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Dual dynamic scaling in deconfined quantum criticality
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Emergent symmetry is one of the characteristic phenomena in deconfined quantum critical points (DQCP).
As its nonequilibrium generalization, the dual dynamic scaling was recently discovered in the nonequilibrium
imaginary-time relaxation dynamics in the DQCP of the J-Q3 model. In this paper, we study the nonequilibrium
imaginary-time relaxation dynamics in the J-Q2 model, which also hosts a DQCP belonging to the same
equilibrium universality class. We not only verify the universality of the dual dynamic scaling at the critical point
but also investigate the breakdown and the vestige of the dual dynamic scaling when the tuning parameter is away
from the critical point. We also discuss possible experimental realizations in devices of quantum computers.
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I. INTRODUCTION

Symmetry plays pivotal roles in identifying, charac-
terizing, and classifying phases and phase transitions
in condensed-matter physics [1,2]. Traditional Landau-
Ginzburg-Wilson (LGW) theory of phase transitions is based
on the mechanism of spontaneous symmetry breaking, in
which the symmetry of the ordered phase is always lower than
that of the microscopic model [1]. In contrast, many critical
systems show higher symmetry in the infrared limit than they
do in the ultraviolet lattice model. For instance, space-time
supersymmetry can emerge at the critical point in some topo-
logical materials [3–14]; Lorentz symmetry can emerge in the
superfluid-Mott insulator quantum phase transition [15,16],
critical two-subband quantum wires [17], and phase transi-
tions in Dirac systems [18–20]; SU(3) symmetry can emerge
in the critical spin-2 chain with translational invariant in-
teraction and in the critical spin-1 chain with random bond
interaction [21,22]; and extended O(N) symmetry can emerge
at the multicritical point [23–26]. In two-dimensional (2D)
spin systems, a prominent example in which the emergent
symmetry arises as its characteristic phenomenon is the de-
confined quantum critical point (DQCP) [27–29]. The DQCP
was proposed as a mechanism of continuous phase transition
between two spontaneous symmetry breaking phases, while
the usual LGW paradigm asserts that this kind of phase tran-
sition should be first ordered [27–66]. It was shown that for
the DQCP separating the antiferromagnetic (AFM) phase and
valence-bond-solid (VBS) phase in SU(2)-invariant quantum
magnets, SO(5) symmetry emerges to reconcile VBS and
AFM order parameters [33,41,67,68]; while for the DQCP in
easy-plane quantum magnets, SO(4) symmetry emerges [69].

Emergent symmetry and its breaking can induce intriguing
critical properties in DQCP. For the square lattice, on the
VBS side, the emergent continuous symmetry breaks down to
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discrete Z4 symmetry [27–29,41]. Accordingly, the fugacity of
the quadrupled coherent monopoles works as a dangerously
irrelevant scaling variable, which is irrelevant exactly at the
critical point, but relevant in the ordered VBS phase [70–75].
Pertinent to this variable, an extra divergent length ξ ′, which
measures the spinon confinement length or the thickness of the
VBS domain walls, develops in addition to the conventional
correlation length ξ [29,50], and they satisfy ξ ′ ∝ ξν ′/ν with
ν and ν ′ being the corresponding critical exponents [70–75].
It was plausibly shown that the interplay between these
two length scales may take responsibility for some anoma-
lous equilibrium scaling behaviors near the DQCP [49,50],
although a very weak first-order phase transition with pseud-
ocritical phenomena cannot be ruled out [76–85].

On the other hand, from the inflating universe to the
flowing rivers, equilibrium phenomena are just the excep-
tion rather than the rule in nature. Moreover, investigations
on nonequilibrium critical properties are of particular sig-
nificance since universal time-dependent behaviors always
appear near a critical point [86–90]. In classical systems, the
theory of critical dynamics has been well established by clas-
sifications of the dynamic universality classes [86]. Recently,
spurred by the remarkable experimental progresses in manip-
ulating and detecting the nonequilibrium quantum process,
the quantum critical dynamics has attracted intensive atten-
tion from both theoretical and experimental aspects [87–90].
Among these studies, it was shown that the scaling properties
in the imaginary-time relaxation dynamics near quantum crit-
ical points resemble those in the classical short-time critical
dynamics [91–99].

Inspired by the above intriguing issues, a natural question
arises: How the emergent symmetry and the associated scaling
properties with two length scales affect the nonequilibrium
dynamics in DQCP. In our previous paper [100], we stud-
ied the imaginary-time relaxation dynamics at the DQCP of
the J-Q3 model. We found that with an ordered initial VBS
(Néel) state, the relaxation dynamics of the VBS (Néel) order
parameter is controlled by the conventional correlation length
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ξ , while the dynamics of the Néel (VBS) order parameter
is controlled by the confinement length ξ ′. A dual dynamic
scaling, which states that the dynamic scaling forms change
to their dual partners as the initial states are changed to their
dual counterpart, is then proposed. This dual dynamics scal-
ing can be regarded as the nonequilibrium incarnation of the
emergent symmetry in the equilibrium case. Given the fact
that emergent symmetry is a common phenomenon in DQCP
[27–29,41,67–69], it is imperative to explore the universality
and robustness of the dual dynamic scaling in other models
that host DQCPs.

In this paper, we study the nonequilibrium imaginary-
time relaxation dynamics in the J-Q2 model [33]. The model
shares the same equilibrium universality class with the J-Q3

model but has a weaker VBS order [39,101]. After estimat-
ing the critical point via the dynamics of the sign function
of the order parameters, we study the relaxation behaviors
of the Néel and VBS order parameters from different initial
states at the critical point. By comparing the scaling forms
for different quantities, we verify the universality of the dual
dynamic scaling by showing that (i) the Néel and VBS order
parameters are controlled by different length scales for differ-
ent initial states and (ii) the dynamic scaling forms exchange
under the exchange of the initial states, similar to the case
of the J-Q3 model. Moreover, we investigate dynamic scal-
ing properties when the tuning parameter is away from the
critical point. Strikingly, we find that in the short-time stage,
the dual dynamic scaling, with a proper generalization of the
dual transformation, can exist even in the presence of the
off-critical-point effects, although in equilibrium the emergent
symmetry fades away once the system is set away from its
critical point. A possible experimental realization based on
programmable quantum devices is also discussed.

The rest of the paper is organized as follows. In Sec. II,
we introduce the equilibrium properties of the J-Q2 model,
the protocol of the imaginary-time relaxation dynamics and
the numerical method. Then, in Sec. III, we give a brief
review on the nonequilibrium dynamic scaling in the J-Q3

model. After estimating the critical point of the J-Q2 model
via the nonequilibrium scaling in Sec. IV, we explore the
dual dynamic scaling at the critical point for various initial
states in Sec. V. In Sec. VI, we show the dynamic scaling
behavior with the off-critical-point effects. Then we discuss
the experimental realizations in Sec. VII. A summary is given
in Sec. VIII.

II. MODEL AND IMAGINARY-TIME RELAXATION
DYNAMICS

The Hamiltonian of the Sandvik’s J-Q2 model reads [33]

H = −J
∑

〈i j〉
Pi j − Q

∑

〈i jkl〉
Pi jPkl , (1)

in which J > 0 and Q > 0, 〈i j〉 and 〈i jkl〉 denote nearest
neighbors and two nearest-neighbor pairs in horizontal rows
or vertical columns on the square lattice, respectively, and Pi j

denotes the spin singlet operator defined as Pi j ≡ 1/4 − Si ·
S j with S being the spin-1/2 operator. The system favors the
Néel phase with a finite order parameter M ≡ ∑

r (−1)rSr/N
when q ≡ J/Q > qc, while it favors the VBS phase with a

finite D when q < qc [33], in which D ≡ Dxx̂ + Dyŷ with
Dx(y) ≡ ∑

r (−1)rx(y) Sr · Sr+x̂(ŷ)/Ld and x̂ and ŷ the unit lat-
tice vectors in the x and y directions, respectively. These
two ordered phases break different symmetries: the Néel or-
der breaks the spin rotation symmetry, while the VBS order
breaks the translation symmetry. The phase transition between
them happens at q = qc � 0.045 [33,50,65]. According to the
LGW theory, this phase transition should be first ordered [1].
However, plenty of numerical results with scrutiny demon-
strate that this phase transition is a continuous one satisfying
the DQCP theory [33,42,50,65]. Here we list the critical ex-
ponents of the J-Q2 model relevant to this study. The dynamic
exponent z is equal to 1 [33]. Recent works show that the
anomalous dimension η � 0.25 [67], leading to 2β/ν � 1.25
from the scaling laws and the correlation length exponent is
ν � 0.455 [65].

Remarkably, it was shown that an emergent SO(5) symme-
try appears at the critical point of this Néel-VBS transition
[32,67,68]. This symmetry is induced by the conservation
of the monopole defects [102], indicating that the critical
point is described by the non-compact (2 + 1)D quantum
electrodynamics with deconfined spinons as its matter field
[27–29]. Moreover, in the VBS phase, confined spinon-pairs
are formed and the discrete Z4 symmetry is broken [103–105].
To reconcile the emergent continuous symmetry at q = qc

and the discrete symmetry for q < qc, the fugacity of the
monopole defects should take responsibility as a dangerously
irrelevant scaling variable. Accordingly, besides the usual cor-
relation length ξ ∝ |δ|−ν with δ ≡ q − qc the distance to the
critical point, the confinement length ξ ′ ∝ |δ|−ν ′

with ν ′ �
0.585 [50], measuring the averaged distance between two
spinons, also plays significant roles [70–75]. It was shown
that the interplay between these two characteristic scales can
explain the anomalous scaling behaviors of the energy density
of the domain wall and the susceptibility [50].

By replacing the second term, −Q
∑

〈i jkl〉 Pi jPkl , in Eq. (1)
with the interaction term with three nearest-neighbor pairs,
−Q

∑
〈i jklmn〉 Pi jPkl Pmn, one obtains the J-Q3 model. The

range of the VBS order in the J-Q3 model is broader than
that in the J-Q2 model, since the interaction between singlets
in the J-Q3 model is stronger than that in the J-Q2 model
[39,40]. Despite this difference, it was shown that both models
have continuous phase transitions supporting the DQCP the-
ory and share the same equilibrium universality class [39,40].
Moreover, it was shown that at the DQCP both models ex-
hibit the emergent SO(5) symmetry, while in the VBS order
both models breaks the discrete Z4 symmetry. Therefore, it is
expected that they have similar scaling properties with two
length scales. Actually, this was verified by comparing the
finite-size scaling behaviors of the domain-wall energy in the
J-Q2 model and the J-Q3 model [50,100]. The nonequilibrium
dynamic scaling behaviors in the J-Q3 model was studied in
Ref. [100]. We will compare the nonequilibrium dynamics in
the J-Q2 model with that in the J-Q3 model.

For the imaginary-time relaxation dynamics, the evolu-
tion of the wave function |ψ (τ )〉 obeys the imaginary-time
Schrödinger equation,

− ∂

∂τ
|ψ (τ )〉 = H |ψ (τ )〉, (2)
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FIG. 1. Sketch of the quench dynamics in imaginary-time with
different initial states. The initial states are prepared as (i) the satu-
rated VBS state, (ii) the saturated AFM state, and (iii) the completely
disordered initial state. All these states have vanishing correlation
length and correspond to the fixed points of the initial states under
the renormalization group transformation.

with the normalization condition Z ≡ 〈ψ (τ )|ψ (τ )〉 = 1
[95,96]. The formal solution of the Schrödinger equation is
given by

|ψ (τ )〉 = 1√
Z

U (τ )|ψ (τ0)〉, (3)

in which U (τ ) ≡ exp(−τH ) is the imaginary-time evolution
operator and τ0 is the initial time of the evolution.

In studies of relaxation dynamics, one focuses on the dy-
namical scaling behaviors of different quantities from a given
state [91–99]. The initial state is of key significance. In the
present paper, as illustrated in Fig. 1, we will consider three
kinds of uncorrelated initial states: (i) the saturated VBS state,
(ii) the saturated AFM state, and (iii) the completely disor-
dered state. All three states have vanishing correlation length
and correspond to the fixed points of the initial states under
the renormalization group transformation.

A wide range of quantum Monte Carlo (QMC) methods,
including the stochastic series expansion, projector QMC,
and world line methods, have natural connections to sim-
ulations of the imaginary-time evolution of quantum spin
systems [106]. In particular, the projector QMC has proven
to be a powerful tool in pursuing the imaginary-time dynam-
ics [97,98,100,106–111]. In the projector QMC method, the
imaginary-time evolution operator is Taylor expanded and the
normalization can then be written as the sum of the operator
sequence acting on some suitable basis states, such as the Sz

basis and the valence bond basis. [101,112]. The sum over
the operator sequence, along with the basis states, and the ex-
pansion power are then importance sampled. Local and global
operator-loop updating schemes are developed to improve the
efficiency of the Monte Carlo sampling. The expansion order
is truncated to some maximum length, which is not strictly
necessary in principle but brings significant convenience to
implementations of the method. Note that such truncation of
the expansion order causes no detectable errors. Expectation
values of physical quantities are then estimated in the finial
state |ψ (τ )〉 that is propagated from |ψ (τ0)〉 with the sampled
operator sequence and the corresponding basis states. In QMC

simulations, to achieve a given initial state for the system,
one needs to fix the boundaries of the imaginary-time prop-
agation direction. Therefore, different basis are applied for
convenience. For the saturated VBS state, the valence bond
basis is used [101,112], while for the AFM and disordered
state, the Sz basis is used [97,98,100,101,106–109,111]. For
a more detailed introduction of the method, we refer to the
literature [33,97,101,106–109,113].

III. BRIEF REVIEW OF THE DYNAMIC SCALING IN
J-Q3 MODEL

To study the nonequilibrium imaginary-time critical dy-
namics, one should first clarify the scaling relation between
the imaginary-time τ and the correlation length ξ . For a
usual critical point with one single divergent length scale,
the scaling relation between τ and ξ satisfies ξ ∝ τ 1/z. In
contrast, for the criticality with two length scales, there are
two possibilities: (i) ξ ∝ τ 1/z and ξ ′ ∝ τ ν ′/νz and (ii) ξ ′ ∝ τ 1/z

and ξ ∝ τ 1/zu , with zu being zu ≡ zν ′/ν (the subscript u means
the usual correlation length). It has been shown that scenario
(ii) is selected by the DQCP in the J-Q3 model [100].

With scenario (ii), the imaginary-time dynamics for satu-
rated ordered and completely disordered initial states should
obey the scaling form

Y (τ, δ, L) = τ
s
z̃ f

(
δτ

1
ν̃ z̃ , τL−z, τL−zu

)
, (4)

in which Y is an arbitrary operator, s is the exponent related
to Y , δ ≡ q − qc is the distance to the critical point, L is the
lattice size, and z̃ is the dynamic exponent, which can be
z or zu, or their combination, depending on the operator Y
and the dynamic process, similarly, ν̃ can be ν or ν ′ or the
combination of both, and f is the scaling function. For the
three kinds of initial states introduced above, the initial state
information does not appear explicitly in Eq. (4), since all of
them are the fixed points of the initial states. In contrast, for
other initial states with finite initial order parameters or finite
initial correlations, these initial conditions should be included
in the scaling form [91–99].

If zu = z, Eq. (4) recovers the usual single-length-scale
relaxation scaling theory, in which, for instance, at the critical
point, i.e., δ = 0, for a saturated initial state the order pa-
rameter scales as M2 = τ−2β/νzu f (τL−zu ) [92,94,100], while
for a disordered initial state M2 = L−dτ d/zu−2β/νzu f (τL−zu )
in which the factor L−d stems from the random distribution
of the initial state [94,100]. For both cases, in the long-time
limit, the scaling forms recover the equilibrium one, namely,
M2 ∝ L−2β/ν [94,100].

In contrast, in the J-Q3 model, a dual dynamic scaling
appears at the critical point [100]. Specifically, from the sat-
urated VBS initial state, D2 is controlled by ξ and obeys the
scaling form

D2(τ, L) = τ− β

νzu f
(
τL−zu

)
, (5)

while M2 is controlled by ξ ′ and obeys the scaling form

M2 = L−dτ
d
z − 2β

νz f (τL−z ). (6)
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As a dual case, from the saturated AFM initial state, M2 is
controlled by ξ and obeys the scaling form

M2(τ, L) = τ− β

νzu f
(
τL−zu

)
, (7)

while D2 is controlled by ξ ′ and obeys the scaling form

D2 = L−dτ
d
z − 2β

νz f (τL−z ). (8)

In addition, for the disordered initial state, which is equivalent
to the Néel and VBS phases, both D2 and M2 are controlled
by ξ ′ and obey similar scaling forms

P2 = L−dτ
d
z − 2β

νz f (τL−z ), (9)

in which P represents D and M. In the long-time limit, all
these equations tend to the same equilibrium form, D2 ∼
M2 ∼ L−2β/ν [33]. These scaling forms demonstrate a re-
markable dual dynamic scaling that the dynamic scaling
behaviors change to their dual partners correspondingly when
the initial states turn to their dual counterpart. This dual dy-
namic scaling reflects the equivalence between the Néel order
and the VBS order at the critical point, and can thus be re-
garded as the noneqilibrium generalization of the equilibrium
emergent SO(5) symmetry.

IV. ESTIMATION OF THE CRITICAL POINT

In this section, we employ the nonequilibrium scaling to
estimate the critical point of the J-Q2 model Eq. (1). In
equilibrium, for usual criticality with single length scale, any
arbitrary dimensionless quantity A scales as A = f (δL1/ν ).
Accordingly, for different system sizes, curves of A versus δ

will cross at the critical point if the scaling corrections are
neglected. One can use this scaling feature of dimensionless
quantities to estimate the critical point [106]. For the DQCP
with two length scales, in general, A = f (δL1/ν̃ ), in which the
choice of ν̃ depends on the quantity. For example, when A
is the Binder ratio of the order parameter, ν̃ = ν; when A is
the ratio of the distance between two spinons to the lattice,
ν̃ = ν ′ [50]. Both can be employed to determine the critical
point [50].

In generalizing the scaling form of A to the nonequilib-
rium case, according to Eq. (4), one finds that, in general,
A = f (τL−z, τL−zu , δL1/ν̃ ), in which there are two additional
time-dependent variables: τL−z and τL−zu . Without a priori
wisdom, one does not know which one dominates. In the
J-Q3 model, it was found that the sign function of the VBS
order parameter from the VBS initial state, ID ≡ 〈sgn(D)〉
is dominated by τL−z and so does the sign function of
the Néel order parameter from the AFM initial state, IM ≡
〈sgn(M )〉 [100].

To verify the universality of the dynamic properties of ID(M )

and determine the critical point of the J-Q2 model, here we
calculate ID and IM versus δ for various lattice sizes with
fixed τL−z = 1/4 from the VBS and the AFM initial states,
respectively. Note that in principle, different values of the ratio
τL−z should not deliver distinguishable results of qc as long
as L is large enough.

From Fig. 2, one finds that the size dependence of
the crossing points of ID versus q for L and 2L de-
crease monotonously as L increases and converge to a point

0.00 0.02 0.04 0.06 0.08
1/L

0.00

0.05

0.10

0.15

q c
(L

)

ID

IM

ID

IM

FIG. 2. Estimation of the critical point via the dynamic scaling of
the sign function of the order parameter ID(M ). The crossing points of
curves of ID(M ) versus q for L and 2L and fixed τL−1 = 1/4 converge
to the critical point as L → ∞, giving qc = 0.0449(7) from ID and
qc = 0.0453(5) from IM . The solid lines indicate fits of the form
qc(L) = qc + aL−ω.

q = qc = 0.0449(7) in the thermodynamic limit, which is
close to the known results of the critical point [42,50,65].
Moreover, Fig. 2 also shows that the crossing points of the
curves of IM versus q for L and 2L increases as L increases and
converge to q = qc = 0.0453(5), which is almost identical to
that in the ID case within the error bar. These results not only
determine the critical point accurately, but also demonstrate
that both ID and IM are dominated by τL−z in the relaxation
process from their respective ordered initial states, similar to
the case of the J-Q3 model. In the following calculations, we
use qc = 0.045, which is closed to the averaged value of qc

obtained by ID and IM .
To further examine the value of the critical point, we cal-

culate the dynamic behavior of the spinon confinement length
at q = qc = 0.045. By setting the initial state as that with
a triplet in the VBS background, we calculate the averaged
distance between two unpaired spinons, �, which is propor-
tional to the confinement length ξ ′ [50]. Figure 3(a) shows
that in the short-time stage, � ∝ τ 0.953 with the exponent
close to 1. Moreover, Fig. 3(b) shows that the rescaled curves
of �L−1 versus τL−z collapse onto each other well. These
results not only confirm the value of the critical point, but also

100 101 102

τ

101

102

Λ

Fit :

(a)

∝ τ0.953∝ τ0.953

10−2 10−1 100

τL−z

10−2

10−1

Λ
L
− 1

(b)

L = 128
L = 160
L = 192
L = 256

L = 128
L = 160
L = 192
L = 256

FIG. 3. Evolution of the distance between two spinons � at the
critical point with the initial state set as the one with a triplet em-
bedded in the VBS background. The curves for different L before
and after rescaling are shown in (a) and (b), respectively. The solid
line is a power-law fit that gives an exponent of 0.953, close to 1/z.
Double-logarithmic scales are used.
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D
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∝ τ0.737∝ τ0.737
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M
2
L

2
β
/
ν

2β/ν = 1.228
zu = 1.398
z = 1

(h)

10−2 10−1 100

τL−z
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2
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2
β
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FIG. 4. Relaxation dynamics of the order parameters with the saturated VBS initial state. Evolution of D2
x , D2

y , and M2 for various lattice
sizes L indicated are shown in top (a)–(c), middle (d)–(f), and bottom (g)–(i) rows, respectively. In the left column (a), (d), (g), curves of the
order parameter versus τ are fitted in the short-time stage by the power function. In addition, curves after rescaling are shown in the middle
(b), (e), (h) and right (c), (f), (i) columns. For both columns, D2

x , D2
y , and M2 are rescaled as D2

x L2β/ν, D2
y L2β/ν and M2L2β/ν , respectively. To

compare, τ is rescaled according to τL−zu and τL−z in the middle (b), (e), (h) and right (c), (f), (i) columns, respectively. Double-logarithmic
scales are used.

demonstrate that the scaling relation ξ ′ ∝ τ 1/z is universal for
both the J-Q2 model and the J-Q3 model.

However, different from the usual criticality with single
length scale, in the DQCP with two length scales, not every
dimensionless variable exhibits scaling properties controlled
by the same scaling variable. In Sec. V A, we will show that
the dynamics of the Binder ratios of the order parameters can
be dominated by both τL−z and τL−zu , depending on the initial
states.

V. DUAL DYNAMIC SCALING AT THE CRITICAL POINT

In this section, we will explore the imaginary-time relax-
ation dynamics at the critical point from different initial states.
We will show that the dual dynamic scaling is a universal
behavior in the relaxation dynamics of the DQCP since it also
appears at the critical point of the J-Q2 model.

A. Dynamics with the VBS initial state

The VBS order breaks the Z4 discrete symmetry. The initial
VBS state is chosen as that with horizontal dimers occupying

every other bond as shown in Fig. 1. Accordingly, at τ = 0,
Dx has a saturated value 3/8, while Dy = 0.

For the VBS order parameter Dx, we find from Fig. 4(a)
that it relaxes according to D2

x ∝ τ−0.847 in the short-time
stage. This exponent is close to 2β/νzu � 0.881 rather than
2β/νz � 1.228, in which zu = zν ′/ν � 1.398. Here, we use
ν/ν ′ � 0.715 obtained from direct fitting of the exponent
ratio in Ref. [50]. Therefore, in general, the full scaling
form of D2

x in the whole relaxation process should be D2
x =

τ−2β/νzu f (τL−zu , τL−z ). Moreover, previous studies showed
that in equilibrium D2 ∝ L−2β/ν [33,42]. Thus, one can in-
fer that the full scaling form of D2

x should also be D2
x =

L−2β/νg(τL−zu , τL−z ), in which g is another scaling func-
tion. These two full scaling forms should be consistent with
each other. This constraint indicates that the dominant scal-
ing variable in the scaling function is τL−zu rather than
τL−z, so the scaling form can be converted from D2

x =
τ−2β/νzu f (τL−zu ) to D2

x = L−2β/νg(τL−zu ) by recognizing the
relation f (τL−zu ) = (τL−zu )2β/νzu g(τL−zu ). To verify the scal-
ing theory, in Figs. 4(b) and 4(c), we plot the rescaled curves
of D2

xL2β/ν versus τL−zu and compare them with those of
D2

xL2β/ν versus τL−z. It is clear that with τ scaled with L−zu ,
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the curves collapse better than the case with L−z, indicating
that it is τL−zu , or ξ , that governs the scaling form. These
results show that the scaling form of D2

x from the VBS initial
state also satisfies Eq. (5) found in the J-Q3 model [100],
confirming the universality of the scaling of D2

x with the
horizontal VBS initial state in the Néel-VBS transition.

Note that here one may argue that D2
x can also be expressed

as D2
x (τ, L) ∝ τ−2β/ν ′z. In this case, 2β/ν ′ � 0.881 is smaller

than 1. Accordingly, the scaling law 2β/ν ′ = d + z − 2 + η′
gives a negative anomalous dimension η′, which would imply
a nonunitary theory [49,114,115]. Alternatively, to satisfy the
unitarity bound of the critical point [114,115], we choose to
adopt D2

x (τ, L) ∝ τ−2β/νzu , in which 2β/ν keeps intact while
an additional dynamic exponent zu is introduced.

From the perspective of the Néel order, the saturated VBS
state plays a similar role to a disordered state, since both
the VBS state and the disordered state keep the spin rota-
tion symmetry and have vanishing correlation length. For
the Néel order parameter M, we find from Fig. 4(g) that it
relaxes according to M2 ∝ L−dτ 0.737 in the short-time stage.
The exponent 0.737 is close to (d/z − 2β/νz) = 0.772. Thus,
the general full scaling form characterizing the whole relax-
ation process should be M2 = L−dτ d/z−2β/νz f (τL−zu , τL−z ).
Similar to the case of D2

x , the full scaling form can also
be expressed as M2 = L−2β/νg(τL−zu , τL−z ), since in equi-
librium M2 ∝ L−2β/ν . The consistency between these two
full scaling forms dictates that the dominant scaling vari-
able in the scaling function is τL−z rather than τL−zu ,
such that the scaling form can be converted from M2 =
L−dτ d/z−2β/νz f (τL−z ) to M2 = L−2β/νg(τL−z ) by recogniz-
ing the relation f (τL−z ) = (τL−z )−d/z+2β/νzg(τL−z ). More-
over, by comparing the rescaled curves of M2L2β/ν versus
τL−zu and τL−z, one finds from Figs. 4(h) and 4(i) that the
rescaled curves collapse onto each other with τL−z, while
they deviate from each other with τL−zu . These results show
that in the J-Q2 model the dynamics of M2 from the VBS
initial state is controlled by the confinement length scale ξ ′
and satisfies Eq. (6), same as the case of the J-Q3 model [100],
confirming the universality of the dynamic critical behavior of
M2 in DQCP.

In addition, we calculate the VBS order parameter in the
vertical direction Dy. From Fig. 4(d), we find that it relaxes
according to D2

y ∝ L−dτ 0.73 in the short-time stage. The ex-
ponent is close to (d/z − 2β/νz), in analogy to the case of
M2. Similar analyses give that the full scaling forms should be
D2

y = L−dτ d/z−2β/νz f (τL−z ) and D2
y = L−2β/νg(τL−z ). More-

over, by comparing the rescaled curves of D2
yL2β/ν versus

τL−zu and τL−z, one finds that the rescaled curves collapse
better with τL−z, as shown in Figs. 4(e) and 4(f). From the
above results, one can see that in the J-Q2 model, with the hor-
izontal VBS initial state, the dynamics of D2

y is also controlled
by the confinement length scale, same as the case of M2. Such
results illustrate the equivalence under the rotation between
M- and Dy-directions for the initial state with saturated Dx.

To further reveal the dynamic scaling behaviors from
the VBS initial state, we also study the Binder ratios for
the VBS and Néel order parameters, defined as UD ≡ [3 −
〈D4

x〉/〈D2
x〉2]/2 and UM ≡ [3 − 〈M4〉/〈M2〉2]/2, respectively.

As dimensionless quantities, their general scaling forms

are UD(M ) = fD(M )(τL−zu , τL−z ). By comparing UD(M ) versus
τL−zu and τL−z in Fig. 5, one finds that UD is controlled by the
usual length scale ξ and its dynamics obeys UD = fD(τL−zu ),
while UM is controlled by the confinement length scale ξ ′ and
its dynamics obeys UM = fM (τL−z ). These scaling proper-
ties are also consistent with the results that D2

x and M2 are
dominated by τL−zu and τL−z, respectively. Combining with
the scaling properties of the sign function ID(M ), we find that
in the nonequilibrium dynamics of DQCP with two length
scales, dimensionless quantities can be controlled by different
length scales, depending on the physical quantities themselves
and the initial states applied. Moreover, our results demon-
strate that special attention should be paid when one employs
the short-time dynamics of the dimensionless quantities to
determine the critical properties in DQCP with two length
scales, although this method is often used in usual LGW phase
transitions [92].

B. Dynamics with the AFM initial state

The AFM state breaks the spin SO(3) rotation symmetry.
We choose the initial state as the one with saturated compo-
nent in the z direction, as shown in Fig. 1.

In analogy to the situation of the Néel order with the satu-
rated VBS initial state, from the perspective of the VBS order,
the saturated AFM state plays a similar role to a disordered
state, since both of them contribute zero VBS order param-
eters and vanishing correlation lengths. We find in Fig. 6(a)
that the VBS order parameter evolves according to D2 ∝
L−dτ 0.73 in the universal short-time stage (here D2 ≡ D2

x +
D2

y ). This exponent is close to (d/z − 2β/νz). By considering
the equilibrium scaling D2 ∝ L−2β/ν simultaneously [33,42],
one finds that the confinement length dominates the dynamics
and the scaling form of D2 is D2 = L−dτ d/z−2β/νz f (τL−z ).
This scaling form can be converted to D2 = L−2β/νg(τL−z )
by substituting f (τL−z ) = (τL−z )−d/z+2β/νzg(τL−z ) into the
former equation. Moreover, by comparing the rescaled curves
of D2L2β/ν versus τL−zu and τL−z, as shown in Figs. 6(b)
and 6(c), one finds that the rescaled curves collapse better
for τL−z. These results show that in the J-Q2 model, the
dynamics of D2 from the AFM initial state is controlled by the
confinement length scale and satisfies Eq. (8). These results
are the same as those of the J-Q3 model [100], confirming the
universality of the dynamic critical behavior of D2 in DQCP.

For the Néel order parameter, similar to the VBS order
parameter from the saturated VBS initial state, it decays with
τ as M2

z ∝ τ−0.866 with the exponent close to 2β/νzu as
shown in Fig. 6(d). Combining with the equilibrium finite-size
scaling M2

z ∝ L−2β/ν [33,42], one deduces that the full scal-
ing form should be M2

z = τ−2β/νzu f (τL−zu ) or, equivalently,
M2

z = L−2β/νg(τL−zu ). As seen in Figs. 6(e) and 6(f), by
rescaling M2

z and τ with L2β/ν and L−zu , respectively, we find
the rescaled curves match with each other. However, when τ

is rescaled with L−z, the rescaled curves deviate. These results
confirm that the dynamics of M2

z with the z-component AFM
initial state is controlled by the usual correlation length scale
and satisfies Eq. (7). These results are also the same as those
in the J-Q3 model [100].
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FIG. 5. Relaxation dynamics of the Binder ratios with the VBS initial state. Evolutions of UD and UM for various lattice sizes L indicated
are shown in top (a)–(c) and bottom (d)–(f) rows, respectively. For comparison, τ is rescaled according to τL−zu in the middle column (b),
(e); while τ is rescaled according to τL−z in the right column (c), (f).

C. Dynamics with the disordered initial state

The disordered initial state can be prepared in the very
high-temperature region. From the perspective of the disor-
dered state, either the Néel or the VBS order looks equivalent.
Accordingly, it is expected that both D2 and M2 should sat-

isfy the same scaling form: P2 = L−dτ d/z−2β/νz f (τL−z ), in
which P represents D and M. This dynamic scaling is similar
to the cases of D2 with the AFM initial state and M2 with
the VBS initial state. To verify these scaling properties, in
Figs. 7(a) and 7(d), we plot the evolution of D2 and M2. We
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FIG. 6. Relaxation dynamics of order parameters with the AFM initial state. Evolutions of D2 and M2
z for various lattice sizes L indicated

are plotted in top (a)–(c) and bottom (d)–(f) rows, respectively. In the left column (a), (d), curves of the order parameter versus τ are fitted
in the universal short-time stage by the power function. In addition, curves after rescaled are shown in the middle (b), (e) and right (c), (f)
columns. For both columns, D2 and M2 is rescaled as D2L2β/ν and M2

z L2β/ν , respectively. In contrast, τ is rescaled according to τL−zu and
τL−zin the middle (b), (e) and right (c), (f) columns, respectively. Double-logarithmic scales are used.
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FIG. 7. Relaxation dynamics of order parameters with the disordered initial state. Evolutions of D2 and M2 for various lattice sizes L
indicated are plotted in top (a)–(c) and bottom (d)–(f) rows, respectively. In the left column (a), (d), curves of the order parameter versus τ

are fitted in the short-time stage by the power function. In addition, curves after rescaling are shown in the middle (b), (e) and right (c), (f)
columns. For both columns, D2 and M2 is rescaled as D2L2β/ν and M2

z L2β/ν , respectively. In contrast, τ is rescaled according to τL−zu and in
the middle (b), (e) and right (c), (f) columns, respectively. Double-logarithmic scales are used.

find that in the universal short-time stage, P2 ∝ L−dτ d/z−2β/νz.
In addition, by noting that P2 = L−dτ d/z−2β/νz f (τL−z ) can
be transformed to P2 = L−2β/νzg(τL−z ), we compare the
curves of P2L2β/ν versus τL−z and τL−zu , respectively. From
Figs. 7(b), 7(c), 7(e), and 7(f), one finds that with τL−z, the
curves collapse better, verifying the full scaling forms men-
tioned above. Moreover, these results demonstrate that both
M2 and D2 are controlled by the confinement length ξ ′. The
same scaling properties are also found in the J-Q3 model as
shown in Eq. (9). Therefore, one concludes that these scaling
properties are universal as well.

D. Dual dynamic scaling

The appearance of the emergent symmetry is a character-
istic critical property of the DQCP [27,28,33,41,67–69]. For
the class of the SU(2) J-Q model, the emergent symmetry
at the critical point is the SO(5) symmetry, which describes
the rotation symmetry between the components of the super-
spin S = (Mx, My, Mz, Dx, Dy), including the components of
the Néel and the VBS order parameters [27,28,33,41,67,68].
The emergent symmetry is broken in both ordered phases. In
particular, along with the appearance of the discrete Z4 sym-
metry, scaling properties with two length scales arise on the
VBS side.

In the imaginary-time relaxation dynamics, the above nu-
merical results for the J-Q2 model Eq. (1) show a remarkable
dual dynamic scaling behavior: the scaling forms of the or-
der parameters exchange as the initial state is rotated in the
superspin space, similar to the results in the J-Q3 model
[100]. Specifically, when the initial state is rotated from the
VBS state to the AFM state, the dynamic scaling form of
the VBS (Néel) order parameter changes to that of the Néel

(VBS) order parameter, and vice versa. Additionally, for the
disordered initial state which keeps invariant under the rota-
tion between the superspin components, both the VBS and
the Néel order parameters show similar scaling behaviors.
Comparing with the equilibrium emergent symmetry, we find
that the dual dynamic scaling also reflects the rotation sym-
metry between the superspin components. Moreover, these
results also show that effects induced by the interplay between
two length scales are naturally included in the dual dynamic
scaling.

A prominent question is why the relaxation processes of
different superspin components can be governed by different
length scales, albeit their equilibrium finite-size scaling forms
are the same. By inspecting the relaxation behaviors under
different initial conditions, one finds that for the dominant
component with a saturated initial value, i.e., the component
accordant with the saturated initial component, its relaxation
dynamics is controlled by the usual correlation length; while
for the complementary component with zero initial value,
i.e., the component orthogonal to the saturated initial compo-
nent, its relaxation dynamics is controlled by the confinement
length. For the dominant component, the relaxation dynamics
is associated with the local fluctuations whose characteris-
tic length scale is measured by the usual correlation length
ξ . For the complementary component, the average value of
the component keeps zero in the relaxation process due to
the symmetry of the Hamiltonian, while its average squared
value in the short-time stage is proportional to L−d at a given
evolution time τ . Since this average squared value is directly
related to the lattice size, one can infer that its dynamics is
associated with the global fluctuations, which is related to
the topological properties of the system. Different from the
situation in the usual critical point where both the local and the
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global fluctuations have the same characterized length scale
ξ [94,100], in the DQCP of the J-Q model class, the global
fluctuations can have a different typical length scale. To be
specific, the global fluctuations correspond to the excitations
with the spinons living in the vortices of the VBS domain
walls and the distance between these spinons is character-
ized by the confinement length ξ ′ [29]. Accordingly, it is
expected that the complementary order parameter component
with a vanishing initial value should be controlled by the
confinement length ξ ′. This argument is also supported by
the findings that with a disordered initial state, all superspin
components are governed by global fluctuations, so both M2

and D2 are controlled by ξ ′.
Besides the order parameters, other quantities can also

obey the dual dynamic scaling. For instance, it is shown that
the sign function ID(M ) from the VBS (Néel) saturated initial
state is controlled by the confinement length ξ ′. By rotating
D to M, the initial states and dynamic scaling forms change
correspondingly. Note that here the scaling form for ID and IM

are the same. Moreover, although D2 and M2 are controlled
by the usual length scale ξ for their respective ordered initial
states, their sign functions are dictated by the global flip of the
order parameter over entire lattice range. Accordingly, ID(M ) is
controlled by the confinement length.

Here we discuss another intriguing puzzle on the dual
dynamic scaling. According to the usual critical theory in
the presence of a dangerously irrelevant scaling variable, the
additional length scale ξ ′ only plays a role on one side of
the critical point. Accordingly, asymmetric scaling properties
arise between two sides of the critical point in equilibrium
[75]. In the DQCP, for the relaxation dynamics from an or-
dered initial state to the critical point, this selected ordered
state breaks the rotation symmetry in the superspin space.
Therefore, the relaxation process should encode the informa-
tion of the initial ordered phase during its way down to the
ground state. As a result, it is expected that with different
ordered initial states, asymmetric dynamic scaling should ap-
pear rather than the dual dynamic scaling, namely, following
this argument, different scaling forms should be observed for
the dominant order parameter on the exchange of the saturated
AFM and VBS initial states. So does the complementary one.
However, such prediction is inconsistent with the numerical
results found here and in Ref. [100].

To solve this puzzle, we note that in equilibrium, only the
ground state contributes to the expectation value and brings
about the asymmetric scaling properties. In contrast, in the
universal stage of nonequilibrium process, the relaxation state
is the superposition of the initial state, the ground state, and
the low-energy excited states. Specifically, for the AFM initial
state, besides the usual spin wave excitation, excited states
with quadrupled monopoles, which are directly connect to
the VBS order, also play important roles at the critical point
[103–105]. Although the spin-wave excitations near the AFM
initial state exhibit the usual correlation length ξ , the excited
states with quadrupled monopoles should be characterized by
the confinement length scale ξ ′. Similarly, for the VBS initial
state, besides the usual spin triplet excitation, excited states
with spinons staying at the vortices of the VBS domain walls
that have direct connection to the Néel order, are also impor-
tant at the critical point [29]. The correlation of spin-triplet

excitations exhibits the usual correlation length ξ , while the
excited states combining deconfined spinons and vortices of
the VBS domain walls are characterized by the confinement
length scale ξ ′. Therefore, the relaxation state is an intertwin-
ing state of both length scales, despite the choice of ordered
initial state. This argument explains the appearance of the dual
dynamic scaling under the superspin rotation.

VI. DYNAMIC SCALING AWAY FROM
THE CRITICAL POINT

In equilibrium, when the tuning parameter δ deviates from
the critical point of the DQCP, the emergent symmetry fades
away. Near the critical point, the scaling properties with two
length scales also manifest themselves for finite δ [116]. For
instance, it was shown that both the singlet and triplet gaps
scales for δzν ′

[116]. As the nonequilibrium incarnation of the
emergent symmetry, the fate of the dual dynamic scaling in
the presence of a finite δ is studied in this section.

A. Off-critical-point dynamic scaling from the VBS initial state

According to Eq. (4), with the saturated horizontal VBS
initial state and a small δ, D2

x obeys the scaling form

D2
x (τ, δ, L) = τ− β

νzu f
(
δτ

1
ν̃ z̃ , τL−zu

)
, (10)

in which ν̃ is ν or ν ′ and z̃ is z or zu. However, the spe-
cific choices are unknown. To determine them, we expand
the scaling function f in term of δτ 1/ν̃ z̃ and obtain �D2

x ≡
D2

x (τ, δ, L) − D2
x (τ, L) up to the leading order as

�D2
x (τ, δ) � δτ− β

νzu
+ 1

ν̃ z̃ . (11)

Note that in Eq. (11), the dependence on L is ignored
since in the short-time stage, ξ and ξ ′ are smaller than
L. Similarly, �D2

y ≡ D2
y (τ, δ, L) − D2

y (τ, L) and �M2 ≡
M2(τ, δ, L) − M2(τ, L) obey

�D2
y (τ, δ) � L−dδτ

d
z − 2β

νz + 1
ν̃ z̃ (12)

and

�M2(τ, δ) � L−dδτ
d
z − 2β

νz + 1
ν̃ z̃ , (13)

respectively. By analyzing the dependence of �D2
x , �D2

y , and
�M2 on τ , we can determine the specific choices of ν̃ and
z̃ for different quantities. For clarification, we enumerate the
values of all possible combinations of 1/ν̃ z̃: 1/νz � 2.198,
1/ν ′z = 1/νzu � 1.572 and 1/ν ′zu � 1.125. In the following
calculations, we choose δ = ±0.005. We have checked that
for δ = ±0.01, there is no qualitative difference in the univer-
sal properties.

At first, we study the case for δ < 0 with the ground state
sitting in the VBS side. From Fig. 8(a), one finds that for
δ = −0.005, �D2

x evolves according to �D2
x ∝ τ 0.34. This

exponent is close to −2β/νzu + 1/ν ′zu � 0.246. The devi-
ation between the result in Fig. 8(a) and the value 0.246
can result from finite size effect. In addition, Figs. 8(b) and
8(c) show that �D2

y ∝ τ 1.93 and �M2 ∝ τ 1.844. Both their
exponents are close to d/z − 2β/νz + 1/ν ′zu � 1.897. These
results show that for D2

x , D2
y and M2, their off-critical-point

effects in the short-time stage are all controlled by δτ 1/ν ′zu .
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FIG. 8. Relaxation dynamics away from the critical point with the VBS initial state. Top row: For δ > 0, curves of �D2
x , �D2

y , and �M2

versus τ are plotted in (a)–(c), respectively. Bottom row: For δ < 0, curves of �D2
x , �D2

y , and �M2 versus τ are plotted in (d)–(f), respectively.
Power-law fittings are implemented for all curves in the universal short-time stage. Double-logarithmic scales are used.

Since ξ ′ ∝ |δ|−ν ′
and ξ ∝ τ 1/zu , the term δτ 1/ν ′zu combines the

two arguments and reflects an effect induced by the interplay
of two length scales.

Then, let us turn to the case for δ > 0, in which the sys-
tem is relaxed from the VBS initial state to a AFM ground
state. From Fig. 8(d), one finds that for δ = 0.005, �D2

x
evolves according to �D2

x ∝ τ 0.32. This exponent is close to
−2β/νzu + 1/ν ′zu � 0.246, similar to the case for δ < 0. In
contrast, for �D2

y and �M2, we find that �D2
y ∝ τ 2.23 and

�M2 ∝ τ 2.26, as shown in Figs. 8(e) and 8(f). Both exponents
are close to d/z − 2β/νz + 1/νzu or d/z − 2β/νz + 1/ν ′z,
which are close to 2.344. These results show that for δ > 0,
the off-critical-point effects for �D2

x , �D2
y and �M2 are

controlled by different scaling variables: δτ 1/ν ′zu dominates in
�D2

x , while δτ 1/νzu or δτ 1/ν ′z dominates in �D2
y and �M2.

In addition, for �D2
y and �M2, from the present numerical

results, one cannot clarify which one of δτ 1/νzu and δτ 1/ν ′z

dominates the scaling form for δ > 0. Here we argue that both
should be taken into account in the short-time stage. For the
former, both δ−ν and τ 1/zu are related to the usual length scale
ξ , and δτ 1/νzu represents the ratio between the contributions
from δ and τ to ξ ; while for the latter, both δ−ν ′

and τ 1/z

are related to the confinement length ξ ′, and δτ 1/ν ′z represents
the ratio between the contributions from δ and τ to ξ ′. These
ratios can have similar order of magnitude in the universal
short-time stage for finite δ. However, in the long-time stage,
δτ 1/νzu should dominate due to the asymmetric appearance of
the dangerously irrelevant scaling variable. In the equilibrium
situation, the dangerously irrelevant scaling variable only ap-
pear on the VBS side, causing anomalous scaling behaviors
induced by the interplay of the usual length scale ξ and the
additional confinement length scale ξ ′. Therefore, in the long
time limit, for δ > 0, only the usual length scale, namely,
δτ 1/νzu , should govern the scaling form.

Thus, we conclude the choice of 1/ν̃ z̃ for different cases:
(i) When δ < 0, for �D2

x , �D2
y , and �M2, 1/ν̃ z̃ should be

1/ν ′zu, which reflects the interplay of two length scales.
(ii) When δ > 0, for �D2

x , 1/ν̃ z̃ is 1/ν ′zu as well, while for
�D2

y and �M2, 1/ν̃ z̃ can be 1/νzu or 1/ν ′z in the short-time
stage, while 1/ν̃ z̃ should be 1/νzu in the long-time stage.

B. Off-critical-point dynamic scaling from the AFM initial state

From the saturated AFM initial state, similar analyses give
that for a small δ, in the universal short-time stage, �D2 obeys
the following scaling relation:

�D2(τ, δ) � L−dδτ
d
z − 2β

νz + 1
ν̃ z̃ , (14)

and �M2
z obeys

�M2
z (τ, δ) � δτ− 2β

νzu
+ 1

ν̃ z̃ (15)

to the leading order of δτ 1/ν̃ z̃.
First, we study the case for δ < 0 with the ground state

sitting in the VBS side. From Fig. 9(a), one finds that for
δ = −0.005, �M2

z evolves according to �M2
z ∝ τ 0.36. This

exponent is close to −2β/νzu + 1/ν ′zu � 0.246, similar to
the scaling relation of �D2

x from the VBS initial state. In
contrast, from Fig. 9(b), we find that �D2 ∝ τ 2.47 with its
exponent close to d/z − 2β/νz + 1/νzu and d/z − 2β/νz +
1/ν ′z, both close to 2.344. Similar to the case of �M2 with
δ > 0 from the VBS initial state, we argue that both δτ 1/νzu

and δτ 1/ν ′z should be taken into account in the universal short-
time stage. However, in the long-time stage, different from
the case when the system is relaxed from the saturated VBS
initial state to the AFM side, from the saturated AFM initial
state to the VBS side, besides δτ 1/νzu , δτ 1/ν ′z should also play
important roles.
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FIG. 9. Relaxation dynamics away from the critical point with
the AFM initial state. Top row: For δ > 0, curves of �D2 and �M2

z

versus τ are plotted in (a) and (b), respectively. Bottom row: For
δ < 0, curves of �D2 and �M2

z versus τ are plotted in (c) and (d),
respectively. Power-law fittings are implemented for all curves in the
universal short-time stage. Double-logarithmic scales are used.

Then, we turn to the case for δ > 0 and the ground state is
in the Néel phase. From Fig. 9(c), one finds that for δ = 0.005,
�M2

z evolves according to �M2
z ∝ τ 0.37. This exponent is

close to −2β/νzu + 1/ν ′zu � 0.246, similar to previous scal-
ing relation of �M2

z for δ < 0. Moreover, Fig. 9(d) shows
that �D2 ∝ τ 1.97 with the exponent close to d/z − 2β/νz +
1/ν ′zu � 1.897. These results show that for �D2 and �M2

z ,
the off-critical-point effects in the universal short-time stage
is controlled by δτ 1/ν ′zu when δ > 0.

Thus, we conclude the choice of 1/ν̃ z̃ for different cases:
(i) When δ < 0, for �M2

z , 1/ν̃ z̃ is 1/ν ′zu while for �D2,
1/ν̃ z̃ can be 1/νzu or 1/ν ′z.

(ii) When δ > 0, for �M2
z and �D2, 1/ν̃ z̃ should be 1/ν ′zu.

C. Off-critical-point dynamic scaling from the disordered
initial state

For the disordered initial state, similar analyses give that
for a small δ, in the universal short-time stage, �D2 obeys

�D2(τ, δ) � L−dδτ
d
z − 2β

νz + 1
ν̃ z̃ (16)

and �M2 obeys

�M2(τ, δ) � L−dδτ
d
z − 2β

νz + 1
ν̃ z̃ (17)

to the leading order of δτ 1/ν̃ z̃.
For δ < 0 with the VBS ground state, Figs. 10(a) and

10(b) shows that for δ = −0.005, �D2 and �M2 evolve ac-
cording to �D2 ∝ τ 2.4 and �M2 ∝ τ 2.24, respectively. The
two exponents are close to d/z − 2β/νz + 1/νzu and d/z −
2β/νz + 1/ν ′z, both close to 2.344. As discussed above,
both δτ 1/νzu and δτ 1/ν ′z should make contributions in the
short-time regime. For δ > 0 with the AFM ground state,
from Figs. 10(c) and 10(d), one finds that �D2 ∝ τ 1.95

and �M2 ∝ τ 1.87 when δ = 0.005. Both these exponents are
close to d/z − 2β/νz + 1/ν ′zu = 1.897, demonstrating the
off-critical-point effects are mainly contributed by δτ 1/ν ′zu .

Thus, we conclude that with the disordered initial state,

FIG. 10. Relaxation dynamics away from the critical point with
the disordered initial state. Top row: For δ > 0, curves of �D2 and
�M2 versus τ are plotted in (a) and (b), respectively. Bottom row:
For δ < 0, curves of �D2 and �M2 versus τ are plotted in (c) and
(d), respectively. Power-law fittings are implemented for all curves in
the universal short-time stage. Double-logarithmic scales are used.

(i) When δ < 0, for both �M2 and �D2, 1/ν̃ z̃ can be 1/νzu

or 1/ν ′z.
(ii) When δ > 0, for both �M2 and �D2, 1/ν̃ z̃ is 1/ν ′zu.

D. Breakdown and vestige of the dual dynamic scaling

From the above results, we find that the dual dynamic
scaling breaks down under the rotation between the super-
spin components when the tuning parameter is away from
its critical point. In the long-time limit, the system reaches
its equilibrium ground state, in which the asymmetric scal-
ing properties between the Néel order and the VBS order
appear [71,75] and meanwhile the emergent symmetry fades
out [41]. In the short-time stage, from the ordered initial
state, for a fixed δ �= 0, under the rotation between D and
M, one finds that the dual dynamic scaling also breaks down.
Although the dominant order parameters of the ordered initial
states obey similar scaling behavior, the complementary order
parameters behave quite differently. When relaxed from the
saturated VBS initial state to the VBS side, i.e., δ < 0, for
the complementary order parameter M, its off-critical-point
effect �M2 is dominated by δτ d/z−2β/νz+1/ν ′zu ; as the dual
case, from the AFM initial state, in contrast, for the comple-
mentary order parameter D, its off-critical-point effect �D2 is
dominated by δτ d/z−2β/νz+1/ν ′z and/or δτ d/z−2β/νz+1/νzu . Sim-
ilarly, when relaxed from the saturated VBS initial state to the
AFM side, i.e., δ > 0, �M2 is dominated by δτ d/z−2β/νz+1/ν ′z

and/or δτ d/z−2β/νz+1/νzu ; as its dual case, from the AFM initial
state, in contrast, �D2 is dominated by δτ d/z−2β/νz+1/ν ′z. This
demonstrates that the dual dynamic scaling breaks when the
parameter is tuned away from the critical point.

However, strikingly, for the ordered initial states, we find
that the dual dynamic scaling in the universal short-time stage
can restore once the transformations M ⇔ D and δ ⇔ −δ are
simultaneously implemented. Under this joint transformation,
the relaxation dynamics of the VBS (Néel) order parameter
for δ < 0 with the VBS initial state can be dualized to the
relaxation dynamics of the Néel (VBS) order parameter for
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FIG. 11. Realization of imaginary-time relaxation dynamics via
unitary quantum gates.

δ > 0 with the Néel initial state and vice versa. Accordingly,
the scaling behaviors of both the dominant and complemen-
tary order parameters keep invariant under this joint dual
transformation. In this sense, the dual dynamic scaling is
maintained.

The vestige of the dual dynamic scaling in the short-
time stage demonstrates that the nonequilibrium dynamics
can even exhibit much higher symmetry than the equilibrium
state. Therefore, unlike the fade of the emergent symmetry
on running away from the critical point in equilibrium, the
dual dynamic scaling can survive up to some finite δ under
the joint dual transformation. A possible reason is that the
nonequilibrium dynamics mixes various elements together to
form a state which is covariant under the dual transformation,
although each single element is asymmetric under the same
condition. For instance, relaxing from the saturated VBS ini-
tial state to the VBS side with a finite δ < 0, the relaxation
dynamics mixes the VBS background, the VBS ground state,
and the topological defects with spinons living at the vortices
of the VBS domain walls; while relaxing from the AFM
initial state to the AFM side with a finite δ > 0, the relaxation
dynamics mixes the local fluctuations with the background in
the AFM pattern, the AFM ground state, and the topological
defects with quadrupled monopole excitations. The interplay
between these elements may give rise to the dual dynamic
scaling. However, from the disordered initial states, in the
short-time stage, only global fluctuations contribute to M2 and
D2. Thus the dual dynamic scaling in the short-time stage still
exists for the transformation of M ⇔ D. However, it breaks
down when δ ⇔ −δ is added simultaneously, since in this
case, the ground-state information, which breaks the emergent
symmetry of the superspin rotation, should be simultaneously
included.

VII. POSSIBLE EXPERIMENTAL REALIZATION

Recently, it was shown that quantum computers have be-
come a vivifying platform to realizing various experiments
ranging from high-energy physics [117,118] to condensed
matter physics [119,120]. In particular, nonequilibrium quan-
tum critical dynamics has been observed in D-wave devices
[121] and the noisy intermediate-scale quantum device based
on the Rigetti superconducting quantum chip [122]. More-
over, imaginary-time relaxation was also implemented in the
various devices as a promising approach to find the ground
state [123]. As illustrated in Fig. 11, imaginary-time evolution

in a small time interval �τ with the Hamiltonian H can
be approximated by the real-time unitary evolution with the
auxiliary Hamiltonian H. By minimizing the following resid-
ual form:

Res ≡
∥∥∥∥

e−�τH |ψ〉
〈ψ |e−2�τH |ψ〉 − e−i�tH|ψ〉

∥∥∥∥
2

, (18)

one can determine H [123,124]. It was shown that the in-
teraction range in H is only required to have the same
order of magnitude as the correlation length ξ . For our
present case, the initial state is set as the uncorrelated state
with vanishing correlation length [123]. Thus, it is promis-
ing that our results can be detected in these systems in the
future.

VIII. SUMMARY

In summary, we have studied the nonequilibrium
imaginary-time dynamics of the DQCP in the 2D J-Q2 model.
At the critical point, we have generalized the emergent sym-
metry in equilibrium to the dual dynamic scaling in the
relaxation process. In particular, we have found that in the
relaxation dynamics from the ordered initial states, although
the dominant and the complementary order parameters are
controlled by different length scales, they can be dualized to
each other under the rotation transformation in the superspin
space. In addition, we have shown that for the disordered
initial state the dual dynamic scaling dictates that both the
Néel and the VBS order parameter obey the same scaling
form. By comparing the results of the J-Q3 model [100], we
have confirmed that the dual dynamic scaling is a universal
nonequilibrium phenomenon in the DQCP that separates the
Néel order and the VBS order. Furthermore, we have stud-
ied the relaxation dynamics away from the critical point and
found that the dual dynamic scaling can even exist when the
emergent symmetry in the ground state has been broken. We
have attributed the appearance of the dual dynamic scaling
at and near the DQCP to the superposition of information in-
cluded in the initial state, ground state, and low-energy excited
states. In addition, we have discussed the possible experi-
mental realizations in fast-developing programmable quantum
devices.

In this paper, we have only focused on the situation where
the initial state is at its fixed points and the initial condition
is absent in the scaling form. In a usual critical point with
a single length scale, it was shown that the general initial
state can induce interesting scaling behaviors [91,93,95–98].
In particular, in our previous paper [100], we have shown
that in DQCP, the critical initial slip exponent is negative,
while in usual phase transitions, this exponent is positive.
Thus it is instructive to explore more general effects induced
by different initial states.

Moreover, at present, direct attacks on the nonequilib-
rium dynamics in 2D quantum systems are still confronted
with severe difficulties. Although the direct analytic con-
tinuations seem inadequate to obtain the results of the
real-time dynamics, it has been shown that some universal
behaviors are shared in both imaginary-time and real-time
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dynamics [107,108,125,126]. In addition, it was shown that
the real-time relaxation has similar scaling relations with the
imaginary-time relaxation, but with different critical exponent
[127–135]. Therefore, it is expected that our present paper
should provide profound insights to the real-time dynamics
of the DQCP.
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