (

−1
)(

B
2
±

iB
1
)∗ (0

))
−(

3S
)2

√ 2(
1

−
si

n
ω

)c
os

ω

( eiϕ

−e
−i

ϕ

)

( −F
∗ (0

)F
(+

1)

F (
0)

F
∗ (+

1)

)
( (B

2
±

iB
1
) (

−1
)(

B
2
±

iB
1
)∗ (+

1)

(B
2
±

iB
1
)∗ (−

1)
(B

2
±

iB
1
) (

+1
))

(3
S

)2
co

s2
ω

( e−2
iϕ

e2i
ϕ

)
( M

+M
z

−M
−M

z)
( F (

0)
F

∗ (−
1)

−F
∗ (0

)F
(+

1)

)
( −(

B
2
±

iB
1
)∗ (0

)(
B

2
±

iB
1
) (

+1
)

(B
2
±

iB
1
) (

0)
(B

2
±

iB
1
)∗ (+

1)

)
(3

S
)2

√ 2(
1

+
si

n
ω

)c
os

ω

( eiϕ

−e
−i

ϕ

)

104424-10



MAGNETOELECTRIC PHENOMENA IN FE LANGASITES PHYSICAL REVIEW B 105, 104424 (2022)

form

	ME(b1, b2) = α
(+)
1 Im[P−(b2 + ib1)∗(−1)(b2 + ib1)(0)] − α

(+)
2 Im[P−(b2 + ib1)∗(0)(b2 + ib1)(+1)]

+ α
(+)
3 Re[P−(b2 + ib1)(−1)(b2 + ib1)∗(+1)] + α

(−)
1 Im[P−(b2 − ib1)∗(−1)(b2 − ib1)(0)]

− α
(−)
2 Im[P−(b2 − ib1)∗(0)(b2 − ib1)(+1)] + α

(−)
3 Re[P−(b2 − ib1)(−1)(b2 − ib1)∗(+1)] + · · · , (12)

where the normalized order b1,2 are used, the weak contribution of F is omitted, and α
(±)
1,2,3 are phenomenological constants.

The terms containing α
(±)
1,2 contribute to polarization only when the plane of the magnetic helix deviates from the basal plane

(components B1(0) and B2(0)). The α
(±)
3 terms include only the in-plane components of the vectors B1,2 and can contribute

generally even when the helix is in the basal plane, but at low temperatures when the magnetic moments are saturated (see
above), this contribution disappears. A similar magnetoelectric interaction, but in a different form, was proposed in [28].

In the reduced description, when the magnetic helix is described by two angles ϕ = ϕH and ω(θH , H ) [see Eq. (10)], the
	ME(b1, b2) is simplified and takes the form:

	ME(ϕH , ω) = −α
(+)
1

√
2(1 − sin ω) cos ω[Px sin ϕH − Py cos ϕH ] + α

(+)
2

√
2(1 + sin ω) cos ω[Px sin ϕH − Py cos ϕH ]

+ α
(+)
3 cos2ω[Px cos 2ϕH − Py sin 2ϕH ]. (13)

Here we suggest for certainty the enantiomorphic crystal modification with J5 > J3 and the triangular chirality ∈T = +1 that
determines the helix chirality ∈H = –∈T ∈St = –1 (see above) for which in the 	ME only terms with α

(+)
1,2,3 remain [we omit

below the superscript (+) for simplicity]. All terms in Eq. (13) are nonzero only when the helix deviates from the basal plane
(ω � π/2). The first two terms have similar functional dependence on the angle ω, while the third one, quadratic in cosω, is
associated with a change only of the B1 and B2 projections on the basal plane.

Similarly, one can derive the magnetoelectric part of the thermodynamic potential associated with the field-induced mag-
netization M. In an external magnetic field, the helix structure becomes canted and nonzero magnetization m = (mx, my, mz )
appears (hereinafter, we use normalized to M0 = 5μbN magnetization (8), where N is the number of Fe3+ ions). It results in
an additional magnetoelectric part of the thermodynamic potential, where we account for quadratic and fourth-power terms on
magnetization components:

	ME(m) = −(β1 + γ1m2)[mymzPx − mxmzPy] − (β2 + γ2m2)
[(

m2
x − m2

y

)
Px − 2mxmyPy

]
. (14)

When deriving (14), we took into account the definitions of the polarization and the magnetization vector in cyclic
coordinates and neglected the slight nonequivalence of Fe ions in C2 sites due to their weak local anisotropy. As mentioned
before, such contributions to the electric polarization were found in rare-earth iron borates [35], aluminum borates [36], and
rare-earth langasites [37] also possessing noncentrosymmetric trigonal crystal structure. As to the origin of this magnetoelectric
contribution, it could be due to either single-ion anisotropy or Fe-Fe exchange.

As a result, considering the crystal lattice part P2/2χ||E of polarization P and minimizing the thermodynamic potential with
respect to P, the total equilibrium Px and Py components can be represented as(

Px

Py

)
= {[α′

1(1 − sin ω) − α′
2(1 + sin ω)] cos ω + (β ′

1 + γ ′
1m2)m||mz}

(
sin ϕH

− cos ϕH

)

+ {−α′
3cos2ω + (β ′

2 + γ ′
2m2)m2

||}
(

cos 2ϕH

− sin 2ϕH

)
, (15)

where ω = ω(θH , H ) is given by Eq. (10); mz and m|| are magnetization components on the c axis and the basal plane,
respectively, determined by Eq. (8); χ||E is lattice electric susceptibility in the ab∗ plane, and α1,2′ = √

2χ||Eα1,2, α3
′ =

χ||Eα3β1,2
′ = χ||Eβ1,2, γ1,2

′ = χ||Eγ1,2.
Below we analyze the polarization in different regimes and determine the magnetoelectric parameters from comparison with

experiment (Table III).
In weak fields H 
 Hs f , the model perfectly describes the orientational dependences of the polarization and its quadratic

dependence on H . In such fields, the magnetic helix deviation from the basal plane is small, ω ≈ π/2 + (H/Hs f )2sin2θH/2,
as well as the field-quadratic contributions of the induced magnetization m||mz ≈ χ||χ⊥H2cosθH sinθH/M2

0 and m||2 ≈
χ||2H2cos2θH/M2

0 . As a result, Px and Py components of polarization are given by(
Px

Py

)
= H2 sin 2θH

[
α′

2
1

H2
s f

+ β ′
1
χ⊥χ||
2M2

0

](
sin ϕH

− cos ϕH

)
+ H2cos2θHβ ′

2

χ2
||

M2
0

(
cos 2ϕH

− sin 2ϕH

)
. (16)

Thus, in weak fields, the magnetoelectric effect depends
quadratically on the magnetic field value, the polarization

changes sign when the magnetic field deviation from the basal
plane changes sign [P(θH ) = –P(–θH )], and the polarization
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value is proportional to sin2θH . This is qualitatively consistent
with the experimental dependencies (Fig. 5). The contribution
proportional to cos2θH in (16) does not manifest itself in weak
magnetic fields, but it becomes noticeable in stronger fields,
as we discuss in the paragraph below. Only one effective
parameter determines the polarization in weak fields, which
represents a superposition of contributions from the spiral
rotation (α′

1) and the induced magnetization (β ′
1). As the sim-

ulation shows the former is predominant.
Using (8), (10), and (15), we simulated the polarization

evolution in fields up to the helix reorientation H ∼ Hs f

(Fig. 6) and determined the phenomenological constants
α′

1, α′
2, and β ′

1. A satisfactory description of the field
dependence of the polarization is obtained in the geome-
tries Pb∗ (Haθc) (ϕH = 0) and Pa(Ha45b∗θc) (ϕH = π/4) for
the following values of magnetoelectric constants −α′

2 =
–16.1 μC/m2; β ′

1 ≈ 110α′
2 = –1760 μC/m2 [Figs. 6(b) and

6(c)]. In these geometries, there are no contributions
from the quadratic terms −m2

‖(β ′
2 + γ ′

2m2) sin 2ϕH [or
∼−m2

‖(β ′
2 + γ ′

2m2) cos 2ϕH , respectively] insensitive to the
sign of Hz projection. At a field slightly deviating from the
ab∗ plane, the polarization remains negligible up to ∼4 T,
while above this value a sharp increase occurs [Fig. 6(b),
nominal angles θH = +9◦ and −3 ◦, and Fig. 6(c), θH = ±5◦)
due to a contribution of the ((α′

2 − α′
1) cos ω term in (15) that

indicates a rapid reorientation of the helix plane perpendicular
to the magnetic field. We notice that the contribution β ′

1m‖mz

remains small for these geometries.
In Refs. [26,28] the polarization appearance was also as-

sociated with the reorientation of the spin spiral. Remarkably,
the polarization sign is sensitive not only to crystal chirality,
as noted in [28], but also to the direction of the field deviation
from the basal plane (Figs. 5 and 6). To explain the polar-
ization behavior, it is enough to account for the spiral plane
rotation without an additional long-wave modulation.

Taking into account the relationship between the spin-
rotation axis n(ϕ′, ω′) and the vector B′

2(ϕ, ω) (see above),
one can represent the contribution ((α′

1 − α′
2)cosω as P ∼

n × k and assign it to the inverse Dzyaloshinskii-Moriya in-
teraction. At large deviations of the field from the ab∗ plane
(θH ∼ ±45◦), the magnetic helix reorientation becomes no-
ticeable already at weak fields, which explains the observed
quadratic increase of the polarization up to ∼5 T (Figs. 5(c)
and 6, θH = ±45◦). However, in fields exceeding 5 T, the
polarization character changes, and its increase slows down.
This is due to the contribution from the induced magnetization
β ′

1m‖mz, which is maximal for the θH = ±45◦ and has sign
opposite to the contribution from the helix reorientation.

In the geometry Pa(Hb∗θc) (ϕH = π/2) and fields above
5 T, there is an additional quadratic contribution β ′

2m2
‖, which

does not depend on the sign of the magnetic field deviation
and violates the relation P(θH ) = –P(–θH ). It manifests itself
at small deviation angles [Fig. 6(a), nominal angles θH = +9◦
and –3◦] and makes the polarization Pa(H ) behavior differ-
ent from the Pb(H ) one, where this contribution is absent
[Figs. 6(a) and 6(b)]. Such additional contribution, as well
as the ones associated with a large induced magnetization, is
more clearly manifested in pulsed fields when the magnetic
helix is reoriented perpendicular to the field direction.

TABLE III. Phenomenological parameters of the magnetoelec-
tric coupling in (15) found by fitting experimental data in fields up to
60 T.

Constant (μC/m2)

α′
1 –16

α′
2 16

α′
3 0

β ′
1 –1760

γ ′
1 3000

β ′
2 –750

γ ′
2 576

Using the found parameters α′
1, α′

2, and β ′
1, we extended the

simulation of the polarization up to high pulsed fields H >

Hs f (Fig. 7) and determined other magnetoelectric constants
α′

3, β ′
2, γ ′

1, and γ ′
2 (Table III).

In the geometry Pa(Ha45b∗±45c), when the field projection
lies along the ab∗-plane diagonal (ϕH = 45◦), the polarization
is given by Pa = [(α′

1 − α′
2)cosω + m||mz(β ′

1 + γ ′
1m2)]sinϕH

and the relation P(θH ) ≈ –P(–θH ) is valid within the en-
tire range of the fields [Fig. 7(c)]. The polarization value
reaches extremum in field ∼10 T, where the derivative of
the polarization changes sign. This behavior is owing to the
opposite signs of the contributions from the helix plane re-
orientation (α′

1 − α′
2)cosω and a field-induced magnetization

β ′
1m‖mz. However, the behavior of the polarization changes

again in field ∼40 T due to the contribution from higher-
(fourth-) order terms γ ′

1m||mzm2 [Fig. 7(c)] which slows down
polarization increase. It is important that the contribution
m||mz(β ′

1 + γ ′
1m2) has the maximum value when the magnetic

field is oriented at θH ∼ ± 45◦, and it becomes much weaker
at small deviations from the ab∗ plane.

In the Pa(Hb∗θc) geometry, the polarization behavior is
qualitatively different from the previous case [see Fig. 7(a)]
due to the quadratic contribution m||2 β ′

2 cos 2ϕH and an
additional fourth-order contribution γ ′

2m2m||2cos2ϕH (taking
place above 40 T) which are insensitive to the sign of the field
projection on the c axis. In another geometry, Pa(Ha45b∗±10c)
(ϕH = 45◦), the ratio P(θH ) ≈ –P(–θH ) should be valid in the
entire range of the fields used, but we did not observe it in
the experiment [Fig. 7(b)]. We suppose that field deviation
from ϕH = 45◦ can lead to the above-mentioned additional
contributions, which violates this ratio. Modeling shows that
the contributions occur for small field projection deviations
(∼5◦) from the diagonal of the ab∗ plane, which is within the
accuracy of the sample’s orientation in the experiment.

In a whole, the performed analysis and simulation of the
polarization field dependences made it possible to describe
the experiment qualitatively and partially quantitatively and
to establish the main mechanisms determining the behavior
polarization depending on the magnetic structure changes in a
wide range of fields.

V. CONCLUSION

We performed a complex experimental and theoretical
study of the magnetoelectric effect in Fe langasites possessing
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double chiral spin structure in external magnetic fields up to
60 T and elucidated the key features of the field-induced elec-
tric polarization as a function of the magnetic field orientation.
A sharp increase of transverse Pa(Hb∗ ) and Pb∗(Ha) electric
polarizations takes place at fields exceeding the critical field,
which is associated with the reorientation of the spin helix
plane from the basal plane to a direction perpendicular to the
field. At weak to medium fields (up to 8 T), the polarization
sign is determined by the direction of the field deviation
from the basal plane. It was found experimentally that the
polarization behavior changes at fields above 10 T, which is
explained by considering additional contributions from field-
induced magnetization.

A detailed group-theoretical analysis of the magnetic and
magnetoelectric properties of Fe langasites was performed
and the interrelation of the polarization and magnetic order pa-
rameters in an external magnetic field was established. In the
exchange approximation, a reduced description of an arbitrar-
ily orientated magnetic helix structure was proposed through
its main (exchange) order parameters. Within this model, two
angles characterize the orientation of the magnetic helix plane,
and the magnetization vector M determines its canting in the
magnetic field. It is shown that the spiral magnetic structure
is rotated and canted (analogous to a spin-flop transition) in a
magnetic field.

For a wide range of magnetic field strengths and geome-
tries, the experimental data on the magnetoelectric effect are
consistently described. At weak fields (up to 8 T), the main
contribution to polarization is associated with the magnetic
helix reorientation perpendicular to the field. In this case, the
field deviation from the basal plane determines the direction
of the helix rotation. A sharp polarization increase found at
fields up to 8 T and close to the basal plane may indicate
a contribution of the inverse Dzyaloshinskii-Moriya interac-
tion. Observed changes in the electric polarization behavior
at strong fields (above 10 T) are explained by helix canting
and contributions from the symmetry-allowed magnetoelec-
tric terms including field-induced magnetization, possibly
originating from a single-ion anisotropy or Fe-Fe exchange
interactions.

Note that both of these mechanisms act in a noncentrosym-
metric crystal, in which intracrystalline interactions in each
enantiomorphic state (inversion twin) set the direction of elec-
tric polarization. Therefore, in such crystals, the effect of an
external electric field on polarization (i.e., traditional poling,
effective in multiferroics with a cycloidal spin structure in
centrosymmetric crystals such as, for example, manganites
RMnO3, tungstates MnWO4, etc.) is suppressed. At the same
time, one cannot completely exclude the possible effect of an
electric field on spontaneous electric polarization in noncen-
trosymmetric crystals. Although we did not find spontaneous
polarization in the Fe langasites within experimental accuracy,
its existence in the easy plane phase is not forbidden by
symmetry, as follows from our analysis [see the third term
in Eq. (12) for magnetoelectric energy]. As the preliminary
analysis shows, spontaneous polarization can appear in an
elliptical spiral structure (but not in a circular one) due to
the single-ion anisotropy of Fe3+ spins in three local positions
(2a symmetries), as well as the existence of higher-order har-
monics in the spin distribution already observed in [22]. The
anharmonicity in the spin distribution was also observed in
the classical cycloidal multiferroic BiFeO3, by nuclear mag-
netic resonance [43,44] and by neutron diffraction [45], and
found to be responsible for the interaction of higher-order
spin wave branches with the ac electric field [46]. In the
studied Fe langasites the anharmonicity in the spiral spin
distribution should only weakly affect static magnetoelec-
tric properties and hence requires high precision experiments
to be detected, as well as more sophisticated theoretical
analysis.
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