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Enhanced subterahertz spin-current transients via modulation of cross-sublattice damping
in uniaxial antiferromagnets
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We present an analytical model to compute the subterahertz (sub-THz) spin current transients injected from
the insulating uniaxial antiferromagnet (AFM) into the adjacent nonmagnetic layer excited by spin pumping
under the antiferromagnetic resonance condition, where both intra- and cross-sublattice damping parameters are
treated on an equal footing. As expected, the sub-THz spin-pumping signal decreases with larger intra-sublattice
damping dissipation. Interestingly, it is found that the amplitude of the spin current transient is enhanced
with increasing cross-sublattice damping. On the other hand, the spin pumping is reduced by increasing the
cross-sublattice spin-mixing conductance. These trends indicate that the intrinsic origin of the cross-sublattice
damping in the bulk AFM enhances the spin current transients while its extrinsic origin, directly related to the
interfacial cross-sublattice spin-mixing conductance, has the opposite effect. Our results suggest the important
role of the previously neglected cross-sublattice damping in modulating the sub-THz spin current pulses for
ultrafast spintronic applications.
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I. INTRODUCTION

Antiferromagnets (AFMs) possess extremely large ex-
change coupling between neighboring spins, which enhances
their antiferromagnetic resonance (AFMR) frequencies and
enables the ultrafast spin manipulation in the potential spin-
tronic applications [1–6]. Recently, the AFMR of uniaxial
AFMs such as MnF2 [7] and Cr2O3 [8] has been investigated
via spin pumping, where the conversion between charge and
spin at the subterahertz (sub-THz) regime has been realized.
In addition to continuous harmonic excitations, the magne-
tization dynamics can also be manipulated by optical and
magnetic pulses, from which the resulting short spin cur-
rent transients can be utilized for ultrafast spintronic devices.
Compared with optical lasers which induce incoherent ther-
mal effects [9–12], spin pumping excited by magnetic pulses
gives rise to coherent and pure spin current transients, which
are highly desired due to lower power consumption.

In spin pumping, the magnetic material transfers angular
momentum or spin current into the adjacent nonmagnetic
layer (NM), where the magnetization dynamics can be mod-
eled phenomenologically within the Landau-Lifshitz (LL)
treatment with the introduction of the Gilbert damping term.
For magnetic materials with two sublattices, it has been
suggested that the previously disregarded cross-sublattice
damping terms also play important roles, in addition to their
intrasublattice counterparts [13–15]. Furthermore, it is well
known that the angular momentum transferred to the conduc-
tion electrons in the NM, the extent of which is governed
by the interfacial spin-mixing conductance, gives rise to en-

*e0021580@u.nus.edu

hanced Gilbert damping on top of the intrinsic damping in
the bulk of the magnetic material [16,17]. Hence, the effects
of the intra- and cross-sublattice damping and spin-mixing
conductance terms on spin pumping should be considered
simultaneously.

In this work, we present an analytical model to calcu-
late the sub-THz spin current transients injected from the
insulating uniaxial AFM (e.g., Cr2O3) into the adjacent NM
excited by magnetic field pulses via spin pumping, where both
intra- and cross-sublattice contributions are considered. As ex-
pected, the sub-THz spin-pumping signal at AFMR decreases
with larger intra-sublattice damping dissipation. Interestingly,
it is found that the amplitude of the spin current transient is
enhanced with increasing cross-sublattice damping. On the
other hand, the spin pumping is reduced by increasing the
cross-sublattice mixing conductance. These trends indicate
that the intrinsic cross-sublattice damping in the bulk AFM
helps to enhance the spin current transients while its extrinsic
counterpart, directly related to the interfacial cross-sublattice
spin-mixing conductance, contributes in the opposite way.
Our results suggest the important role of the cross-sublattice
damping in modulating the sub-THz spin current pulses for
possible ultrafast spintronic applications [18–22].

II. THEORY AND MODEL

We assume the easy axis of the uniaxial AFM is along the
x axis, and a small linearly polarized magnetic field pulse
h(t ) is applied perpendicularly to excite the spin pumping.
In the macrospin treatment with two sublattices (i = 1, 2),
the magnetization dynamics is governed by the two coupled
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Landau-Lifshitz-Gilbert (LLG) equations, i.e.,

dm1

dt
= −μ0γ [m1 × H tot,1 + α11m1 × (m1 × H tot,1)

+ α12m1 × (m2 × H tot,2)],

dm2

dt
= −μ0γ [m2 × H tot,2 + α22m2 × (m2 × H tot,2)

+ α21m2 × (m1 × H tot,1)], (1)

where mi denotes the sublattice magnetization unit vector and
μ0 is the vacuum permeability. Since we are considering the
AFM with ultralow damping, the second-order dependence
of the gyromagnetic ratio γ on the damping constant is ig-
nored for simplicity. The first term on the right-hand side
of Eq. (1) represents the precession term with respect to the
total magnetic field H tot,i, which is composed of the excitation
magnetic field pulse h(t ) and the effective field Heff,i acting
on sublattice i. In terms of the exchange field HE and the
uniaxial easy-axis anisotropy Ha, we have Heff,1 = −HE m2 +
Ha(m1 · x̂)x̂ and Heff,2 = −HE m1 + Ha(m2 · x̂)x̂. Here the
zero-field mode is considered, i.e., there is no external static
magnetic field. The following two terms on the right-hand

side of Eq. (1) pertain to the damping effect in the system. In
addition to the damping constants for the intra-sublattice (i.e.,
α11 and α22), we also include the cross-sublattice terms in the
Gilbert damping [13], i.e., α12 and α21. In this work, α12 = α21

is assumed for AFM [13,23]. Since we are interested in the
small-angle precession of the magnetizations, it is assumed
that the lattice magnetizations are largely oriented along the
uniaxial easy axis, i.e., mi = (−1)i−1x̂ + myiŷ + mzi ẑ. Here
the x component is fixed since the LLG equation considers
magnetization as a vector of fixed length and ignores its
longitudinal relaxation. To cover the longitudinal relaxation
at elevated temperatures, other theoretical approaches such as
the Fokker-Planck equation [24] should be utilized in place of
the LLG equation, which lies out of the scope of our current
work. In this small-angle limit, the LLG equations can be
linearized as

d

dt
δm = Mδm + F(t ), (2)

where the vector of the dynamic magnetization components is
given by δm = (my1, mz1, my2, mz2)T . The matrices in Eq. (2)
are explicitly given by

M = μ0γ

⎛
⎜⎝

α12HE − α11(Ha + HE ) −(Ha + HE ) α12(Ha + HE ) − α11HE −HE

Ha + HE α12HE − α11(Ha + HE ) HE α12(Ha + HE ) − α11HE

α12(Ha + HE ) − α22HE HE α12HE − α22(Ha + HE ) Ha + HE

−HE α12(Ha + HE ) − α22HE −(Ha + HE ) α12HE − α22(Ha + HE )

⎞
⎟⎠ (3)

and

F(t ) = μ0γ (α11 − α12 −1 α22 − α12 1)T h(t ). (4)

In Eq. (4), we consider the excitation dynamic magnetic field
of the form h(t ) = hy exp[− (t−t0 )2

2σ 2 − i(�t + φh)]ŷ, i.e., the
product of a Gaussian pulse with a width σ and temporal shift
t0 and a harmonic carrier with a frequency � and phase φh,
which is linearly polarized perpendicular to the uniaxial easy
axis. From Eq. (3), the AFMR frequency can be obtained as

ωr = μ0γ
√

Ha(2HE + Ha). (5)

Here the two AFMR modes are degenerate in the absence of
an external static magnetic field. The degeneracy can be lifted
by application of an external field along the direction of the
uniaxial anisotropy [25,26]. Consequently, the corresponding
four complex eigenfrequencies are

ω1 = ω3 =
√

ω2
r −

(
	ω

2

)2

+ i	ω

2
,

(6)

ω2 = ω4 = −
√

ω2
r −

(
	ω

2

)2

+ i	ω

2
,

where 	ω = μ0γ [HE (α11 + α22 − 2α12) + Ha(α11 + α22)] is
the resonance linewidth due to the Gilbert damping. Next, the
factor Cj = my1

my2
( j = 1, 2, 3, 4) is defined to describe the

eigenvector that corresponds to ω j in Eq. (6), where we have

Cj = −ω j+μ0γ (HE +Ha )
μ0γ HE

. Based on the eigenvectors and eigen-
values, the fundamental matrix of the inhomogenous equation
[i.e., Eq. (2)] is constructed as

W (t ) =

⎛
⎜⎜⎜⎝

−iC1eiω1t −iC2eiω2t iC3eiω3t iC4eiω4t

C1eiω1t C2eiω2t C3eiω3t C4eiω4t

−ieiω1t −ieiω2t ieiω3t ieiω4t

eiω1t eiω2t eiω3t eiω4t

⎞
⎟⎟⎟⎠ (7)

Accordingly, the final analytical solution of the transient dy-
namic magnetization δm can be calculated as

δm = W (t )
∫ t

0
W −1(t ′)F(t ′)dt ′

= σ
√

π/2 W (t )E(t )S, (8)

with

S = iμ0γ hy

2

⎡
⎢⎢⎢⎢⎣

α11−α12+i+C2(α12−α22+i)
C1−C2

−α11−α12+i+C1(α12−α22+i)
C1−C2

−α11−α12−i+C4(α12−α22−i)
C3−C4

α11−α12−i+C3(α12−α22−i)
C3−C4

⎤
⎥⎥⎥⎥⎦. (9)

The E(t ) is a diagonal matrix with the explicit expression
given by

E(t ) = diag(	E1,	E2,	E3,	E4), (10)
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where 	Ej = E (ω j, t ) − E (ω j, 0) with

E (ω j, t ) = exp

[
−σ 2

2
(ω j − �)2 − it0(ω j − �) + iφh

]

× erf

[
t − t0 + iσ 2(ω j − �)√

2σ

]
. (11)

The error function obtained above has a similar form as the
dynamic magnetization transient in ferromagnetic (FM) sys-
tems [27,28].

Based on the solution of δm in Eq. (8), the spin-pumping
current injected from the AFM into the adjacent NM can be
obtained from

Isp = h̄

4π

(
g11m1 × dm1

dt
+ g22m2 × dm2

dt
+ g12m1

× dm2

dt
+ g21m2 × dm1

dt

)
, (12)

where both the intra-sublattice spin-mixing conductance (i.e.,
g11 and g22) [16,29] and the cross-sublattice terms (i.e., g12

and g21) [15,23] are included. In the following, g12 = g21

is considered [13,23]. Substituting mi = (−1)i−1x̂ + myiŷ +
mzi ẑ into Eq. (12), Isp can be decomposed into two compo-
nents as Isp = Il

sp + Inl
sp with

Il
sp = h̄

4π

[
(g12 − g11)

dmz1

dt
+ (g22 − g12)

dmz2

dt

]
ŷ

+ h̄

4π

[
(g11 − g12)

dmy1

dt
+ (g12 − g22)

dmy2

dt

]
ẑ

= I l,y
sp ŷ + I l,z

sp ẑ (13)

and

Inl
sp = h̄

4π

[
g11

(
my1

dmz1

dt
− mz1

dmy1

dt

)

+ g22

(
my2

dmz2

dt
− mz2

dmy2

dt

)

+g12

(
my1

dmz2

dt
+ my2

dmz1

dt
−mz1

dmy2

dt
−mz2

dmy1

dt

)]
x̂,

(14)

where Il
sp depends linearly on the time derivative of the dy-

namic magnetization while Inl
sp depends on it nonlinearly. In

Eq. (13), Il
sp is composed of two components polarized along

the two transverse directions with respect to the equilibrium
magnetization or uniaxial easy axis, i.e., I l,y

sp and I l,z
sp . On the

other hand, Inl
sp is completely polarized along the easy axis.

In Eqs. (13) and (14), the time derivative of the dynamic
magnetization can be obtained from

dδm
dt

= σ
√

π/2 W (t )

[
iωE(t ) + dE(t )

dt

]
S, (15)

with

ω = diag(ω1, ω2, ω3, ω4), (16)

dE (ω j, t )

dt
= 1

σ

√
2

π
exp

[
− (t − t0)2

2σ 2
− i(ω j − �)t + iφh

]
.

(17)

FIG. 1. Transient spin-pumping current generation when only
the intra-sublattice terms are considered, i.e., α12 = 0 and g12 = 0.
(a) shows the excitation magnetic field pulses with two resulting spin
current components Il

sp in (b) and Inl
sp in (c) at AFMR (� = ωr).

The red and blue lines represent the two components of Il
sp, i.e.,

I l,y
sp and I l,z

sp , respectively. Note here g11 = g22 = g0 is utilized and
the spin-pumping current is normalized by g0. The excitation field
parameters are μ0hy = 0.1 mT and φh = 0. Other parameters are
σ = 10 ps and t0 = 40 ps.

III. NUMERICAL RESULTS AND DISCUSSION

For numerical calculations, we assume material param-
eters corresponding to the uniaxial AFM Cr2O3 [8,30,31],
i.e., μ0HE = 245 T, μ0HA = 0.07 T, and α11 = α22 =
1.2 × 10−3, yielding the AFMR frequency at ωr ∼ 2π ×
0.164 THz, which falls within the sub-THz regime. Here
a standard parameter g0 is introduced to describe the spin-
mixing conductance (e.g., g11/g0 is treated as the input
parameter), whose value is canceled out for the normalized
spin-pumping current Isp/g0 [see Eq. (12)]. We start with the
general treatment where only the intra-sublattice terms are
considered, i.e., α12 = 0 and g12 = 0, and the two resulting
normalized spin current components Il

sp and Inl
sp excited at

AFMR (� = ωr) are plotted in Fig. 1. The resulting spin-
pumping current is excited after the onset of the magnetic field
pulse with the oscillations damping out over the timescale
of the intra-sublattice damping. As shown in Fig. 1(b), the
two linear spin current components share the same oscilla-
tion frequency while I l,y

sp (blue line) possesses a much larger
amplitude compared with I l,z

sp (red line). On the other hand,
the nonlinear spin current Inl

sp has a negligible amplitude (i.e.,
more than eight orders of magnitude smaller than the linear
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FIG. 2. The dominant linear spin-pumping current transient I l,x
sp generated at AMFR (i.e., � = ωr) with different cross-sublattice parame-

ters. (a) depicts the intra-sublattice damping dependence of I l,x
sp with α12 = 0 and g12 = 0. The intrinsic cross-sublattice damping dependence of

I l,x
sp is plotted in (b) with g12 = 0 and the inclusion of extrinsic cross-sublattice damping due to spin pumping is shown in (c) with g12 = 0.1g11.

(d) shows I l,x
sp with different cross-sublattice spin-mixing conductance values when α12 = 0.5α11. Other parameters are the same as in Fig. 1.

counterpart) but even higher oscillation frequency compared
to the excitation field. This amplitude suppression can be
qualitatively explained from the additional dynamical mag-
netization component multiplied to the time derivative of
the magnetization [see Eq. (14)], whose magnitude is much
smaller than 1. Therefore, we will focus on the dominant I l,y

sp

component in the following discussions.
Next, we investigate the magnetic damping dependence of

the spin current transients. In Fig. 2(a), I l,y
sp is plotted with

different intra-sublattice damping values (i.e., α11), where the
cross-sublattice damping α12 is excluded (i.e., α12 = 0). As
expected, a low damping constant is desired for spin pumping,
i.e., the signal amplitude decreases with larger intra-sublattice
damping dissipation in Fig. 2(a). This shares the same trend as
that of spin pumping in FM systems measured by the inverse
spin Hall effect [32,33]. On the other hand, in addition to
the intrinsic bulk contribution, another (extrinsic) source of
the magnetic damping comes from spin pumping, which is
proportional to the corresponding interfacial spin-mixing con-
ductance [16,17]. Here we treat the total Gilbert damping as
a variable which includes both intrinsic and extrinsic origins.
Therefore, α12 = 0 is assumed in Fig. 2(a), which indicates
g12 = 0 or zero extrinsic spin-pumping contribution.

Now we focus on the cross-sublattice damping, which has
been largely disregarded in magnetization dynamical stud-
ies although it is suggested to play important roles [13,23].
The damping matrix including both intra- and cross-sublattice
damping terms is captured by the Rayleigh dissipation func-
tional, in which the positivity of the dissipation entails

α11α22 � α12α21 [13]. Therefore, 0 � α12/α11 � 1 should be
fulfilled when investigating the α12 dependence. As men-
tioned before, α11 = α22 = 1.2 × 10−3 is assumed for the
uniaxial AFM Cr2O3 system [8,30,31]. In order to analyze
the effect of the intrinsic cross-sublattice damping sepa-
rately, I l,y

sp is plotted for different α12 values with g12 = 0 in
Fig. 2(b). Interestingly, it is found that the signal amplitude
increases with the intrinsic α12, which constitutes an oppo-
site trend compared to that of its intra-sublattice counterpart.
However, this trend is in line with the linewidth expres-
sion 	ω = μ0γ [HE (α11 + α22 − 2α12) + Ha(α11 + α22)], in
which α11(α22) and α12 possess contributions with opposite
signs. Subsequently, the extrinsic cross-sublattice damping
due to spin pumping is included in Fig. 2(c) by introducing
a nonzero interfacial spin-mixing conductance, e.g., g12 =
0.1g11. When α12 has the spin pumping induced component
in addition to the intrinsic bulk value, the increasing trend of
the spin current amplitude with respect to α12 is maintained
but with a reduced amplitude compared with the case in
Fig. 2(b) where α12 has a purely intrinsic origin. Additionally,
we fix α12 = 0.5α11 and investigate the g12 dependence by
plotting I l,y

sp with different g12 values in Fig. 2(d). It is shown
that I l,y

sp is reduced by increasing g12, indicating the sublat-
tice magnetizations restrict the spin current pumped by each
other. This effect has been explained quantum mechanically
by Kamra and Belzig [15], which further elucidates the role of
the extrinsic component of α12 in curtailing the spin-pumping
transients in Fig. 2(c). As a result, in order to enhance the
transient spin current, AFM material with a large intrinsic
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bulk α12 and the AFM/NM interface with a negligible g12 are
desired. In practice, it has been proposed that the interface
with vanishing cross-sublattice spin-mixing conductance can
be achieved when only one sublattice type is exposed to the
NM [23]. However, further studies are required regarding the
fine modulation of both the intrinsic and extrinsic components
of α12 .

IV. CONCLUSION

In summary, we have presented an analytical model to
compute the transient spin-pumping current excited by a
sub-THz magnetic field pulse from insulating uniaxial AFMs
under AFMR, which treats on an equal footing both the
intra- and cross-sublattice damping parameters, the latter be-
ing largely disregarded in previous studies. As expected,
a low damping constant is desired for spin pumping with
lower dissipation; i.e., the spin current transient decreases
with increasing intra-sublattice damping. Interestingly, the
oft-neglected cross-sublattice damping can contribute in the
opposite way; i.e., a larger intrinsic cross-sublattice damping
actually gives rise to an enhanced signal amplitude. The role
of this cross-sublattice damping is rather complex, with its

extrinsic component arising from the cross-sublattice spin-
mixing conductance at the AFM interfaces suppressing the
spin current transient. Therefore, an AFM system with a
larger intrinsic cross-sublattice damping and negligible cross-
sublattice spin-mixing conductance at its interfaces is desired
for enhancing the output sub-THz signal. Our results suggest
the important role of the cross-sublattice damping in modulat-
ing the sub-THz spin current transients for possible ultrafast
spintronic applications.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Education
(MOE) Tier-II Grant No. MOE2018-T2-2-117 (NUS Grants
No. R-263-000-E45-112 and No. R-398-000-092-112) and
MOE Tier-I FRC grant (NUS Grant No. R-263-000-D66-
114). H.Y. is supported by the Agency for Science, Tech-
nology and Research (A*STAR) under its AME Individual
Research Grants (Grant No. A1983c0037) and National Re-
search Foundation (NRF) Singapore Investigatorship (Grant
No. NRFI06-2020-0015).

[1] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and
Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

[2] R. Cheng, D. Xiao, and A. Brataas, Phys. Rev. Lett. 116, 207603
(2016).

[3] H. Qiu, L. Zhou, C. Zhang, J. Wu, Y. Tian, S. Cheng, S. Mi,
H. Zhao, Q. Zhang, D. Wu et al., Nat. Phys. 17, 388 (2021).

[4] X. Martí, I. Fina, and T. Jungwirth, IEEE Trans. Magn. 51, 1
(2015).

[5] K. Olejník, T. Seifert, Z. Kašpar, V. Novák, P. Wadley, R.
P. Campion, M. Baumgartner, P. Gambardella, P. Němec, J.
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