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Ferrimagnetically ordered states in the Hubbard model on the hexagonal golden-mean tiling
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We study magnetic properties of the half-filled Hubbard model on the two-dimensional hexagonal golden-
mean tiling. We find that the vertex model of the tiling is bipartite, with a sublattice imbalance of

√
5/(6τ 3)

(where τ is the golden mean), and that the noninteracting tight-binding model gives macroscopically degenerate
states at E = 0. We clarify that each sublattice has specific types of confined states, which in turn leads to an
interesting spatial pattern in the local magnetizations in the weak coupling regime. Furthermore, this allows us
to analytically obtain the lower bound on the fraction of the confined states as (τ + 9)/(6τ 6) ∼ 0.0986, which
is conjectured to be the exact fraction. These results imply that a ferrimagnetically ordered state is realized even
in the weak coupling limit. The introduction of the Coulomb interaction lifts the macroscopic degeneracy at the
Fermi level and induces finite staggered magnetization as well as uniform magnetization. Likewise, the spatial
distribution of the magnetizations continuously changes with increasing interaction strength. The crossover
behavior in the magnetically ordered states is also addressed in terms of the perpendicular space analysis.

DOI: 10.1103/PhysRevB.105.104410

I. INTRODUCTION

Quasicrystals and their related phenomena have been of
much interest since the first discovery of the quasicrystalline
phase of Al-Mn [1]. Recently, intriguing low-temperature
properties originating from electron correlations have been
observed in quasicrystalline and approximant intermetallic
phases, including quantum criticality [2,3], heavy-fermion be-
havior [2,3], and superconductivity [4]. Particular attention
has been paid to magnetic properties in quasicrystals, with the
majority of compounds showing spin-glass-like states [1,5,6–
14]. However, long-range ordered states have been reported in
approximant systems [15] and, recently, even in quasicrystals
[16]. These novel observations rightfully stimulate further
theoretical investigations on electron correlations inherent in
quasicrystalline matter [17–20]. A fundamental question is
how a quasiperiodic structure affects physical properties in its
ordered state. Quasiperiodic tilings provide an exemplar play-
ground for exploring the theoretical answers to this question:
investigating, for example, superconducting and excitonic in-
sulating states [21–24]. Indeed, it has been clarified that the
effect of the quasiperiodic structure appears in the bulk quan-
tities in addition to local quantities [25].

To this end, magnetically ordered states on tilings have
been well studied [26–32], with interesting magnetic prop-
erties reported under the Hubbard models on the Penrose
[27,29], Ammann-Beenker [28,30], and Socolar dodecago-
nal tilings [31]. Here, no uniform magnetization appears in
the thermodynamic limit, and antiferromagnetically ordered
states are always realized when the Coulomb interaction is
finite. Likewise, in the weak coupling regime, spontaneous
magnetization strongly depends on the distribution of the

confined states, while it depends on the local environment
in the strong coupling regime. These results are commonly
found in the toy models on these three quasiperiodic tilings.
Therefore, for broader analysis, and the potential for discov-
ering novel properties, it is desirable to examine the magnetic
properties of other quasiperiodic tilings.

In our previous paper [33], we defined the quasiperiodic
hexagonal golden-mean tiling. The tiling is composed of
rhombuses and parallelograms, the vertex model is bipar-
tite, and the system has sixfold rotational symmetry, with
a portion shown in Fig. 1(a). With our definition it is now
possible to explore the wider properties of the tiling—with
the aim of understanding and showcasing its place within
the quasiperiodic tiling family. In this paper, we examine the
tiling structure in detail, with a view to a discussion of its
magnetic properties in the half-filled Hubbard model. First,
in Sec. II, we explain the hexagonal golden-mean tiling in
detail, clarifying the existence of a sublattice imbalance which
is distinct from that of the Penrose, Ammann-Beenker, and
Socolar dodecagonal tilings [29–31]. In Sec. III, we introduce
the half-filled Hubbard model on the hexagonal tiling. Then,
we study the confined states with E = 0 in Sec. IV, which
should play an important role for magnetic properties in the
weak coupling limit. We find that the confined state properties
are also distinct from the above cases. Furthermore, we obtain
the fraction of the confined states in terms of Lieb’s theorem
[34], considering the magnetism in the weak coupling limit.
By means of the real-space Hartree approximations, we then
clarify how a ferrimagnetically ordered state is realized in the
Hubbard model in Sec. V. Finally, crossover behavior in the
ordered state is addressed by mapping the spatial distribution
of the magnetization to the perpendicular space.
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FIG. 1. (a) Hexagonal golden-mean tiling. Filled (open) circles
at the vertices indicate the sublattice A (B) in the system. (b) Large
rhombus, parallelogram, and small rhombus. e0, . . . , e5 are the pro-
jection of the fundamental translation vectors in six dimensions,
n = (1, 0, 0, 0, 0, 0), . . . , (0, 0, 0, 0, 0, 1).

II. HEXAGONAL GOLDEN-MEAN TILING

The hexagonal golden-mean tiling is composed of large
rhombuses (L), parallelograms (P), and small rhombuses (S),
which are schematically shown in Fig. 1(b), where the ratio of
the longer and smaller lengths of their edges is the golden ratio
τ = (1 + √

5)/2 [33]. The tiling can be generated using grid
dualization or high-dimension projection, but here, we make
use of the substitution rules to generate its structure, since
it is straightforward to obtain the exact fractions for various
diagrams in the thermodynamic limit. In this case, the three
basic tiles are further characterized by eight types of substi-
tutions. The rules for this extended tile set are schematically
shown in Fig. 2(a), where we define three large rhombuses
(L1, L2, L3), two parallelograms (P1, P2), and three small
rhombuses (S1, S2, S3). In this schematic we also decorate
the tiles with arrows, open triangles, and open circles on their
edges, to demonstrate and satisfy the matching rules we have
previously defined [33]. The fractions of the tiles in the infinite
tiling are given as

fL1 = 1

2τ 2
∼ 0.191, (1)

fL2 = 1

4τ 2
∼ 0.095, (2)

fL3 = 1

4τ 2
∼ 0.095, (3)

fP1 = 1

τ 3
∼ 0.236, (4)

fP2 = 1

τ 3
∼ 0.236, (5)

fS1 = 1

2τ 4
∼ 0.073, (6)

fS2 = 1

4τ 4
∼ 0.036, (7)

fS3 = 1

4τ 4
∼ 0.036. (8)

The tiling contains 32 distinct types of vertices, which
are classified into four groups specified by their coordination
numbers Z , with Z = 3, 4, 5, and 6, which we label as the
C, D, E, and F vertices, respectively. Each vertex is specified
by its group and an index i, as explicitly shown in Fig. 2(b).
The fractions of the vertices can be obtained by examining
the deflation rule [33], with these values shown in Table I. We
note that the average of the coordination number is 4, which
is the same for the vertex model on the Penrose and Ammann-
Beenker tilings, and square lattice. Therefore one may expect
that magnetic properties in the hexagonal golden-mean tiling
are similar to those on the above lattices.

We note that there are some vertices with local rotational
symmetry which exhibit interesting substitution behavior. For
instance, the F0 vertex is located at the center of six adja-
cent L1 rhombuses and thereby has local sixfold rotational
symmetry. Under one substitution of its surrounding tiles [see
Fig. 2(a)], we find that the F0 vertex remains unchanged,
which is behavior unique to this position. Likewise, there are
four vertices with local threefold rotational symmetry, such as
C0, C1, F4, and F5. According to the deflation rule, these ver-
tices are changed in a cyclical manner as C1 → C0 → F4 →
F5 → C1 → · · · . Both of these properties will be important
when examining the number of confined states in the tiling.

Now we consider the sublattice structure in the hexagonal
golden-mean tiling, which is important for discussing mag-
netic properties in the Hubbard model. To do so, we first
must introduce a “spin” for the tiles as (L1)σ , (L2)σ , . . .,
(S3)σ with the spin σ (=↑,↓), which uniquely specifies spins
at the corner sites. To accurately assign spins to each tile
considering their vertex environments, we have considered
the substitution rules under the vertex scheme. For example,
as discussed above, when one applies the deflation operation
to the tiling, F0 vertices remain as F0 vertices. Therefore the
spin configuration for the tile (L1)σ and its deflation rule can
be defined so that the spins at the corner sites with acute
angles are not changed under the deflation operation. Then,
the deflation rule for the tile (L1)σ is described as (L1)σ →
(L1)σ + 2(P1)σ + (S1)σ when the spin configurations for the
tiles (P1)σ and (S1)σ are defined, as shown in Fig. 2(a). In
the tiling, the tile P1 always appears next to the tile L1,
and we consider the substitution rule for these adjacent tiles.
This gives the deflation rule for the tile (P1)σ as (P1)σ →
1/2(L2)σ + 1/2(L3)σ + (P2)σ , when the spin configurations
for the tiles (L2)σ , (L3)σ , and (P2)σ are defined, as shown in
Fig. 2(a). Continuing in this fashion for the other tiles and
taking into account the matching rules for the other tiles in the
tiling, we therefore define the spin-dependent tiles and their
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FIG. 2. (a) Inflation-deflation rule for each rhombus and parallelogram in the hexagonal golden-mean tiling [33]. Black and yellow circles
at the corners indicate the “spin” (see text). Arrows, open triangles, and open circles on the edges are introduced for satisfying the matching
rule in the tilings. (b) Thirty-two types of vertices in the hexagonal golden-mean tiling. Solid (open) circles at the vertices represent the
sublattice A (B).

deflation rules in Fig. 2(a), where solid circles represent spin
σ and open circles represent spin σ̄ .

To demonstrate, the number of tiles are changed un-
der the deflation operation as vn+1

σ = Mvn
σ , where (vn

σ )t =
(Nn

(L1)σ
, Nn

(L2)σ
, . . . , Nn

(S3)σ
), Nn

Qσ
is the number of tiles Qσ at

iteration n, and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 0
0 0 1 1

2 0 0 0 1
0 1 0 1

2 0 0 1 0
2 0 0 0 1 0 0 0
0 2 2 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

This transformation matrix for the number of spin-dependent
tiles is diagonal with respect to the spin, implying that tiles
with only one of the spins will appear in the thermodynamic
limit. This property is distinct from that of the other two-
dimensional quasiperiodic tilings such as the Penrose [29],
Ammann-Beenker [30], and Socolar dodecagonal tilings [31],
where spin-dependent tiles appear equally in the thermody-
namic limit. Immediately, we find a sublattice imbalance in
the vertices in the hexagonal golden-mean tiling. The 32
types of vertices are uniquely classified into two sublattices,
which are shown as solid or open circles in Fig. 2(b) as a
result of our spin decoration. For convenience, we refer to
the sublattice which includes the F0 vertices (solid circles)
as sublattice A, and the other (open circles) as sublattice
B. The fractions of sublattices A and B are obtained by

TABLE I. Fractions of Ci, Di, Ei, and Fi vertices in the hexagonal golden-mean tiling. The asterisks indicate that the vertices are located
in the B sublattice (see text).

0 1 2 3 4 5 6 7 8 9

C
1

12τ 6

1

12τ 4

∗ 1

4τ 4

√
5

4τ 4

∗ √
5

4τ 4

1

4τ 6

∗ 1

4τ 4

∗ 1

4τ 3

∗

D

√
5

4τ 4

∗
1

4τ 6

1

4τ 6

1

4τ 6

∗ 1

2τ 4

∗ 3

2τ 5

∗ 1

4τ 8

∗ 1

4τ 8

∗ 1

2τ 4

1

4τ 4

E

√
5

4τ 6

√
5

2τ 6

1

4τ 6

∗ √
5

4τ 8

∗

F
1

4τ 6

1

2τ 6

1

4τ 8

√
5

2τ 8

1

12τ 8

1

12τ 10

∗ √
5

4τ 8

1

2τ 8

1

4τ 10

1

4τ 8
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summing the relevant terms of Table I as fA = 1/2 −√
5/(12τ 3) and fB = 1/2 + √

5/(12τ 3). Then, the sublattice
imbalance is given as

| fA − fB| =
√

5

6τ 3
∼ 0.088. (10)

We note that the sublattice imbalance originates inherently
from the structure of the hexagonal golden-mean tiling. There-
fore the sublattice imbalance is represented by an irrational
number, which is distinct from the trivial case in bipartite dec-
orated lattices, for example, the Lieb lattice with | fA − fB| =
1/3. In the following, we omit the spin index in the tiles
and vertices to discuss magnetic properties in the correlated
electron system on the hexagonal golden-mean tiling.

III. MODEL AND HAMILTONIAN

We study the Hubbard model on the hexagonal golden-
mean tiling, which is given by the following Hamiltonian:

H = −t
∑
(i j),σ

(c†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓, (11)

where ciσ (c†
iσ ) annihilates (creates) an electron with spin

σ (=↑,↓) at the ith site and niσ = c†
iσ ciσ . t denotes the

nearest-neighbor transfer integral, and U denotes the on-site
Coulomb interaction. For simplicity, we have assumed that the
magnitude of the hopping integral is uniform in the system.
The chemical potential is always μ = U/2 when the electron
density is fixed to be half filling. According to Lieb’s theorem
[34], the half-filled Hubbard model on the bipartite lattice has
a ground state with total spin Stot = 1

2 |NA − NB|. In fact, it
has been clarified that the magnetically ordered states with
finite total spin are realized in some periodic Hubbard sys-
tems [34–40]. As we have discussed, the vertex model on the
hexagonal golden-mean tiling has a sublattice imbalance, so
that the magnetically ordered state is realized with a total spin√

5/(12τ 3) × N , where N (= NA + NB) is the total number of
sites.

To discuss magnetic properties in the Hubbard model, we
make use of the real-space mean-field theory. This method has
an advantage in treating large clusters, which is crucial to clar-
ifying magnetic properties in the system with a quasiperiodic
tiling. Here, we introduce the site-dependent mean-field 〈niσ 〉.
The mean-field Hamiltonian is then given as

HMF = −t
∑
(i j),σ

(c†
iσ c jσ + H.c.) + U

∑
i,σ

niσ 〈niσ̄ 〉. (12)

For given values of 〈niσ 〉, we numerically diagonalize the
Hamiltonian HMF, update 〈niσ 〉, and repeat this procedure
until the result converges. The uniform and staggered mag-
netizations m± are given as

m± = fAmA ± fBmB, (13)

mα = 1

Nα

∑
i∈α

mi, (14)

mi = 1
2 (〈ni↑〉 − 〈ni↓〉), (15)

 0
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FIG. 3. Density of states of the tight-binding model on the hexag-
onal golden-mean tiling with N = 1 172 071. The left inset shows the
magnified figure around E = −0.16t , and the right inset shows the
integrated density of states.

where Nα (mα) is the number of sites (average of the
magnetization) in the sublattice α (= A, B) and mi is the
magnetization at the ith site.

When the system is noninteracting (U = 0), the model
Hamiltonian is reduced to the tight-binding model. Diagonal-
izing the Hamiltonian for the system with N = 1 172 071, we
obtain the density of states, which is defined as

ρ(E ) = 1

N

∑
i

δ(E − εi ), (16)

where εi is the eigenenergy. The results are shown in Fig. 3,
which is symmetric since the system is bipartite. We also find
the delta-function peak at E = 0, which implies the existence
of macroscopically degenerate states. These confined states
should be important for magnetic properties in the weak cou-
pling limit and are features common to bipartite quasiperiodic
tilings. In addition, we find sharp peaks at E/t ∼ ±0.16, but
these have small widths, so that the corresponding eigenstates
are not strictly localized in a certain region in contrast to the
confined states with E = 0.

IV. CONFINED STATES

Here, we study the confined states in detail; since the
confined states with E = 0 are macroscopically degenerate,
we can choose a simple form by considering their linear
combinations, as discussed in several papers [29,41,42]. It is
known that six types of the confined state appear in the Pen-
rose case [29,42], while in the Ammann-Beenker and Socolar
dodecagonal cases, the number of types is infinite [30,31]. In
the hexagonal golden-mean tiling, infinite types of confined
states should appear, similar to the latter two tilings. Some
simple examples of confined states around the F0 vertices are
explicitly shown in Fig. 4, labeled as �1, . . . , �5. We find
two confined states, �1 and �2, in the smallest region with
sixfold rotational symmetry. The amplitudes in �1 appear at
the F0 vertex and next-nearest neighbor C6 and D8 vertices
in sublattice A. By contrast, the amplitudes in �2 appear
at the D5 vertices in sublattice B. Since the confined states
have amplitudes in both sublattices, we can say that the in-
troduction of the Coulomb interaction lifts the degeneracy at
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FIG. 4. Five confined states around the F0 vertex (blue points).
Solid (open) circles represent the sublattice A (B). The numbers at
the vertices represent the amplitudes of the confined states.

E = 0, stabilizing the magnetically ordered state with a finite
staggered magnetization. We note that these confined states do
not necessarily exist around all the F0 vertices. In fact, each
fraction (�1, �2) is given as 1/(4τ 8) (smaller than fF0 ). The
fractions of the other examples of confined states �3, �4, and
�5 are given by 5/(4τ 10), 2/(4τ 10), and 1/(4τ 12), by taking
each local symmetry into account. Away from the F0 vertices,
Figure 5 shows five examples of confined states around dif-
ferent vertices. Wave functions 	1 and 	4 are located around
the F4 and C0 vertices, respectively, which exhibit threefold
rotational symmetry, while 	2, 	3, and 	5 are located at
vertices which locally have no rotational symmetry. As seen
in Figs. 4 and 5, many kinds of confined states are expected
in the thermodynamic limit. Therefore we cannot count the
number of confined states systematically, in contrast to the
Ammann-Beenker tiling, for example.

We wish to note that the confined states having amplitudes
in sublattice A should be restricted to �1, as shown in Figs. 4
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FIG. 5. Five confined states. Solid (open) circles represent sub-
lattice A (B). The numbers at the vertices represent the amplitudes of
the confined states.

and 5. We cannot prove this analytically, but rather confirm
it numerically in a cluster with N = 448 213, which will be
shown later. This conjecture immediately gives us the lower
bound of the fraction of the confined states, by consider-
ing magnetic properties in the weak coupling limit. In the
limit, the confined states play an essential role for magnetic
properties, and the uniform magnetization is given as m+ =
( f C

A − f C
B )/2, where f C

A ( f C
B ) is the fraction of the confined

states in sublattice A (B). Namely, as before, f C
A = 1/(4τ 8).

The uniform magnetization is directly related to the sublattice
imbalance equation (10). As such, we obtain the fraction of
the confined states as

f C = f C
A + f C

B = τ + 9

6τ 6
∼ 0.0986. (17)

This value is conjectured to be an exact fraction and is consis-
tent with the numerical results f C = 0.098 168 for a cluster
with N = 835 393, where the eigenstates with E = 0 around
the edge are excluded.

V. MAGNETIC PROPERTIES

In the following, we discuss magnetic properties in the
Hubbard model on the hexagonal golden-mean tiling. We
mainly treat the system with N = 448 213 by means of the
real-space mean-field approximations. When the system is
noninteracting, the macroscopically degenerate states in the
density of states appear at the Fermi level, as shown in
Fig. 3. The introduction of the interaction lifts the degeneracy,
stabilizing the magnetically ordered state. The magnetiza-
tion profile for the case with U/t = 1.0 × 10−6 is shown in
Fig. 6(a). We find finite magnetizations at certain sites, which
reflects the spatial distribution of the confined states. We note
that in sublattice A, finite magnetization only appears at the
F0 vertices and their next-nearest-neighbor C4 and D8 vertices
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(a)

(b)

FIG. 6. Spatial pattern for the staggered magnetizations in the
Hubbard model on the hexagonal golden-mean tiling when (a) U/t =
1.0 × 10−6 (essentially the same as U → 0) and (b) U/t = 1.
The area of the circles represents the magnitude of the local
magnetization.

(shown in red). This is consistent with the fact that in sub-
lattice A, �1 is the only type of confined state. Therefore the
magnetization at these vertices takes mi = 1/26. In contrast,
each site on sublattice B has a local magnetization, as shown
by the blue circles in Fig. 6(a), where the area of the circles
represents the magnitude of the local magnetization. This
implies that at each site in sublattice B, some confined states
have amplitudes. For this reason, nonmagnetic sites only be-
long to sublattice A, and their fraction should be given as
fnon = fA − 13 f C

A ∼ 0.387. Imbalanced magnetic properties
in the weak coupling limit are distinct from those for the
quasiperiodic tilings such as Penrose, Ammann-Beenker, and
Socolar dodecagonal tilings [29–31]. Namely, the averages of
the total uniform and staggered magnetizations are given as
|m+| = 0.044 and |m−| = 0.049.

When we increase the interaction strength, the abso-
lute value of the magnetization at each site monotonically
increases, and the nonmagnetic sites now have positive mag-
netizations, as shown in Fig. 6(b). The distribution of the
local magnetization is shown in Fig. 7. When U/t � 1, the
distribution is similar to that in the weak coupling limit
U/t → 0, where a sharp peak appears in the case m > 0
(sublattice A), while a broader structure appears in the case

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5

m+

0

U/t

mA
mB

FIG. 7. Distribution of the local magnetizations as a function of
U/t in the system with N = 448 213. The dashed (dot-dashed) line
represents the magnetization mA (mB), and the dotted line represents
the total uniform magnetization.

m < 0 (sublattice B). In contrast, when U/t � 2, distinct be-
havior appears in the magnetic distribution. In this case, the
absolute values of the local magnetization should be classi-
fied into four groups, specified by the coordination number
of the vertices—although two of the four may be invisible
in the case m < 0. The crossover between weak and strong
coupling regimes occurs around U/t ∼ 1.5. In the strong cou-
pling limit U/t → ∞, the Hubbard model is reduced to the
antiferromagnetic Heisenberg model with nearest-neighbor
couplings J = 4t2/U . The mean-field ground state is then
described by the staggered moment mj = ±1/2. This means
that the mean-field approach cannot correctly describe the
reduction of the magnetic moment due to quantum fluctua-
tions. Therefore an elaborate method is necessary to precisely
clarify magnetic properties in this regime, which is beyond the
scope of the present study. Nevertheless, interesting magnetic
properties inherent in the hexagonal golden-mean tiling can
be captured correctly, even in our simple mean-field method;
note that the total uniform magnetization is never changed,
which is consistent with Lieb’s theorem [34].

Finally, we wish to demonstrate the spatial profile of the
magnetizations characteristic of the hexagonal golden-mean
tiling. To this end, we map it to the perpendicular space,
where the positions in perpendicular space have one-to-one
correspondence with the positions in the physical space. Each
site in the tiling is described by a six-dimensional lattice
point �n = (n0, n1, . . . , n5), labeled with integers nm, where
the lattice is spanned by fundamental translation vectors. The
coordinates of the tiling are the projections onto the two-
dimensional physical space:

r = (x, y) =
5∑

m=0

nmem, (18)

where em are the projected vectors and are given as =
τ ( cos(−2/3πm), sin(−2/3πm)) for m = 0, 1, 2 and em =
( cos(−2/3πm), sin(−2/3πm)) for m = 3, 4, 5, shown in
Fig. 1(b). We can then project the points onto the four-
dimensional perpendicular space (split into 2 two-dimensional
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FIG. 8. Perpendicular spaces r⊥ for the hexagonal golden-mean
tiling. Each area bounded by the solid lines is the region of one of 32
types of vertices shown in Fig. 2(b).

spaces r̃ and r⊥), giving information specifying the local
environment of each site:

r̃ =
5∑

m=0

nmẽm, (19)

r⊥ =
5∑

m=0

nme⊥
m , (20)

where ẽm = em+3 for m = 0, 1, 2 and ẽm = −em−3 for m =
3, 4, 5. e⊥ = (1, 0) for m = 0, 1, 2, and e⊥ = (0, 1) for m =
3, 4, 5. In the hexagonal golden-mean tiling, r⊥ = (x⊥, y⊥)
takes nine values x⊥ = −1, 0, 1 and y⊥ = −1, 0, 1. In each r⊥
plane, the r̃ points densely cover a certain region. Moreover,
the region in plane r⊥ has the same size as the one in the
plane (−r⊥). Figure 8 shows the perpendicular space for the
system. The plane (0,0) has sixfold rotational symmetry,
while the others have threefold rotational symmetry. We have
previously shown that the 32 types of vertices are mapped
into specific regions in certain planes [33]. This implies that
the perpendicular space reflects the local environments for
the lattice sites, such that the areas of each vertex region in
perpendicular space are proportional to its fraction in parallel
space. As such, we also find that the vertices in sublattice
A (B) are mapped to the planes with (0,0), (±1,±1), and
(±1,±1) [(0,±1) and (±1, 0)]. This can be explained by
the following: The sublattice index for each vertex is uniquely
determined, as discussed above. Since upon moving from one
site to its neighbor only one of the nm’s changes by ±1, an
even (odd) number (x⊥ + y⊥) corresponds to sublattice A (B).
Correspondingly, the areas for both sublattices are different
from each other, which is consistent with the existence of the
sublattice imbalance.

The magnetization profile in perpendicular space is shown
in Fig. 9, where we have shown the absolute values of the
local magnetizations. When U/t = 1.0 × 10−6, the finite
magnetization appears in the whole of the planes (0,±1)
and (±1, 0), implying that the local magnetizations appear in
sublattice B. In contrast, in sublattice A, finite magnetization
appears only in specific hexagonal regions in three planes:
(−1,−1), (0,0), and (1, 1). This is consistent with the fact that
only the confined states �1 with amplitudes at C4, D8, and
F0 vertices are magnetized. Upon increasing the interaction
strength, all vertex sites are magnetized, as shown in Fig. 9(b).
When U/t = 5, the local magnetization takes large values.
An important point is that the magnetization profile in each
plane is different from that for the weak coupling case. In the
weak coupling case, the magnetization profile originates from
the spatial distribution of the confined states. On the other
hand, in the strong coupling case, the Coulomb interactions
play a crucial role in stabilizing the ferrimagnetically ordered
states, where intersite correlations become important. In fact,
the magnitude of local magnetizations can be classified into
four groups specified by the coordination number, as shown in
Fig. 9(c) by the four separate groups of color contrast regions.

Before concluding, we would like to comment on and com-
pare the magnetic properties derived in the Hubbard model
on the Penrose, Ammann-Beenker, Socolar dodecagonal, and
hexagonal golden-mean tilings. One of the common features
across these tilings is the existence of confined states at E = 0
in the noninteracting case (U = 0), which play a crucial role
in stabilizing the magnetically ordered states in the weak
coupling limit. Nevertheless, their confined state properties
are distinct from each other. As for the number of types
of confined states, it is restricted to be 6 in the Penrose
case [41,42], while it should be infinite in the others. The
sublattice imbalance appears only in the hexagonal golden-
mean tiling, uniquely leading to a ferrimagnetically ordered
state. In contrast, for the other tilings, antiferromagneti-
cally ordered states are realized without spontaneous uniform
magnetization.

VI. SUMMARY

We have studied the magnetic properties in the half-filled
Hubbard model on the hexagonal golden-mean tiling. Ex-
amining the lattice structure, we have found that the vertex
model is bipartite, with a sublattice imbalance of

√
5/(6τ 3).

We have found the delta-function peak in the density of states
of the tight-binding model, implying the existence of macro-
scopically degenerate confined states at E = 0. We have then
clarified that one type of the confined states has amplitudes in
sublattice A, while the others are only in sublattice B. These
facts give us the lower bound on the fraction of the con-
fined states as (τ + 9)/(6τ 6) ∼ 0.0986, which is conjectured
to be the exact fraction. Furthermore, these findings lead to
a ferrimagnetically ordered state even in the weak coupling
limit. Then, the introduction of the Coulomb interaction lifts
the macroscopic degeneracy at the Fermi level and induces
the finite staggered magnetization as well as uniform mag-
netization. By applying the real-space mean-field approach
to the Hubbard model, we have clarified how the spatial
distribution of the magnetizations continuously changes with
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(a) U/t=0 (b) U/t=1 (c) U/t=5

|m|

 0

 0.1

 0.2

 0.3

 0.4

 0.5

FIG. 9. Magnetization profile in the perpendicular space (x̃, ỹ) for the Hubbard model with N = 448 213 when (a) U/t = 1.0 × 10−6,
(b) U/t = 1, and (c) U/t = 5.

increasing interaction strength. The crossover behavior in the
magnetically ordered states has been discussed, by applying
the perpendicular space analysis to the local magnetizations. It
is also interesting to clarify how the ferrimagnetically ordered
state competes with the paramagnetic metal, ferromagneti-
cally ordered state, and phase separation away from the half
filling, which is now under consideration.
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