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In this work, we explore experimentally and theoretically the spectrum of magnetic excitations of the Fe3+ and
Yb3+ ions in ytterbium iron garnet (Yb3Fe5O12). We present a complete description of the crystal-field splitting
of the 4f states of Yb3+, including the effect of the exchange field generated by the magnetically ordered Fe
subsystem. We also consider a further effect of the Fe-Yb exchange interaction, which is to hybridize the Yb
crystal field excitations with the Fe spin-wave modes at positions in the Brillouin zone where the two types of
excitations cross. We present detailed measurements of these hybridized excitations, and we propose a framework
that can be used in the quantitative analysis of the coupled spectra in terms of the anisotropic 4f-3d exchange
interaction.
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I. INTRODUCTION

Iron garnets are a family of compounds with the chem-
ical formula RE3Fe5O12, where RE represents a trivalent
rare-earth or yttrium (Y) ion. Y3Fe5O12 (YIG) is the most
prominent member of this family, having facilitated the
recent development of research fields such as spintronics
[1], magnonics [2], and hybrid quantum information sys-
tems [3]. Iron garnets incorporating magnetic rare-earth ions
have also been studied for many years for their interesting
spin transport phenomena [4], magnetoelectric properties [5],
magneto-optical effects [6], and anisotropic magnetization,
which varies according to the choice of RE ion [7].

Single crystals of YIG can be grown with pristine quality,
a characteristic that has contributed to the compound’s impor-
tance in basic research [8]. The iron garnets crystallize in a
body-centered-cubic structure described by the space group
Ia3̄d (no. 230). The primitive unit cell is remarkably full,
containing a total of four RE3Fe5O12 formula units. The RE3+

ions occupy the 24c Wyckoff positions, while Fe3+ ions are
distributed over the two symmetry-inequivalent 16a and 24d
sites [see Figs. 1(a)–1(b)].

YIG is ordered magnetically below TN = 560 K, with a
k = 0 structure and Fe3+ spins (S = 5/2) aligned along one
of the cubic 〈111〉 directions [8]. Spins located at equivalent
crystallographic positions are ordered parallel to one another,
while spins in the 16a sites point in the opposite direction
to those in the 24d sites. The unequal number of magnetic
moments aligned in opposite directions (8 against 12 in one
primitive unit cell) creates the net magnetization responsible
for textbook ferrimagnetism. The fundamental excitations of
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the coupled Fe moments are spin waves, which in YIG are im-
portant to the material’s exceptional spin transport properties.
As there are 20 Fe ions in the magnetic unit cell, there are 20
spin-wave modes for each distinct wave vector in reciprocal
space. The spin-wave spectrum extends in energy up to about
85 meV [9,10].

In recent years, renewed interest in the magnon degrees
of freedom of YIG followed the experimental observation of
the Spin Seebeck effect (SSE) [11–13]. The SSE presents
an interesting, energetically economic way of harnessing the
magnetic excitations in an insulator in order to produce an
electric current in a metal attached to it [1]. Several character-
istics of Y3Fe5O12 demonstrate how appropriate the material
seems to be for applications based on the spin Seebeck effect,
particularly its extremely low (in fact, the lowest known [8])
spin-wave damping, responsible for pure magnon diffusion
over distances up to ∼10 μm at room temperatures [14].

It has been shown that one of these spin-wave branches, an
acoustic mode isolated in energy up to about T ∼ 300 K (E =
kBT ∼ 26 meV) [15], bears fundamental importance for the
physics governing the SSE [16]. One way to microscopically
manipulate the interactions responsible for the propagation
of this mode in YIG is to substitute Y by a magnetic triva-
lent rare-earth ion. In this particular case, not only Fe-Fe
interactions, but also rare-earth single-ion excitations, as well
as RE-Fe coupling, will contribute to the garnet magnetic
spectrum in an energy range relevant to potential applications
based on the SSE.

Most of the discussion about YIG is also applicable to
the RE iron garnets in general. Magnetic properties of the
rare-earth substituted compounds were described shortly after
their discovery in the late 1950s [17]. Although the Néel
temperature marking the long-range order of the Fe spins
remains close to 560 K for the whole series, iron garnets for
which the RE sites are occupied by lanthanides heavier than
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FIG. 1. (a) Garnet primitive unit cell, displayed relative to the
conventional body-centered cubic cell. Trivalent rare-earths are
shown in orange, while green and blue circles correspond to Fe3+

at 24d and 16a positions, respectively. Oxygens are omitted in
(a) for clarity. (b) Pseudocubic oxygen environment of the Yb3+, as
seen along one of the equivalent cubic 〈001〉 directions. The point
symmetry of the central atom is 222. (c) Magnetic susceptibility
χ for Yb3Fe5O12, measured in a magnetic field of 100 Oe applied
along the [110] direction. The compensation temperature Tc occurs
at about 7.7 K. Heat capacity data are plotted along with χ in order
to emphasise that the compensation temperature is not accompanied
by a phase transition. The inset in (c) shows the inverse susceptibility
over the same temperature interval, where the crossover at Tc can be
more clearly seen.

Gd3+ display a susceptibility compensation temperature Tc,
when the bulk magnetization of the compound vanishes [18].
This point is understood to mark the temperature at which the
ordered magnetic moment of the RE sublattice is identical to
that of the Fe sublattices, but with opposite relative orienta-
tion. Below Tc, for certain REs, the magnetic arrangement of
the RE atoms displays a canting around the 〈111〉 direction,
forming a so-called umbrella structure [19–22].

The aim of this work is to investigate how RE-Fe in-
teractions modify the already largely understood spin-wave
spectrum of YIG. We make use of inelastic neutron scattering
to map in detail the reciprocal space of a single crystal of
Yb3Fe5O12 (YbIG). For this compound, Tc � 7.7 K, as the
magnetic susceptibility data shown in Fig. 1(c) demonstrate.
The Yb3+ (4f 13) ion is chosen for the relative simplicity of

its electronic shell when compared with other lanthanides.
With one electron vacancy in the f orbital, the Yb3+ has
orbital and spin quantum numbers L = 3 and S = 1/2. The
spin-orbit ground state J = L + S = 7/2, in the presence of a
time-reversal symmetry-breaking potential, can thus be split
into a maximum of eight levels.

In addition to developing a microscopic description of
the 4f-3d hybridization and low-energy magnetic degrees of
freedom in YbIG, we are also motivated by the desire to
move a step forward in the modeling of the spin excita-
tion spectra measured by inelastic neutron scattering. While
linear spin-wave theory is a very well established method
for treating coupling between effective S = 1/2, there have
been relatively few attempts to model the hybridization of
single-ion and collective excitations involving several coupled
orbital and spin states [23,24]. The experiment performed
in this work has demonstrated that such an understanding is
necessary to fully explain the exchange interactions between
d and f electronic configurations in Yb3Fe5O12. This work
is made possible by the exceptional resolution of inelastic
neutron scattering at low energies (<5 meV), which allows the
observation, and subsequent description of the d- f exchange
coupling in unprecedented detail.

II. OVERVIEW OF THE MAGNETIC SPECTRUM
OF YTTERBIUM IRON GARNET

The dominant term in the Hamiltonian of rare-earth insu-
lators is usually the spin–orbit coupling HSO = λL · S, where
λ is the spin-orbit parameter and L, S are the orbital and spin
angular momentum operators. For the Kramers ion Yb3+, the
spin-orbit coupling splits the 4f 13 electronic configuration into
two levels with total angular momentum quantum numbers
J = 7/2 and 5/2, respectively, separated in energy by 7λ/2 ∼
1300 meV.

The next most relevant contribution is the crystalline elec-
tric field (CF) potential HCF, which is responsible for splitting
each J multiplet of the Kramers Yb3+ into J + 1/2 doublets.
The CF Hamiltonian is totally determined by the local sym-
metry of the rare-earth in the lattice. Each Yb in the garnet
is coordinated by eight O2− anions, forming an environment
that can be mapped onto a distorted cube [see Fig. 1(b)].
The point symmetry of the rare-earth in this arrangement is
orthorhombic (point group 222). The energy scale of the CF
splitting of the J = 7/2 multiplet in YbIG is about 80 meV, as
will be shown later.

The rare-earth is additionally subject to an exchange field
from the ordered Fe-spins, which tends to align the Yb mo-
ments in a direction opposite to the net magnetization of the
Fe-sublattices. The effects of this local effective field upon
the Yb3+ single-ion levels are twofold. First, the exchange
field breaks the time-reversal symmetry (and, therefore, the
Kramers degeneracy) of the Yb3+ doublets. Second, it also
breaks the orthorhombic 222 point-group symmetry of the
pure crystalline electric field potential. The latter occurs be-
cause, even though all the Yb ions experience the same CF,
the orientation of the local CF-axes differs among the Yb
sites relative to the direction of the Fe-exchange field. Con-
sequently, the 12 rare-earth sites in the primitive unit cell are
divided into two groups of six symmetry-equivalent positions
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FIG. 2. Evolution of the single-ion Yb3+ spectrum in YbIG. In
the absence of time-reversal symmetry breaking, all the CF levels
are Kramers doublets. The exchange field caused by the magnetic
ordering of the Fe3+ sublattice, as well as breaking the Kramers
degeneracy, also splits the 12 rare-earth sites into two groups. On
the right-hand-side panel, the ground-state multiplet (|J = 7/2〉) ex-
citations for each of those two sites (continuous and dashed lines) are
shown.

[25]. These two groups display slightly different sets of Yb
single-ion levels.

In summary, the ground-state J = 7/2 manifold of each of
the two groups is split into (2J + 1) = 8 singlets. Therefore
2 × 8 = 16 levels, including 14 excited states, may be identi-
fied in the spectrum. An overview of the single-ion spectrum
of the Yb3+ in the iron garnet structure may be found in Fig. 2.

III. EXPERIMENTAL DETAILS

Single crystals of Yb3Fe5O12 were grown by the floating-
zone method. X-ray and neutron Laue diffraction were used to
select and orient crystals of high crystalline quality. Suscep-
tibility and heat capacity measurements were performed on
a Quantum Design MPMS3 magnetometer and on a Physical
Property Measurement System (PPMS).

Time-of-flight neutron-scattering experiments were per-
formed on the MAPS spectrometer [26] at the ISIS Facility.
Three single crystals with a total mass of 3 g were coaligned
with a resulting mosaic spread of less than 2◦. The sample
was mounted in a closed-cycle refrigerator (CCR), and data
were recorded at the cryostat base temperature (approximately
6 K). The sample was rotated around the cubic [11̄0] axis in 1◦
steps. The instrument chopper was operated in repetition-rate
multiplication (RRM) mode, and angular scans with incident
energies Ei of 25 and 120 meV were performed simultane-
ously. The full width at half-maximum (FWHM) of the energy
resolution of these measurements is approximately 4% of Ei at
zero energy transfer, decreasing to ∼2% for energy transfers
close to 100 meV.

Low-energy data were collected on the time-of-flight spec-
trometer LET [27], also at the ISIS facility. One single crystal
of mass 1 g selected from the MAPS sample was fixed in

FIG. 3. Data measured on MAPS at ∼6 K for Yb3Fe5O12 (left)
and Y3Fe5O12 (right). Note the similarity between the dispersive Fe
spin-wave modes in both compounds. Yb single-ion excitations in
YbIG are highlighted by red rectangles in the lower left panels.

an aluminum mount and loaded in a helium cryostat. During
data collection, at a temperature of 1.8 K, the sample was
rotated through an angle of 140◦ in 1◦ steps around the cubic
[11̄0] axis. RRM enabled the simultaneous measurement of
Ei = 5.5 and 17.3 meV (the latter with less flux) among other
incident energies. The FWHM of the energy resolution at the
elastic line is 0.16 meV, down to about 0.05 meV at 5 meV
energy transfer.

IV. EXPERIMENTAL RESULTS

Figure 3 presents examples of neutron scattering intensity
maps recorded on the MAPS spectrometer under the same
conditions for Yb3Fe5O12 (left panels) and Y3Fe5O12 (right,
data from Ref. [9]). Differences in the signal-to-noise ratio in
both datasets are caused by the different sample mass used in
the YIG (12 g) and YbIG (3 g) experiments. The strongly dis-
persive Fe spin-wave modes evident in these spectra are seen
to be very similar for both compounds. Already thoroughly
explored in earlier works on YIG [9,10], the Fe spin-wave
frequencies can be described by a set of Fe-Fe exchange
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TABLE I. Exchange parameters obtained in Refs. [9] and [10],
used in our Fe-Fe exchange Hamiltonian parametrization.

Jγ Ref. [9] Ref. [10] Coupling sites

J1 6.8 meV 5.80 meV 16a-24d
J2 0.52 meV 0.70 meV 24d-24d
J3 1.1 meVa 0.0 16a-16a
J4 −0.07 meV 0.0 16a-24d
J5 0.47 meV 24d-24d
J6 −0.09 meV 16a-16a

aValue quoted as J3b in Ref. [9].

interactions, of which the antiferromagnetic interaction be-
tween the two Fe3+ sublattices is the largest (see Table I). The
similarity between YbIG and YIG serves as evidence that the
Fe-Fe exchange is little affected by the presence of the Yb
instead of Y in the garnet structure, a fortunate characteristic
that is going to assist us in the determination of the energy and
intensity of the CF levels in Yb3Fe5O12.

Also in Fig. 3, the bottom four panels display an extended
energy interval, in which single-ion excitations of the Yb ions
may be identified between 60 and 90 meV (highlighted by
red rectangles), amidst some lower-intensity Fe spin-wave
branches. From a neutron scattering perspective, the separa-
tion of individual single-ion levels appearing above 60 meV
(see Fig. 2) is challenging for two main reasons. First, these
levels coincide in energy with some optical modes of the Fe
spin-wave spectrum. Second, the exchange splitting of the
levels is comparable with the best resolution achievable on the
MAPS experiment, �E ≈ 2.8 meV (FWHM). On the other
hand, low-energy inelastic neutron scattering may be used
to measure the single-ion ground-state doublet splitting with
much higher resolution. In Fig. 4, a sampling of our LET data
for energy transfers below 5 meV is shown. Pure single-ion
excitations manifest themselves as dispersionless, horizontal
lines of scattering along all directions in reciprocal space.
Two such levels are clearly visible in Fig. 4, at energies close
to 3 meV. These correspond to the slightly different doublet
splittings associated with the two symmetrically distinct Yb
sites.

Figure 4 also shows a typical manifestation of the hy-
bridization between the Yb levels and the Fe magnons. Close

FIG. 4. Low-energy inelastic neutron scattering data measured
on LET at 1.8 K showing the ground-state splitting of the CF exci-
tations of the Yb3+ ions. White arrows on the right panel highlight
regions where zero intensity dispersions of Fe magnons cross the CF
levels.

inspection at magnetic Brillouin zone centers, such as (2,2,0)
and (2, 2,−4), reveals the existence of a small gap between
the elastic line and the softening acoustic modes (see also
Fig. 8). At energies closer to the CF levels, the steeply dis-
persing Fe spin waves split in wave vector, and their slope
decreases just below the Yb excitations.

Other notable features may be seen at positions where
the Fe magnons in YIG have zero structure factor, such as
(1,1,0) and (3,3,0) [9]. Neutron diffraction experiments on
the RE iron garnets have detected, below Tc, magnetic Bragg
scattering at those reciprocal-lattice wave vectors, caused
by the canting of the rare-earth magnetic moments around
the Fe magnetization 〈111〉 directions [19,20,28,29]. In the
YbIG spectrum, some intensity modulation around (1,1,0) and
(3,3,0) may be observed at energies between the Yb levels.
This may be understood as another manifestation of the Yb-Fe
coupling.

V. THE MODEL

To quantitatively determine how the rare-earth single-ion
transitions excite Fe magnons (and vice versa), we develop
in this section a bosonic model that can be used to treat
and explain this coupling at sufficiently low temperatures.
In close analogy with the conventional Holstein-Primakoff
transformation, the angular momenta of the rare-earth spins
are defined in terms of pseudoboson raising and lowering op-
erators. The main difference between linear spin-wave theory
and the model developed below is that, instead of reducing
the coupled RE-Fe spin dynamics to that of effective S = 1/2
moments, several single-ion transitions of the Yb are allowed
to interact with the Fe spins. Additionally, this model has
the advantage of incorporating the crystal-field anisotropy
directly into the exchange Hamiltonian, without the necessity
of using an effective g-tensor.

A. The complete Hamiltonian

The minimal model Hamiltonian for YbIG contains the
single-ion terms of Yb3+, the exchange interaction between
Fe ions, and the exchange interactions between Yb and its Fe
nearest neighbors:

H =
∑

k

(
HCF

k + HSO
k

) +
∑
〈i j〉

HEx
i j +

∑
〈 jk〉

HEx
jk , (1)

where i, j are indices representing Fe sites, and k represents
a Yb site. Note that no Yb-Yb interaction term is included in
Eq. (1). This is because our experiment could not detect any
dispersion in the Yb single-ion excitations, as may be seen in
Fig. 4.

B. Crystal-field Hamiltonian and symmetry considerations

In YbIG, each one of the 12 Ybk atoms in the primitive
unit cell is intercepted by three local twofold axes, which
we denote here ξk, ηk, ζk [30]. Those are the principal axes
of the crystalline electric field Hamiltonian, and they do not
coincide with the global, conventional cubic axes a, b, c. As
an example of the coordinate transformation carried out in
this work, for an Yb ion labeled Yb1 located at the fractional
coordinates (0, 3/4, 7/8) of the conventional unit cell, we

104422-4



MODEL FOR COUPLED 4f-3d MAGNETIC SPECTRA: … PHYSICAL REVIEW B 105, 104422 (2022)

define ⎛⎝ξ1
η1
ζ1

⎞⎠ =

⎛⎜⎝ 0 0 1

− 1√
2

− 1√
2

0
1√
2

− 1√
2

0

⎞⎟⎠
⎛⎝a

b
c

⎞⎠, (2)

where a, b, c are unit vectors along a, b, c. The transforma-
tions for the additional Ybk (k = 2, . . . , 12) atoms in the
primitive unit cell may be found by applying the symmetry
operations of the Ia3̄d space group to the matrix on the right-
hand side of Eq. (2) (see Appendix A).

In the local coordinate frame defined above, HCF is identi-
cal for all the Ybk atoms, and it may be written

HCF = B2
0Ĉ2

0 + B2
2

(
Ĉ2

2 + Ĉ2
−2

) + B4
0Ĉ4

0 + B4
2

(
Ĉ4

2 + Ĉ4
−2

)
+ B4

4

(
Ĉ4

4 + Ĉ4
−4

) + B6
0Ĉ6

0 + B6
2

(
Ĉ6

2 + Ĉ6
−2

)
+ B6

4

(
Ĉ6

4 + Ĉ6
−4

) + B6
6

(
Ĉ6

6 + Ĉ6
−6

)
, (3)

where Ĉl
±m are the Wybourne tensor operators and Bl

m are their
corresponding crystal-field parameters.

C. Exchange coupling of the Fe3+ sublattices

The term HEx
i j depends on the Fe-Fe exchange interactions

describing the magnetic order and dynamics of the Fe spins.
As far as our MAPS neutron scattering experiment reveals,
the Fe magnon spectra of YIG and YbIG are virtually indis-
tinguishable (see Fig. 3). Therefore, the exchange parameters
reported previously for YIG [9,10] are kept unchanged in our
model, which may be expressed as

HEx
i j = Ji j Si · S j . (4)

We consider isotropic exchange parameters Ji j up to sixth
nearest neighbors, J1, . . . ,J6, for Fe atoms located on both
16a and 24d Wyckoff positions. A summary of the parameters
considered in our work is given in Table I.

A transformation of the spin components is defined, so that
the local Sz of the Fe spins lies along the ordered moment
direction. The iron magnetic moments on 16a and 24d sites
point along any of the eight equivalent cubic 〈111〉 directions,
keeping always an intrasite parallel and an intersite antipar-
allel orientation within a given domain. For example, if we
assume that the spins of the Fe atoms in the 16a positions
point along [111], then the spins of the Fe atoms in the 24d
positions point along [1̄1̄1̄]. The local x and y axes of the Fe
spins can be chosen at will. Our particular choice of axes is
described in Appendix B.

D. Yb-Fe interaction

The main focus of this work is on the exchange interaction
HEx

jk . Each rare-earth in the garnet structure has two first-
nearest-neighbor 24d irons, as shown in Fig. 5. Neglecting
interactions beyond these, the Yb-Fe exchange can be ex-
pressed as

HEx
jk = ST

j · A · Jk, (5)

where A is the exchange coupling matrix. If S j and the total
angular momentum operator Jk for a particular Yb site are
expressed in terms of the local coordinates of the ion Ybk ,

FIG. 5. Expanded view of the 24c (orange, Yb) and 24d (green,
Fe) sublattices. Each Yb has two nearest-neighbor Fe at 24d posi-
tions. Only bonding atoms are shown.

then

A =
⎛⎝Aξξ 0 0

0 Aηη 0
0 0 Aζ ζ

⎞⎠. (6)

In this work, we neglect off-diagonal terms and assume that
Aξξ 	= Aηη 	= Aζ ζ , since early optical spectroscopic data on
YbIG suggested that the coupling between Yb3+ and Fe3+ is
anisotropic [31,32].

The Hamiltonian HEx
jk may be split into a term HEx,1

k , which
may be identified as the potential of the Yb 4f electrons in the
Fe exchange field, and a dynamic coupling term HEx,2,

HEx
jk = HEx,1

k + HEx,2
jk

= 〈S〉T · A · Jk + �ST
j · A · Jk, (7)

where �S j = S j − 〈S〉. We assume that 〈S〉 has the fully
saturated value of S along the iron magnetization. If expressed
in the local coordinates of the Fe spins, 〈S〉 = (0, 0, S), where
S = 5/2.

E. The exchange field interaction HEx,1
k

Once the first term in the second row of Eq. (7) is ex-
panded, as exemplified in Appendix C, it can be shown that,
for the six atoms belonging to what we are going to refer to as
“group 1,” the exchange field acting on the rare-earth is

HEx,1
k = −nS

3

(√
3Aξξ Jξ

k −
√

6AηηJη

k

)
, (8)

while for atoms of “group 2,”

HEx,1
k = nS

3

(√
3Aξξ Jξ

k −
√

6Aζ ζ Jζ

k

)
, (9)

where n = 2 is the number of Yb nearest neighbors.
A part depending only on the rare-earth index k can now

be separated from the Hamiltonian in Eq. (1),

H1 =
∑

k

HSO
k + HCF

k + HEx,1
k , (10)

which is, initially, diagonalized separately from HEx,2
jk . The

eigenvalues Ekm, with eigenfunctions 	km, of H1 are going to
be the energies of the single-ion modes measured on MAPS
and LET.
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F. Quadratic form of H
In this second step of data analysis, we follow the formal-

ism introduced by Grover [33] and extensively expanded in
Refs. [34,35]. At sufficiently low temperatures, the angular
momentum operator Jk , up to first order in the pseudoboson
operators c†

km, ckm (see the definition in Appendix D), for a
level m may be replaced by [35]

J = J00 +
∑

m

J0mc†
m + Jm0cm, (11)

where Jmn = 〈	n|L + S|	m〉, and the index k is omitted for
clarity. Now, the components of J in Eq. (7) can be substituted
by Eq. (11). The complete Hamiltonian H in Eq. (1) may be
finally written solely in terms of pseudoboson operators (see
Appendix D for details),

H = S

{∑
〈ii′〉

Jii′a
†
i ai′ +

∑
〈 j j′〉

J j j′d
†
j d j′ +

∑
〈i j〉

(Ji jaid j + H.c.)

}

+
∑

k,m>0

Ekmc†
kmckm +

∑
〈 jk〉

(
K (1)

jk d†
j c†

km

+ K (2)
jk d†

j ckm − K (3)
jk d†

j d j + H.c.
)
, (12)

where H.c. denotes Hermitian conjugate, and only terms up to
second order are retained. The first three summations are over
pairs of Fe atoms, with the (i, i′) referring to atoms on the
16a sites, and ( j, j′) to the 24d sites. The standard Holstein-
Primakoff operators (a, a†) and (d, d†), describing Fe spin
deviations on the 16a and 24d sites, respectively, are defined
in Appendix B. Values for the coefficients K (1)

jk , K (2)
jk , K (3)

jk are
given in Appendix D.

The quadratic Hamiltonian for N = 12 Yb ions has dimen-
sions 2N × 2N for each CF level m = 1, . . . , 7 included in the
model. The iron part contributes additionally with a 40 × 40
block to the Hamiltonian. In total, the full H would be a
matrix with dimensions of 208 × 208. As the ground-state
Kramers doublet of Yb is separated by ∼60 meV from the
higher excited CF states, it is a good approximation to include
only the first excited CF level (m = 1) in the calculation. The
size of the matrix is then reduced, and so is the time necessary
for the numerical diagonalization of H. More details about
the reduced 64 × 64 matrix representing Eq. (12) are given in
Appendix D.

The calculation of the neutron scattering cross-section for
the excitations observed in this work is detailed in Ap-
pendix E.

VI. DATA ANALYSIS

To isolate the scattering intensity of the single-ion modes
in the MAPS data, identical constant-Q cuts were performed
on the measured spectra of Yb3Fe5O12 and Y3Fe5O12. The
latter is considered to provide an approximate background of
excitations common to both compounds. Despite the differ-
ence in mass between Y and Yb, we assume that the phononic
background at the relevant, medium energy range in YbIG is
only negligibly different from that in YIG. Further discussion,
including a raw data comparison, is given in Appendix F.

FIG. 6. Examples of experimental scattering from CF excitations
(circles, with error bars), obtained following the procedure detailed
in the text. The orange line corresponds to the best fit found in this
work. The spectra are averaged over the range in Q indicated in each
panel.

Some examples of profiles obtained after subtraction of YIG
from YbIG data are shown in Fig. 6.

To obtain experimental intensities and energies, the
background-subtracted data were fitted with three Gaussians,
whose widths are limited by the experimental FWHM. The
intensity ratios, normalized so that the sum of the integral of
the three peaks is equal to unity, and peak centers are listed
in Table II. A similar procedure was carried out in order to
extract the energies of the dispersionless modes from the LET
data. The intensities of the low-energy peaks are not given
in Table II because they could not be reliably scaled to the
MAPS intensities. The spectral weight of both low-energy
modes is nevertheless taken into consideration in the second
part of our analysis, as we will show later. Also note that,
even though only the J = 7/2 levels have energies lower
than 100 meV, data on the J = 5/2 levels were also included
in our parametrization of the combined crystal-field and
spin-orbit Hamiltonian. The energy of the lowest level of the
J = 5/2 manifold, not accessible in our experiment, is taken
from Ref. [32].

The iterative procedure (repeated until a best model is
obtained) conducted in order to fit H to the data can be
summarized as follows:

(i) The Fe3+ exchange field was initially neglected, and the
spin-orbit parameter λ and the Bl

m in Eq. (3) were varied to
give the best fit to the experimental energies and relative peak
intensities.

(ii) The exchange field was added and determined from the
measured ground-state splittings (E1

1 = 2.868 meV and E2
1 =

3.247 meV), corresponding to the two inequivalent Yb sites.
Possible values for (Aξξ , Aηη, Aζ ζ ) are estimated using E1

1
and E2

1 .
(iii) The full model for H is compared to the data, including

those shown in Fig. 6. The best values for (Aξξ , Aηη, Aζ ζ ) are
confirmed by comparison with the experimental hybridization
features (see below).

In the first part of the fitting [point (i) above], we
used as starting parameters the λ and the Bl

m obtained for
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TABLE II. Experimental and calculated energies and intensities
of the single-ion Hamiltonian. In the first column, the subscript k
in Ekm was replaced by a generalized superscript, either 1 or 2,
referring to atoms of group 1 or 2, respectively. Calculated values
are those corresponding to the parameters shown in the last column
of Table III.

Energy (meV) Normalized intensity

Level Measured Calculated Measured Calculated

E 1
0 0 0.11

E 2
0 0 0.16

E 1
1 2.868 ± 0.009 2.881 0.25

E 2
1 3.247 ± 0.009 3.235 0.19

E 1
2 65.4 0.10

67.0 ± 0.3 0.46
E 2

2 65.4 0.09

E 1
3 67.4 0.13

E 2
3 68.1 0.11

E 1
4 75.5 0.01

76.4 ± 1.0 0.26
E 2

4 74.4 0.15

E 1
5 77.7 0.15

E 2
5 78.6 0.02

E 1
6 82.1 0.06

82.7 ± 0.7 0.28
E 2

6 83.1 0.07

E 1
7 85.3 0.06

E 2
7 84.6 0.05

E 1
8 1275

1276 ± 7a

E 2
8 1275

E 1
9 1276

E 2
9 1277

aValue from Ref. [32].

the exchange-field-free compound Yb3Ga5O12 (YbGG) in
Ref. [36]. Given that the local oxygen environment of the Yb
ions in YbGG and YbIG is very similar [37], this assump-
tion is justifiable. In the least-squares fitting, we allowed the
spin-orbit coupling and all nine crystal-field parameters [see
Eq. (3)] to vary. As observables, the experimental transition
energies and intensity ratios obtained in this work (see Ta-
ble II) were combined with the 2F7

2
→ 2F5

2
transition energies

of YbIG and dilute Yb in Y3Ga5O12 from the optical study
reported in Ref. [32]. An additional constraint is provided by
the fact that the rare-earth CF environment is approximately
cubic, as demonstrated in previous studies of the rare-earth
garnets [37–39]. This constraint allowed us to limit the pa-
rameter space and reject any fits in which the largest CF
parameters, in an absolute sense, were not the cubic param-
eters B4

0, B4
4, B6

0, and B6
4.

The best-fit parameters are shown in the last column
of Table III. For comparison, parameters for the sister
compounds Yb3Ga5O12 and Yb3Al5O12, obtained in
Ref. [36], are also shown. Note that Ga3+ and Al3+, unlike
Fe3+, are nonmagnetic ions. As a result, the degeneracy of
the Yb3+ Kramers doublets in these compounds is not lifted.
The calculated spectra for each of the models are displayed

TABLE III. Comparison between crystal-field parameters found
in this work and those estimated in Ref. [36] for exchange-field free
compounds Yb3Ga5O12 and Yb3Al5O12.

Parameter Pearson et al. [36] This work

(meV) (Yb3Ga5O12) (Yb3Al5O12) (Yb3Fe5O12)

λ −357 −354 −357

B2
0 −17.4 −3.0 −10.9

B2
2 29.2 35.6 11.2

B4
0 −175.6 −149.8 −211.8

B4
2 34.7 16.0 36.7

B4
4 73.6 82.0 75.3

B6
0 97.2 212.3 76.9

B6
2 −89.4 −148.5 −38.5

B6
4 145.3 178.3 131.2

B6
6 −30.4 −30.0 −39.0

Aξξ 0.137

Aηη 0.262

Aζ ζ 0.226

in Figs. 7(a)–7(c), following the same order of Table III.
Intensities were estimated at T = 5 K and convolved with
Gaussians of FWHM = 2.8 meV. Constant-Q cuts analogous
to those performed on the experimental spectra are shown
along with the data in Fig. 6.

In Fig. 8, spectra simulated from the best-fit model are
compared with the LET data for several directions in re-
ciprocal space. Both the experimental and calculated spectra
have been averaged over wave-vector intervals of ±0.1 r.l.u.
in the directions orthogonal to those shown in the maps

FIG. 7. Diagram representing energy levels and intensities at
T = 5 K deduced for (a) Yb3Ga5O12 and (b) Yb3Al5O12 in Ref. [36].
In (c) the best fit for Yb3Fe5O12 obtained in this work is shown.
The calculated intensities were convolved with a Gaussian with the
instrumental resolution width. Note the different color scale in the
bottom and top panels. Intensities were calculated using the dipole
approximation, and are rigorously correct only for Q = 0.
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FIG. 8. Low-energy inelastic neutron scattering data collected on LET along several directions in reciprocal space, shown intercalated
with the calculated spectra for the model Hamiltonian in Eq. (12). Panels (a)–(c) and (g)–(i) show experimental data, while (d)–(f) and
(j)–(l) correspond to calculated spectra using the Fe-Fe exchange model of Shamoto et al. [10]. White arrows denote points of interest in the
hybridization of the modes, reproduced very well by the model.

(see Appendix G for more details). The agreement is seen
to be very good. That the model succeeds in describing the
hybridization between the Yb single-ion levels and the Fe
spin-wave modes is the central result of this work. Note in par-
ticular the hybridization features highlighted by white arrows,

where the Fe spin-wave modes would have zero structure
factor in the absence of the Yb-Fe coupling.

The neutron scattering intensity given by the model is
directly compared with the experimental intensities in Fig. 9.
Constant-Q cuts averaged over a narrow range of wave vector
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FIG. 9. Constant-Q cuts (black circles, with error bars) per-
formed on data shown in Fig. 8. Intensities were averaged over ±0.1
r.l.u. in all directions around the wave vector Q shown in the panels.
The colored lines are calculated from our model using the parameters
given in Refs. [9] and [10], also listed in Table I.

(±0.1 r.l.u.) are shown along with intensities calculated with
our model, integrated over the same wave-vector intervals.
The center wave vector of each cut is indicated in the fig-
ure labels. The cross-sections were calculated using two sets
of Fe-Fe exchange parameters: those reported by Princep et al.
[9] and those of Shamoto et al. [10].

VII. DISCUSSION

The single-ion magnetic moment μk of the Yb atoms may
be calculated from the ground-state wave functions of the
Hamiltonian H1. As an example, we state μ for atoms Yb1

and Yb7, in the local coordinate system

μ1 = (0.61 ξ1 − 1.46 η1)μB,

μ7 = (−0.55 ξ7 + 1.86 ζ7)μB.

FIG. 10. Zero-temperature magnetic structure of Yb3Fe5O12,
shown down the [111̄] (left) and [111] (right) cubic axes. The color
code is the same as that of Fig. 1(a). Arrows crossing Yb atoms
point along the ground-state magnetic moment of H1. The size of
the arrows does not indicate the magnetic moment magnitude and is
not represented in scale, being used only to denote spin orientation.

Magnetic moments for the other rare-earths in the unit cell can
be found by applying the symmetry operators in Appendix A
to μ1 and μ7. The single-ion easy axis of Yb is thus either the
local-η for atoms of group 1, or the local-ζ for atoms of group
2. The T = 0 magnetic structure obtained with our model is
depicted in Fig. 10. The magnetic moment arrangement and
magnitude are consistent with those reported in early neutron
scattering studies [22].

The absence of a λ-shaped feature in the heat capacity data
shown in Fig. 1(c) demonstrates that the Yb spin canting is not
accompanied by a symmetry breaking. Hence, the magnetic
structure presumed to be adopted by the Yb moments in YbIG
is not a result of any spontaneous ordering, at least down to
about 1.6 K, the lowest temperature at which our measure-
ments were carried out. The canting that we expect to occur in
YbIG at low temperatures is due to the competition between
the Yb single-ion anisotropy and the exchange interaction
with the iron sublattice, which tends to align the Yb magnetic
moment along the 〈111〉 directions.

The success of the model in reproducing the intensities of
the hybridized excitations, as well as their dispersion, is evi-
dent from Fig. 9. It is noticeable, however, that the agreement
is less good for the acoustic mode emerging from the (2,2,0)
reciprocal-lattice point, where the models of both Shamoto
et al. and Princep et al. overestimate the spectral weight by a
factor of 2 or more. As stressed earlier, the dispersion and scat-
tering intensity of the iron spin-wave modes observed in our
high-energy data for YbIG are very similar to those of YIG,
and therefore the iron-iron exchange model of Refs. [9,10]
was kept unchanged in our work. The Fe-Fe exchange param-
eters proposed by Shamoto et al. [10] seem to provide a better
agreement with the data in Fig. 8, especially around (2,2,0).
This may suggest that their model is slightly superior in de-
scribing the Fe-Fe interactions in the low-energy spectrum of
YbIG. The model of Princep et al., on the other hand, includes
more exchange parameters, and describes better the details of
the dispersion of the high-energy optical modes in YIG. A
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more thorough investigation of the Fe-Fe interactions in YbIG
is, however, outside the scope of the present work.

A series of spectroscopic studies performed in the 1960s
[31,32,40] was successful in measuring the CF splittings
of the lowest Kramers doublets of the J = 7/2 and 5/2
multiplets of the Yb3+ ions in YbIG. The full crystal-field
spectrum, including all the excited levels of the first J mul-
tiplet, was unknown at the time, and later assumed to be
identical to that of Yb3Ga5O12 [36]. In the theoretical stud-
ies that followed [41,42], a sophisticated mean-field theory
involving the coupling between spin-only (Fe) and spin-orbit
(Yb) levels was proposed by Levy. The disadvantage of this
approach, made clear in Refs. [41,42], was the excessive num-
ber of unknown model parameters compared to the amount of
experimental information available.

We succeeded in demonstrating that the low-temperature
magnetic spectrum of Yb3Fe5O12 can be very well accounted
for with a simpler model for the 4f-3d coupling, which is
described in terms of an anisotropic exchange field with only
three parameters, given in Eq. (6). This form of the coupling
was first applied to YbIG in Ref. [32] in order to describe
the exchange splitting of the lowest Kramers doublets in the
J = 7/2 and 5/2 levels observed in optical spectroscopic
measurements. In our convention, in which the total exchange
field is divided by the number of first nearest neighbors
(n = 2), the values found in Ref. [32] are Aξξ = 0.118 meV,
Aηη = 0.207 meV, and Aζ ζ = 0.233 meV. These are seen
to be very close to the values deduced in our analysis. The
model of Ref. [32] only partially describes the excitations,
however, because the details of the coupling, and the effects of
the Yb crystal-field excitations upon the low-energy magnon
spectrum of the Fe sublattices, were not considered at the
time.

Finally, we believe our work may have ramifications out-
side the realm of the iron garnets. The rare-earth orthoferrites
(REFeO3), as much as the RE iron garnets, have been known
and studied for a long time [43]. The cooperative behavior
made possible by the exchange interaction between rare-earth
and Fe spins in the REFeO3 compounds is recognized to be
of fundamental interest in quantum materials research [44].
Orthoferrites display two first-order phase transitions, a spin
reorientation transition, in addition to a compensation temper-
ature point [43]. Recent inelastic neutron scattering studies on
YbFeO3 [45] and ErFeO3 [46] reveal significant hybridization
between RE and Fe modes, similar to that described in this
work for Yb3Fe5O12. In those works, however, no model for
the RE-Fe interaction beyond the mean field was proposed.
Despite the complexity of the exchange interactions in ortho-
ferrites, it would be interesting to see if the model developed
here could be validated for other compounds presenting strong
d- f exchange interactions.

VIII. CONCLUSION

Our aim was to develop a model that could describe the
inelastic neutron scattering spectrum of Yb3Fe5O12. The very
high quality of the neutron data obtained on today’s state-of-
the-art spectrometers places strong demands on such a model,
especially at low energies, where the high resolution of the
experimental spectra has brought to light the effects of the

TABLE IV. Coordinates of the rare-earth atoms in the primitive
unit cell of the garnet lattice, expressed on the basis of the bcc
conventional axes.

Ybk

k (Group) x y z

1 (1) 0 3/4 7/8

2 (2) 1/4 5/8 1

3 (1) 3/8 1/2 5/4

4 (1) 1/4 1/8 1

5 (2) 1/2 1/4 7/8

6 (2) 1/8 1/2 3/4

7 (2) 0 1/4 5/8

8 (2) 3/8 0 3/4

9 (1) 1/2 −1/4 5/8

10 (2) 1/4 −1/8 1/2

11 (1) 1/4 3/8 1/2

12 (1) 1/8 0 1/4

4f-3d hybridization between CF levels and dispersive iron
spin waves. Nevertheless, we have shown that the low-energy
spectrum can be reproduced very well with a relatively simple
model that describes the coupling in terms of an anisotropic
exchange between Yb and Fe. Despite the simplifications
adopted in our description, the model is much more general:
it can be extended to include many CF levels and RE-RE
interactions, and it can also be applied to other rare-earth ions
in garnets and other compounds.
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APPENDIX A: LOCAL COORDINATE FRAME OF THE
RARE-EARTH SUBLATTICE

The coordinates of the atoms Ybk inside our choice of
primitive unit cell are given in Table IV. All the coordinates
are expressed in the basis of the conventional, orthogonal bcc
axes.

The principal axes of the Wybourne operators which
describe the crystal field acting on each Yb ion are spec-
ified by the local coordinates ξ, η, ζ. The transformation
between the local coordinates ξ1, η1, ζ1 of Yb1 and the global
crystallographic basis a, b, c is given in Eq. (2). For the atom
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FIG. 11. Representation of local and global coordinate systems
for atoms 1, 5, 7, and 9. Coordinates for the remaining eight atoms
in the primitive unit cell may be obtained by successive threefold
rotations about the [111] direction.

Yb7, ⎛⎝ξ7
η7
ζ7

⎞⎠ =
⎛⎝ 0 0 −1

− 1√
2

1√
2

0
1√
2

1√
2

0

⎞⎠⎛⎝a
b
c

⎞⎠. (A1)

Sites for which k = 9, 5 are connected to k = 1, 7 by an
inversion operation

I =
⎛⎝−1 0 0

0 −1 0
0 0 −1

⎞⎠. (A2)

Writing Rk = (ξk ηk ζk )T,

IR1 → R9 and IR7 → R5, (A3)

as represented in Fig. 11. Local coordinates of all the remain-
ing sites are related to Eqs. (2), (A1), and (A3) by threefold
rotations about [111] as follows:

C3R1 → R3, C3R3 → R11,

C3R5 → R8, C3R8 → R10,

C3R7 → R6, C3R6 → R2,

C3R9 → R12, C3R12 → R4,

where

C3 =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠.

Note that, in our representation, the ξ direction always lies
along the crystallographic a, b, or c.

APPENDIX B: DETAILS ABOUT HEx
i j

To calculate the spin-wave spectrum, we need to define a
local Cartesian basis x, y, z for the Fe spins. If Sa

i (Sa
j ), Sb

i (Sb
j ),

and Sc
i (Sc

j ) are the spin components of an atom at ri (r j),
projected along the axes of the conventional cubic (global)
coordinate system, we can choose for atoms at the 16a sites,⎛⎜⎝Sx

i

Sy
i

Sz
i

⎞⎟⎠ =

⎛⎜⎜⎝
− 1√

6
− 1√

6
2√
6

1√
2

− 1√
2

0

1√
3

1√
3

1√
3

⎞⎟⎟⎠
⎛⎜⎝Sa

i

Sb
i

Sc
i

⎞⎟⎠. (B1)

The transformation for atoms at 24d sites will then be⎛⎜⎝Sx
j

Sy
j

Sz
j

⎞⎟⎠ =

⎛⎜⎜⎝
1√
6

1√
6

− 2√
6

1√
2

− 1√
2

0

− 1√
3

− 1√
3

− 1√
3

⎞⎟⎟⎠
⎛⎜⎝Sa

j

Sb
j

Sc
j

⎞⎟⎠. (B2)

After performing the rotations given in Eqs. (B1) and (B2),
the Fe spin components are replaced by the standard Holstein-
Primakoff bosons. For transition-metal ions at 16a positions,⎛⎜⎝Sx

i

Sy
i

Sz
i

⎞⎟⎠ =

⎛⎜⎜⎝
√

2S
2 (ai + a†

i )

−i
√

2S
2 (ai − a†

i )

S − a†
i ai

⎞⎟⎟⎠, (B3)

while for atoms at 24d positions,⎛⎜⎝Sx
j

Sy
j

Sz
j

⎞⎟⎠ =

⎛⎜⎜⎜⎝
√

2S
2 (d j + d†

j )

−i
√

2S
2 (d j − d†

j )

S − d†
j d j

⎞⎟⎟⎟⎠. (B4)

The Fourier transforms of the bosons in Eq. (B3) are

ai = 1√
N

∑
q

exp(iq · ri )ai(q),

a†
i = 1√

N

∑
q

exp(−iq · ri )a
†
i (q). (B5)

Operators dj and d†
j may be similarly defined for the 24d site.

APPENDIX C: THE HAMILTONIAN HEx
i j EXPRESSED

IN LOCAL COORDINATES

In matrix form, Eq. (5) may be written

HEx
jk = (

Sξ
j Sη

j Sζ
j

)⎛⎜⎝Aξξ 0 0

0 Aηη 0

0 0 Aζ ζ

⎞⎟⎠
⎛⎜⎜⎝

Jξ

k

Jη

k

Jζ

k

⎞⎟⎟⎠.

(C1)

Note that in this representation, the spin operators S j of
the Fe atoms are written in the local coordinates of the
Ybk to which they couple (see Appendix A). Before apply-
ing the Holstein-Primakoff transformation, Sξ

j , Sη
j , Sζ

j must
be transformed to Sx

j , Sy
j , Sz

j , the spin components defined in
Eqs. (B3) and (B4). The transformation of the 24d Fe spin
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components between local and global coordinates follows
Eq. (B2). The Yb local coordinates for all the rare-earth atoms
in the primitive unit cell were defined in Appendix A. As

an example, we show below how to obtain the rotated ex-
change matrix for an atom Fe j bound to Yb1. Using Eqs. (2)
and (B2),

HEx
j1 = (

Sa
j Sb

j Sc
j

)⎛⎜⎜⎝
0 − 1√

2
1√
2

0 − 1√
2

− 1√
2

1 0 0

⎞⎟⎟⎠
⎛⎜⎝Aξξ 0 0

0 Aηη 0

0 0 Aζ ζ

⎞⎟⎠
⎛⎜⎜⎝

Jξ
1

Jη

1

Jζ
1

⎞⎟⎟⎠

= (
Sx

j Sy
j Sz

j

)⎛⎜⎜⎝
1√
6

1√
6

− 2√
6

1√
2

− 1√
2

0

− 1√
3

− 1√
3

− 1√
3

⎞⎟⎟⎠
⎛⎜⎜⎝

0 − 1√
2

1√
2

0 − 1√
2

− 1√
2

1 0 0

⎞⎟⎟⎠
⎛⎜⎝Aξξ 0 0

0 Aηη 0

0 0 Aζ ζ

⎞⎟⎠
⎛⎜⎜⎝

Jξ
1

Jη

1

Jζ
1

⎞⎟⎟⎠

= (
Sx

j Sy
j Sz

j

)
Ã j1

⎛⎜⎜⎝
Jξ

1

Jη

1

Jζ
1

⎞⎟⎟⎠, (C2)

where

Ã j1 = 1

3

⎛⎜⎜⎝
−√

6Aξξ −√
3Aηη 0

0 0 3Aζ ζ

−√
3Aξξ

√
6Aηη 0

⎞⎟⎟⎠. (C3)

Similarly, using Eqs. (A1) and (B2),

Ã j7 = 1

3

⎛⎜⎝
√

6Aξξ 0
√

3Aζ ζ

0 −3Aηη 0
√

3Aξξ 0 −√
6Aζ ζ

⎞⎟⎠. (C4)

Generically,

Ã jk =

⎛⎜⎜⎝
a11

jk a12
jk a13

jk

a21
jk a22

jk a23
jk

a31
jk a32

jk a33
jk

⎞⎟⎟⎠. (C5)

After the exchange matrices between all the pairs of in-
teracting atoms in the unit cell are found, following the steps
exemplified for Yb1 and Yb7 above, it can be shown that the
12 RE ions in the primitive unit cell may be divided into
two symmetry-inequivalent groups [25]. From Eqs. (B4) and
(C2), the 3d-4f exchange Hamiltonian, Eq. (7), describing
the coupling between a Yb and an Fe on a 24d site (we are
neglecting coupling to the 16a Fe sites) may be written

HEx
jk = (0 0 S)Ã jk

⎛⎜⎜⎝
Jξ

k

Jη

k

Jζ

k

⎞⎟⎟⎠
+

(√
2S

2
(d j + d†

j ) −i

√
2S

2
(d j − d†

j ) −d†
j d j

)

× Ã jk

⎛⎜⎜⎝
Jξ

k

Jη

k

Jζ

k

⎞⎟⎟⎠. (C6)

Equations (8) and (9) in the main text are found by substituting
(C3) and (C4), respectively, into the first term on the right-
hand side of (C6).

APPENDIX D: CONSTRUCTION AND DIAGONALIZATION
OF THE QUADRATIC HAMILTONIAN

We introduce the fermion operators C†
km and Ckm, which

create or annihilate, respectively, an electron on a level m at a
site k occupied by an Yb3+ ion. From these, two product pseu-
doboson operators c†

km = C†
kmCk0 and ckm = C†

k0Ckm, for m 	=
0, are defined. At sufficiently low temperatures, the ground-
state occupation is nk0 = C†

k0Ck0 ∼ 1. Under these conditions,
the operators c†

km, ckm satisfy the Bose commutation relations

[ckm, ck′m] = 0

[ckm, c†
k′n] = C†

k0

δkk′ δmn︷ ︸︸ ︷
CkmC†

k′n Ck′0 − C†
k′nCk′0C

†
k0Ckm

= δkk′δmn C†
k0Ck0︸ ︷︷ ︸
∼ 1

−δkk′ C†
k′nCkm︸ ︷︷ ︸
∼ 0

≈ δkk′δmn,

and they can be used to write H in a quadratic form.
Due to the colossal number of magnetic atoms in the unit

cell (8 + 12 + 12 = 32), the matrix form of Eq. (12) is built
in several blocks. First, the pseudoboson operators in Eq. (12)
are Fourier transformed using Eq. (B5) and

ckm = 1√
N

∑
q

exp(iq · rk )ckm(q),

c†
km = 1√

N

∑
q

exp(−iq · rk )c†
km(q). (D1)

Next, we write

H(q) = X †(q)H (q)X (q), (D2)
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where
X †(q) = [a†

i (q), . . . , d†
j (q), . . . , c†

km(q), . . . ,

ai(−q), . . . , d j (−q), . . . ckm(−q)] (D3)

is the Hermitian conjugate of X . As defined in the main text,
operators ai, d j , and ckm refer to Fe3+ at 16a, 24d and Yb3+

at 24c sites, respectively. Index i runs from 1 up to 8, j and
k from 1 to 12. As only one excited level is included in the
model, m = 1.

The H (q) matrix is constructed for the coupling between
atoms in one unit cell, and it is given by

ai′ (q) · · · d j′ (q) · · · ck′m(q) · · · a†
i′ (−q) · · · d†

j′ (−q) · · · c†
k′m(−q)

H (q) =

a†
i (q)
...

d†
j (q)
...

c†
km(q)

...

ai(−q)
...

d j (−q)
...

ckm(−q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Da(q)]8×8 [ 0 ]8×12 [ 0 ]8×12 [ 0 ]8×8 [MAF(q)]8×12 [ 0 ]8×12

[ 0 ]12×8 [Dd (q)]12×12 [C(q)]12×12 [MAF(q)]†
12×8 [ 0 ]12×12 [F (q)]12×12

[ 0 ]12×8 [C(q)]†
12×12 [Dc]12×12 [ 0 ]12×8 [F (−q)]12×12 [ 0 ]12×12

[ 0 ]8×8 [MAF(q)]8×12 [ 0 ]8×12 [Da(q)]8×8 [ 0 ]8×12 [ 0 ]8×12

[MAF(q)]†
12×8 [ 0 ]12×12 [F (−q)]†

12×12 [ 0 ]12×8 [Dd (q)]12×12 [C(−q)]†
12×12

[ 0 ]12×8 [F (q)]†
12×12 [ 0 ]12×12 [ 0 ]12×8 [C(−q)]12×12 [Dc]12×12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D4)

where the rows and columns are labeled with the components of X †(q) and X (q). The matrix elements on each block of (D6)
are

[Da(q)]ii′ = S[−2J3 − 6J6 + 6(J1 + J4)]δii′ + S
∑
ri′ 	=ri

Jii′ exp[−iq · (ri − ri′ )],

[MAF(q)]i j′ = SJi j′ exp[−iq · (ri − r j′ )],

[Dd (q)] j j′ =
{

S[−4J2 − 8J5 + 4(J1 + J4)] −
∑

k′
K3

jk′

}
δ j j′ + S

∑
r j′ 	=r j

J j j′ exp[−iq · (r j − r j′ )],

where K3
jk′ = (

a31
jk′Jη

00 + a32
jk′Jξ

00 + a13
jk′Jζ

00

)
,

[Dc]kk′ = Ekmδkk′ ,

[C(q)] jk′ =
√

2S

2
K2

jk′ exp[−iq · (r j − rk′ )],

where K2
jk′ = Jξ

m0

(
a11

jk′ + ia21
jk′

) + Jη

m0

(
a12

jk′ + ia22
jk′

) + Jζ
m0

(
a13

jk′ + ia23
jk′

)
,

[F (q)] jk′ =
√

2S

2
K1

jk′ exp[−iq · (r j − rk′ )],

where K1
jk′ = Jξ

0m

(
a11

jk′ + ia21
jk′

) + Jη

0m

(
a12

jk′ + ia22
jk′

) + Jζ
0m

(
a13

jk′ + ia23
jk′

)
. (D5)

The Bogoliubov transformation T (q) which diagonalizes
H (q),

D(q) = T †(q)H (q)T (q), (D6)

is found numerically using the procedure outlined by Colpa in
Ref. [49].

APPENDIX E: NEUTRON SCATTERING CROSS-SECTION

The cross-section for magnetic neutron scattering is pro-
portional to the dynamical structure factor S(Q, ω), which

may be written [50]

S(Q, ω) =
∑
λi

pλi

∑
λf

|〈λf|M⊥(Q)|λi〉|2δ
(
Eλf − Eλi − h̄ω

)
,

(E1)

where M⊥(Q) = Q̂ × M(Q) × Q̂ is the component of M(Q)
perpendicular to Q, M(Q) being the Fourier transform of the
magnetization operator, and Q̂ the unit vector in the direction
of Q. Also in Eq. (E1), λi and λf are the initial and final states
of the system, and pλi is the thermal occupation probability of
the initial state.
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In the determination of the crystal-field model for the Yb3+

single-ion excitations, we assume the dipole approximation
for M(Q),

M(Q) = −μB fYb(Q) exp(−W )(L + 2S), (E2)

where fYb(Q) is the magnetic form factor of Yb3+ and
exp(−W ) is the Debye-Waller factor. Note that higher-order
multipoles in the scattering operator M(Q) would need to be
included to obtain accurate intensities for the J = 7/2 to 5/2
interlevel transitions. Substituting (E2) into (E1), we obtain

S(Q, ω) = μ2
B f 2

Yb(Q)
∑

n

pn

∑
m

|〈	m|L⊥ + 2S⊥|	n〉|2

× δ(Em − En − h̄ω), (E3)

where pn = exp(−En/kBT ) is the thermal population of level
	n at a temperature T , and En and Em are the energies of
the initial and final CF levels, respectively. Because our mea-
surement was performed at low temperature, we have put
exp(−W ) = 1.

For the analysis of the propagating excitations on the
coupled Yb and Fe sublattices, we express the dipole approx-
imation for the scattering operator as

M(Q) = μBgS fFe(Q)
∑
α=i, j

Sα (Q)

+ μBgJ fYb(Q)
∑

k

Jk (Q), (E4)

where gS = 2, gJ = 8/7, and fFe(Q) is the magnetic form
factor of the Fe3+ ions. The operators S j (Q) and Jk (Q) are
written in terms of the pseudoboson operators ai(q), d j (q),
ckm(q) and their Hermitian conjugates, which are obtained
from Eq. (11) and the Fourier transforms of (B5) and (D1).
The eigenstates |λ〉 of the diagonal Hamiltonian D(q) are
given by T (q)X(q).

APPENDIX F: DETAILS ON THE ANALYSIS
OF THE MAPS DATA

Using the measured spectrum of Y3Fe5O12 as a back-
ground, we were able to separate rare-earth single-ion
excitations from the high-energy spin-waves, mostly optical
modes, occurring at a similar energy range. To demonstrate
that this procedure is indeed reliable, Fig. 12 displays some
examples of constant-Q cuts along different orientations,
showing that, after scaling the spin-wave intensities, data on
Y3Fe5O12 offer a good estimate of the spin-wave and phonon
backgrounds on Yb3Fe5O12.

The background-subtracted cuts were then fitted assuming
three Gaussian components whose widths correspond roughly
to the instrumental resolution. Integrated intensities, shown in
Fig. 13, for the levels (E2 + E3), (E4 + E5), and (E6 + E7) are
then obtained in arbitrary units. A function ai f 2

Yb(Q), where ai

is a scaling constant and i = 1, 2, 3, is plotted along with the
data in Fig. 13. The normalized integrated intensities at Q =
0, and energies for each one of the modes, are summarized in
Table II in the main text.

FIG. 12. Procedure used to separate scattering from crystal-
field excitations from scattering due to optical Fe spin-wave modes
and phonons. Data on Y3Fe5O12 (orange) were scaled to data on
Yb3Fe5O12 (black), and subsequently subtracted from them. The
resulting pattern, noticeably within the [60,90] meV energy interval,
is attributed to the single-ion excitations of the rare-earth. Integration
ranges are indicated at the top of each panel.

APPENDIX G: DETAILS ON THE ANALYSIS
OF THE LET DATA

The Fe acoustic spin-wave modes are seen in Fig. 8 to
be very steep in the energy range of interest to the analy-
sis of the coupling between Yb and Fe, i.e., up to 5 meV.
Consequently, the spin-wave dispersion varies considerably
for relatively small deviations in wave vector away from the
reciprocal-lattice points. This needs to be taken into account
when comparing the experimental data with the simulated
spectrum.

The measured intensity maps shown in Figs. 8(a)–8(c)
and 8(g)–8(i) are plotted as a function of energy and one
wave-vector direction Q, and they have been averaged over
intervals �Q⊥1 and �Q⊥2 in the two directions perpen-
dicular to Q. An identical averaging was applied to the
simulated spectrum by dividing the plane defined by �Q⊥1

FIG. 13. Integrated intensities, obtained as detailed in the text, of
the constant-Q cuts performed on MAPS data.
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and �Q⊥2 into bins of area 10−4 (r.l.u.)2 and calculating
the intensities in each bin. A similar procedure, but with a

volume average, was used for the constant-Q cuts displayed in
Fig. 9.
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