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Valley modulation and single-edge transport of magnons in breathing kagome ferromagnets
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Owing to charge-free property, magnon is promising to achieve dissipationless transport without Joule heating.
Valley degree of freedom has also been fully expressed in electronic structures, enabling information coding and
manipulation via valley-based qubits. Considering the conceptual importance and application potential, it is
highly desirable to couple valley to magnon excitation and realize their modulations. We demonstrate valley
magnons and valley modulations in a kagome ferromagnetic lattice, with Dzyaloshinskii-Moriya and staggered
exchange interactions. The staggered exchange interaction breaks spatial inversion symmetry, leading to magnon
valley Hall effect. When the Dzyaloshinskii-Moriya interaction is further included, the valley degeneracy is
lifted, exhibiting net anomalous Hall effect and a series of topological phase transitions. Single-edge heat
transport of magnons can occur, with propagating currents along the edge and local circulating currents. These
findings give full play to spin and valley degrees of freedom and add another dimension to magnonic device
paradigms.

DOI: 10.1103/PhysRevB.105.104409

I. INTRODUCTION

With Dzyaloshinskii-Moriya interaction (DMI) that plays
a role of vector potential like the Lorentz force [1,2], magnon
Hall effect has been theoretically predicted and experimen-
tally observed in magnetic insulators [3,4]. The magnon
Hall systems, also named topological magnon insulator, are
characterized by nonzero Chern numbers and topologically
protected magnon edge states [5–15], similar to electronic
topological insulators [16,17]. Quantum transport based on
topological magnon edge states are highly promising to
achieve dissipationless transport without Ohmic loss [18–24].
On the other hand, the valley degree of freedom has been
fully expressed in electronic band structure of transition-metal
dichalcogenides, where the valley carrier is selectively excited
by chiral optical fields and measured by Berry-curvature-
induced valley Hall current [25–28]. Valley degeneracy is
also tunable by applied magnetic field or magnetic proximity
effect [29]. Valleytronics, using valley degree of freedom as
information carrier, has been a rising field in condensed matter
physics. The explorations of both topological magnons and
valleytronics have not only conceptual importance in basic
quantum physics, but also application potential in advanced
information technology [18,30].

Inequivalent energy valleys in magnon excitations, if
they exist, are expected to directly inherit merits from both
magnons and valleys, and possible modulations of valley
magnons are likely to further give full play to spin and
valley degrees of freedom. Compared with widely studied
valley electrons, the studies of valley magnons have only a
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few examples, where the valley degeneracy is all kept [6,31–
33]. There are attractive questions, e.g., whether the valley de-
generacy of magnons is tunable like its electronic counterpart
and correspondingly what transport behavior edge magnons
will exhibit. Given that magnon Hall effect has been realized
experimentally in pyrochlore structures with kagome layers
[4,34] and valley physics is also present in the kagome lattice
[31,35], we take a two-dimensional ferromagnetic kagome
lattice as a prototype to investigate valley modulation and
band topology in magnon excitation.

In this paper, the effects from staggered exchange interac-
tion (SEI) [36], together with DMI, on valley magnons are
taken into account. The SEI in neighboring triangles of the
kagome lattice (see Fig. 1) creates gaps at ±K valleys and
keeps valley degeneracy, similar to DMI. The combination
of both interactions further lifts the valley degeneracy, and
enables a transition from magnon valley Hall effect to net
magnon anomalous Hall effect. The band exchange at valleys
and associated topological phase transition also occur with
varied interaction strengths. Further considering topological
edge transport, besides the heat current flowing parallel to
the edges, local circulating current appears within triangles
of the kagome lattice. An asymmetric edge transport, mainly
contributed by one edge, results from the valley splitting.
These intriguing features realize modulations of the valley
degeneracy, band topology, and associated edge transport in
magnon excitation, which provides avenues for exploring
energy-efficient device paradigms based on coupled spin and
valley degrees of freedom.

II. MODELS AND METHODS
A. Calculations of the periodic monolayer

Figure 1(a) shows the pyrochlore structure formed by
corner-sharing tetrahedra, which is the crystal structure
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FIG. 1. Structures of the kagome lattice. (a) A pyrochlore struc-
ture including kagome layers. (b) A kagome lattice with staggered
exchange interactions in neighboring A and B triangles. A unit cell
includes three sites, denoted by 1–3. The arrows between nearest-
neighboring sites denote the directions with DMI along +z. (c) A
representative quasi-one-dimensional kagome strip, with ten trian-
gles along its transversal direction.

of many magnon Hall ferromagnets, e.g., In2Mn2O7 and
Ho2V2O7 [34]. Along the crystallographic [111] direction,
there is a stacking of parallel kagome layers and intermedi-
ate triangular layers. Given that the kagome lattice supports
both topological magnons and valley structure, we focus on
valley magnons in a kagome monolayer. Taking into account
SEI and DMI, a spin Hamiltonian of the lattice is given as
[1,2,4,6,15,21,37–41]

H=−J1

∑
〈mn〉∈A

Sm · Sn−J2

∑
〈mn〉∈B

Sm · Sn+D
∑
〈mn〉

ξmn · Sm × Sn.

(1)
Here, Sm,n are spins on sites m, n, of which the nearest-
neighboring interactions are considered. The first two terms
describe exchange interactions in neighboring A and B tri-
angles of the kagome lattice, respectively, as illustrated in
Fig. 1(b), with J1,2 being corresponding strengths. For J1 =
J2, the lattice has spatial inversion symmetry, while J1 �= J2

breaks the symmetry. Different J1,2 can appear in a breathing
kagome lattice with the A and B triangles having different
sizes, which may result from additional layers adjacent to
the kagome monolayer in real materials [36,42]. The third
term denotes DMI with a strength of D. ξmn = +z/ − z when
the vector pointing from the nth site to the mth site is
parallel/antiparallel to the arrow in Fig. 1(b).

Moreover, a more general lattice model has been con-
structed with both the exchange interaction and DMI being
staggered in previous work [15], which discussed first- and
second-order topological phases, but did not touch upon the
valley properties and valley modulation in our study. We also
consider the general lattice in our calculations. When taking
into account that the staggered DMI is proportional to the SEI
in the A and B triangles of the kagome lattice and the DMI
is smaller than the exchange interaction, the conclusions on
the valley splitting, band topology, and single-edge transport
are qualitatively unchanged. Therefore, the simple model (1)

gives robust results with a clear picture, which are shown in
the main text. The results of the general model are provided in
the Supplemental Material (SM hereafter) [43].

By the Holstein-Primakoff transformation [44,45] and the
Fourier transformation, the magnon Hamiltonian in the mo-
mentum space of the model (1) reads

H(k)=
⎛
⎝2(J1+J2)S f12(k) f ∗

31(k)
f ∗
12(k) 2(J1+J2)S f23(k)

f31(k) f ∗
23(k) 2(J1+J2)S

⎞
⎠, (2)

where fαβ (k) = η1exp(−iφαβ ) + η2exp(iφαβ ), with (α, β ) =
(1, 2), (2, 3), and (3,1). η1,2 = −(J1,2 + iD)S and φαβ = k ·
(rα − rβ ). rα is the coordinate of the αth site in a unit cell with
α = 1, 2, 3 [Fig. 1(b)]. Without loss of generality, the spin
magnitude, S, and J1 are set to 1

2 and the unit of the energy,
respectively. J2 − J1 and D are one order of magnitude smaller
than J1. Band structures and magnon properties, e.g., magnon
Berry curvature, are computed by solving eigenstates of the
Hamiltonian (2). More details of deriving the Hamiltonian and
calculations can be found in the SM [43].

The momentum-resolved Berry curvature, �l (k), of the lth
magnon band is obtained by the relation

�l (k) = −2h̄2Im
∑
l ′ �=l

〈ψlk|vx|ψl ′k〉〈ψl ′k|vy|ψlk〉
(εlk − εl ′k)2

, (3)

where the magnon state is labeled by the band index l and the
wave vector k. εlk and ψlk are the band energy and the wave
function of the corresponding magnon state, respectively. The
velocity operators, vx = ∂H(k)/h̄∂kx and vy = ∂H(k)/h̄∂ky.
The Chern number of the magnon band, as the integral quan-
tity of �l (k) over the entire Brillouin zone, is then given as
[16,17,28,46]

Cl = 1

2π

∫
BZ

dkxdky�l (k). (4)

It is noted that the Berry curvature is well defined for the k
point at which the band degeneracy is absent. As a result, the
Chern number of one band is well defined for isolated bands.

B. Calculations of the nanostrip

To study topological heat transport of magnon edge states,
a two-terminal device of a kagome strip is constructed. Left
and right leads are added into two terminals of the central
region. Three parts adopt the same kagome lattice. The cor-
responding magnon Hamiltonian of the two-terminal device
in the momentum space has a form [6]

H =
⎛
⎝ HL HLC 0

HCL HC HCR

0 HRC HR

⎞
⎠, (5)

Here, Hζ with the subscript ζ = L,C, R are the components of
the left lead, the central region, and the right lead, respectively.
Hζ ζ ′ describes the coupling of corresponding parts. Based on
these components, the Green’s functions and self-energies are
defined [6,47–50], and the definitions are given in the SM
[43].

The heat transport of the two-terminal device is further
calculated by a nonequilibrium Green’s function method. The
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FIG. 2. Magnon dispersions and topological properties of
kagome lattices. The band structures of the lattices (a) without SEI
and DMI, (b) with SEI only, and (d) with both interactions. The
parameters (J2, D) = (1.0, 0.0), (0.9, 0.0), and (0.9, 0.1) in (a)–(c),
respectively, with J1 = 1.0 being the unit of energy, where J1(2) and D
are the strengths of the exchange interaction in the A (B) triangle and
the DMI, respectively. The Chern number is labeled for each isolated
band. (d),(e) The �(k) of the lowest band, using the parameters in
(b) and (c), respectively.

local magnon density at the nth site for a certain band energy,
ε, is obtained by the relation [6,51]

ρn(ε) = ih̄G<
nn(ε)

πa
, (6)

and the local magnon heat current from the nth site to its
nearest-neighboring mth site is obtained by [6,52]

jmn(ε) = ε

2π
Re[G<

mn(ε)Hnm − G<
nm(ε)Hmn], (7)

where G< and a are the lesser Green’s function and the lattice
constant, respectively.

By summing over all the local currents in the interface, we
then obtain the Landauer-like formula as

〈JL〉 = 1

2π

∫ ∞

−∞
ε[ fL(ε) − fR(ε)]T (ε)dε. (8)

Here, fL,R(ε) = 1/[exp(h̄ε/kBTL,R) − 1] is the Bose-Einstein
distribution function at the left/right lead, with TL,R being the
temperature of the corresponding lead. T (ε) is the transmis-
sion coefficient and it is written as

T (ε) = Tr[Gr (ε)L(ε)Ga(ε)R(ε)], (9)

where Gr (ε) and Ga(ε) are the retarded and advanced Green’s
functions, respectively. L,R(ε) = i[�r

L,R(ε) − �a
L,R(ε)] with

�r,a(ε) being corresponding self-energies.

III. RESULTS

A. Valleys in magnon excitations

Figures 2(a)– 2(c) show magnon band structures of the
kagome lattices, where the bands of the lattice with uniform
exchange interaction (J1 = J2) and vanishing DMI are taken

as references. For this case, the topmost band is completely
flat, which touches the middle band at the Brillouin zone
center, . The middle and lowest bands have Dirac-type
dispersion in the vicinity of ±K points, i.e., vertices of the
hexagonal Brillouin zone, and they touch at exactly ±K ,
exhibiting degenerate, gapless valley structure. The entire
magnon excitation is thus gapless as well.

With the SEI considered, band gaps open between the
lower two bands at ±K valleys, while the flatness of the
topmost band and the connection between the upper two bands
at  are well kept, as shown in Fig. 2(b). This is in contrast
to the case with nonvanishing DMI but uniform exchange
interaction, where each band becomes isolated with band gap
openings at both ±K and , and the topmost band becomes
uneven [31]. Moreover, when SEI or DMI is added, the val-
ley degeneracy is still present, with equal band gaps at ±K
valleys.

Further taking into account both interactions, besides iso-
lated bands, the valley degeneracy is lifted, that is, magnon
energies and band gaps at ±K become unequal in Fig. 2(c).
The valley splitting offers an energy window for realizing
valley-selective magnon excitation by a magnon waveguide.
The valley index corresponding to a large (or small) band
gap is determined by both signs of the DMI strength, D, and
the relative magnitude of SEI. When the sign of (J1 − J2)D
is positive, small and large gaps are localized at K and −K
valleys, respectively. When the sign is negative, the relative
gap sizes are interchanged.

The above evolution of the valleys at ±K can be well
captured by an effective model. For the two lower bands, the
effective model at ±K reads

Heff = −
√

3(J1+J2)S

4
τ (qxσx + qyσy)

+
[√

3D − 3

2
τ (J1 − J2)

]
Sσz, (10)

where two parts of the model correspond to the pristine gap-
less Dirac state and the mass term that leads to band gap
opening at ±K valleys, respectively, while an immaterial en-
ergy shift is ignored. q is the wave vector with respect to ±K .
σx,y,z are Pauli matrices in the orbital space, and the valley
index, τ = ±1, denotes two valleys, respectively. The deriva-
tion of the model is provided in the SM [43]. According to
the mass term with the mass � = [

√
3D − 3τ (J1 − J2)/2]S,

a band gap of 2|�| opens at the τK valley. It is seen that a
nonzero band gap (� �= 0) requires nonvanishing SEI or DMI.
With SEI or DMI, the band gaps at two valleys are equal.
In contrast, both interactions lead to valley-dependent band
gaps. The model clearly elucidates the band-gap variations in
the numerical calculations. Moreover, the SEI gives rise to
opposite masses at two valleys, while the DMI corresponds
to the same mass. The sign variation of the mass indicates
the change of the band ordering. The band topology and
associated topological phase transition can be thus expected
by introducing both interactions.

B. Band topology and topological phase transition

The momentum-resolved Berry curvature, �(k), and asso-
ciated Chern number of magnon bands are further computed
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as indicators of topological quantum transport. They are
shown in Figs. 2(d) and 2(e) and labeled on each isolated
band in Figs. 2(b) and 2(c), respectively. When both SEI
and DMI are absent, �(k) is zero for each k point without
band crossing. Therefore, there is no anomalous Hall transport
induced by the Berry curvature.

When the SEI is added, �(k) becomes nonvanishing, and it
has opposite extrema with the same magnitude at ±K valleys
for the lower two bands. The Chern number, as the integral
quantity of �(k), is thus zero for the isolated lowest band.
Although the magnon band is topologically trivial, opposite
�(K ) and �(−K ) endow valley magnons opposite anoma-
lous velocities and consequently induce transversal Hall heat
currents along opposite directions, under a longitudinal tem-
perature gradient. It is a magnon version of the valley Hall
effect. This is also different from the case with nonzero
DMI, which has the same distribution of �(k) at ±K valleys,
nonzero Chern numbers for magnon bands, and associated
topological edge transport [6,31].

For a breathing lattice with nonzero DMI, �(k) at two
valleys does not exhibit the same magnitude any longer, owing
to the valley splitting. As a result, a net magnon anomalous
Hall heat current is realized, no matter whether a single valley
or both valleys are excited by the magnon waveguide, since
anomalous Hall currents contributed by two valleys cannot
completely cancel each other. This is in contrast to the lattice
with only SEI where the net Hall current is absent. The net
Hall heat current can be readily measured by induced transver-
sal temperature difference, which is expected to be used as an
information carrier in advanced device paradigms.

The distinct Berry curvatures above are associated with
distinct massive terms of gapped Dirac states arising from SEI
and DMI. Based on the above effective Dirac model (10) at
±K valleys, the Berry curvatures at two valleys are computed
as

�(q) = t ′2�

2
[
t ′2(q2

x + q2
y

) + �2
]3/2 , (11)

where t ′ = √
3(J1 + J2)S/4 is the strength coefficient of the

first term in the effective model, denoting the coupling interac-
tion between orbitals. The sign of the Berry curvature is only
determined by the sign of the mass � at each valley. The size
of the Berry curvature at ±K is inversely proportional to �2.
Therefore, the variations of the Berry curvatures at two valleys
are mainly attributed to the changes of the masses. It is well
understood that while single DMI or SEI leads to the same
magnitudes of the band gaps and associated Berry curvatures
at two valleys, the Berry curvature is larger for the valley
with a smaller band gap for the case with both interactions
considered.

Moreover, topological phase transitions can occur, depend-
ing on interaction strengths. The interaction strengths J1,2 and
D are expected to be different in various magnetic materials
and tunable by, e.g., applied strain or electric field for a certain
material [53–57]. The topological phase diagrams of three
magnon bands are shown in Figs. 3(a)– 3(c), respectively, as
functions of J2 and D. For the orange region in the figures,
there are negative magnon excitation energies in the magnon
spectrum of the ferromagnetic kagome lattice, indicating that

FIG. 3. The topological phase diagrams of three magnon bands,
as functions of the strengths of D and J2. (a), (b), and (c) correspond
to the bottom, middle. and top bands, respectively. The Chern num-
ber of the magnon band is labeled in corresponding regions, except
for the orange region that is nonferromagnetism (NFM).

the ferromagnetic order is unstable in the region. In addition,
since the origin of the DMI is the spin-orbit interaction that is
usually small compared with the exchange interaction, the rel-
atively large D in the region is hard to realize in real materials.
Therefore, the properties in the region are not discussed here
[31,58,59]. For the other regions, the ferromagnetic order is
stable and we thus compute the corresponding Chern number
of magnon bands. In the ferromagnetic region, depending on
strengths of SEI and DMI, the Chern number of the magnon
band has a discrete number of −1, +1, or 0. A boundary be-
tween the regions with different Chern numbers corresponds
to a vanishing band gap. When moving through the boundary,
there is a topological phase transition with an exchange of
the band ordering. In the process, the decrease, closure, and
reopening of the band gap occur in turn. For the lower two
bands, the band exchange appears at ±K valleys. In contrast,
it appears at  for the upper two bands.

Specific to the isolated lowest band, the phase transition
can be easily found from two limits. The lowest band has
the Chern number of 0 and 1, with only SEI and only DMI
considered, respectively. For an existing SEI, the Chern num-
ber changes from 0 to 1 as DMI is added and enhanced.
Meanwhile, the band exchange appears at K , giving rise to
varied Chern numbers, while the gap at −K always increases
without the band exchange. Therefore, the Chern number is
determined by the relative magnitudes of SEI and DMI. Fig-
ure 2(c) corresponds to a relatively large DMI, and its bands
have the same Chern numbers as the ones with only DMI.

C. Chiral magnon edge transport

Considering the above significant modifications of valley
and topological properties in the kagome lattice, we fur-
ther study magnon transport carried by the topological edge
states. Given that the topological edge states are associated
with nonzero Chern numbers according to bulk-edge corre-
spondence, and the bands in Fig. 2(c) have nonzero Chern
numbers, the edge transport in the lattice with both DMI and
SEI is focused on. A nanostrip of the kagome lattice, similar
to that in Fig. 1(c), is constructed with 40 triangles along its
transversal direction and used in our calculation.

Figure 4(a) demonstrates the magnon band structure of
the kagome strip with both interactions, where the choices
of J1,2 and D are the same as those in Fig. 2(c). Owing to
the nontrivial band topology shown in Fig. 2(c), there are
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FIG. 4. Magnon properties of the kagome strip with both SEI and
DMI. (a) The band structure of the strip. (b) Corresponding local heat
current and local density in the strip. The arrow and circle denote the
current and density, respectively, with the size and color saturation
being proportional to respective magnitude.

indeed topologically protected edge states within band gaps.
The edge states within each gap are composed by one pair
of gapless modes with opposite group velocities. For edge
modes between the upper two bulk bands, the crossing point
of the counterpropagating modes is located at the boundary of
the one-dimensional Brillouin zone, M. As for the lower band
gap, the edge modes connect ±K valleys. The crossing point
of the edge modes is closer to the −K valley, compared with
the K valley, which is due to the valley splitting.

We then construct a two-terminal device of the kagome
strip to investigate topological edge heat transport within the
lower gap, using a nonequilibrium Green’s function method
[60]. Two semi-infinite leads are added at the left and right
terminals of the strip, with temperatures of TL and TR, re-
spectively. The transmission coefficient of the equilibrium
edge transport is firstly calculated for the kagome strip. Since
the transmission coefficient is determined by the number of
propagating edge modes along a given longitudinal direction
of the strip, it is always one within the band gap, independent
of the temperature gradient.

In order to demonstrate spatial distribution of the edge
transport, local heat current, jmn(ε), from the site n to its
nearest-neighboring site m and local magnon density, ρn(ε),
at the site n are further computed for a given energy, ε.
Here, equilibrium transport without the temperature gradient
(TL = TR) is mainly considered, and nonequilibrium transport
(TL �= TR) will also be discussed later. The equilibrium distri-
butions of local currents and densities are shown in Fig. 4(b).
It is seen that circulating currents flow along three bonds of
triangles in the kagome lattice. The magnitudes of jmn along
two oblique bonds are the same, but unequal to that along the
horizontal bond. Therefore, a net forward or backward current
along the horizontal bond, i.e., the edge direction of the strip,
also exists, together with circulating current. For each triangle,
the circulating current, jC , and the net horizontal current,
jH , are defined as local current along the oblique bond and

FIG. 5. The evolutions of local currents and density along the
transversal direction of the strip. (a) Local horizontal current. (b) Lo-
cal circulating current. (c) Local magnon density.

current difference between the horizontal and oblique bonds,
respectively, with the direction from left to right being the
positive direction. The heat currents, jH and jC , are shown in
Fig. 5 for each triangle along the transversal direction of the
strip, while the longitudinal direction keeps the translational
symmetry. For the triangles with sizable local currents, both
jH and jC are nonvanishing, and jC is several times larger than
jH . The nonzero jH is determined by the band topology and
it takes responsibility for topological chiral edge transport,
while nonzero jC is a magnon characteristic of the kagome
lattice with triangular fine structure. The circulating current,
JC , is the rotation along the triangular structure of the kagome
lattice, different from the self-rotation motion of the magnon
wave packet around its center due to the Berry phase effect
[61,62].

Looking at evolutions of local densities and heat currents
along the transversal direction of the strip, there are obvi-
ous asymmetric distributions between two edges when the
magnon energy is close to the bulk band edge. For an energy
ε = 1.45, near the upper band, sizable currents and densities
are well localized at the upper edge of the strip, while they
disappear in the lower half of the strip, as demonstrated by
the distributions in Fig. 4(b) and the blue curves in Fig. 5.
Instead, a weak background jH spreads transversely across
the entire strip, and it is opposite to jH at the upper edge [see
Fig. 5(a)], ensuring that the total chiral current is zero at equi-
librium. The asymmetric distribution exhibits characteristics

104409-5



XING, CHEN, XU, LI, AND ZHANG PHYSICAL REVIEW B 105, 104409 (2022)

of single-edge transport. This is because the valley splitting
makes two counterpropagating modes at the chosen energy
have distinct energy differences with respect to bulk band and
corresponding distinct spatial localizations. Moreover, when
the chosen energy is near the lower bulk band (ε = 1.40), the
single-edge transport is shifted to the lower edge, with the
horizontal currents flowing in the opposite direction. When
the energy is close to the midgap (ε = 1.425), edge modes are
far away from bulk bands in energy and consequently local-
ized at both edges with a weak asymmetry. The evolutions of
JH,C and ρn at the outermost triangles of two edges with the
varied energy are also given in the SM to further demonstrate
frequency-tunable asymmetric transport [43]. In contrast, for
varied energies within the band gap, the strip with only DMI
always exhibits a topological edge transport with symmetric
spatial distribution localized at two edges [6].

Moreover, the chiral edge transport is influenced by the
signs of (J1 − J2) and D, which is similar to the valley splitting
of bulk band and shown in detail in the SM [43]. Opposite
J1 − J2 leads to single-edge transports localized at opposite
edges, with opposite current directions. The chirality of edge
transport is thus invariant. In contrast, opposite D gives rise to
a direction reversal of the current at the same edge, leading
to edge transports with opposite chiralities. The change of
the chirality results from the reversal of bulk Chern numbers
by reversing D, while opposite J1 − J2 gives the same band
topology and chirality.

IV. DISCUSSIONS

The above various Hall effects and the single-edge chi-
ral transport in the kagome ferromagnet are expected to
be detected experimentally, e.g., by spatial-resolved magnon
temperature measurement [63] or magneto-optical Kerr effect
[64], and they thus have potential use in information encod-
ing and manipulation at the microscopic level. The study
adds different dimensions to the exploration of unique device
paradigms based on coupled spin and valley degrees of free-
dom.

Given that the asymmetric edge transport is obtained at
equilibrium, we further computed topological edge trans-
port with two leads at different temperatures, which may be

another experimental available knob to tune the edge
transport. Compared with the equilibrium transport, the
nonequilibrium edge current, flowing from heat lead to cold
lead, is enhanced, while the opposite current is weakened.
As a result, a net heat current is generated and the asymmet-
ric spatial distribution can be enhanced or weakened in the
nonequilibrium edge transport.

The valley modulations and single-edge transport in
magnon excitation are proposed in a ferromagnetic kagome
lattice. These characteristics are expected to have general-
izations to other crystal lattices (e.g., hexagonal lattice) and
other magnetic orders (e.g., collinear and noncollinear an-
tiferromagnetism) [9], which are worth further study. The
first-principles calculations could also be performed in future
work to further give quantitative parameters of realistic mate-
rials.

V. CONCLUSION

In summary, we studied valley magnons in a kagome lat-
tice. Valley degeneracy and band topology are tunable by
introducing SEI and DMI. As a result, both magnon valley
Hall effect and topological edge transport are expected to
be realized. Topological edge transport includes local cir-
culating currents due to the fine triangular structure of the
kagome lattice and propagating currents flowing along the
edge direction. These currents can be localized at one edge
to achieve single-edge transport by tuning valley splitting and
frequency. The valley modulation of magnons and associated
asymmetric transport provide new opportunities for designing
energy-efficient spintronic and valleytronic devices.
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