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Thermal conductivity of square ice
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We investigate thermal transport in square ice, a two-dimensional analog of spin ice, exploring the role
played by emergent magnetic monopoles in transporting energy. Using kinetic Monte Carlo simulations based
on energy-preserving extensions of single-spin-flip dynamics, we explicitly compute the (longitudinal) thermal
conductivity κ over a broad range of temperatures. We use two methods to determine κ: a measurement of the
energy current between thermal baths at the boundaries, and the Green-Kubo formula, yielding quantitatively
consistent values for the thermal conductivity. We interpret these results in terms of transport of energy by
diffusion of magnetic monopoles. We relate the thermal diffusivity κ/C, where C is the heat capacity, to the
diffusion constant of an isolated monopole, showing that the subdiffusive motion of the monopole implies
κ/C vanishes at zero temperature. Finally, we discuss the implications of these results for thermal transport
in three-dimensional spin ice, in spin-ice materials such as Dy2Ti2O7 and Ho2Ti2O7, and outline some open
questions for thermal transport in highly frustrated magnets.
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I. INTRODUCTION

Highly frustrated interactions in magnetic systems can lead
to a rich variety of unusual phases of matter [1]. These include
disordered phases, such as spin liquids, that host emergent
gauge structures and fractionalized excitations carrying gauge
charge [2–5]. However, identifying magnetic materials that
realize such spin-liquid states remains a challenge. Detection
of fractionalized excitations, either directly via spectroscopic
experiments or indirectly through transport experiments, has
proven to be a promising route to unambiguously diagnose the
presence of a spin-liquid phase [6].

A paradigmatic example of such magnetic systems are
spin-ice materials [7], where the frustration of the mag-
netic moments mimics the disorder of protons in water ice
[8–10]. Here, the magnetic moments lie on the sites of
the pyrochlore lattice [11], a three-dimensional network of
corner-sharing tetrahedra. Interactions between the spins are
frustrated, enforcing a “two-in/two-out” ice rule [12–14] on
each tetrahedron and leading to a macroscopically degenerate
ground-state manifold.1 The spin correlations in this ice man-
ifold are dipolelike and realize a version of magnetostatics, a
so-called “Coulomb phase” [3,15].

The lowest-energy excitations in this Coulomb phase have
the spins in a three-in/one-out or three-out/one-in configura-
tion, violating the ice rule. These defects are fractionalized,
appearing only in pairs, and behaving as emergent magnetic

1In realistic models of spin-ice materials, this degeneracy is weak
and is lifted by longer-range interactions at very low temperatures
leading to long-range order [86]. In the materials themselves, the
slowing of the dynamics effectively freezes the system before this
transition can take place [68].

monopoles [16,17]. The background of the ice-rule tetrahe-
dra realizes a tensionless tangle of Dirac strings [18] linking
the monopoles. The entropy of these strings (or, more di-
rectly, the magnetostatic dipolar interaction [16]) provides
a Coulomb interaction between these monopoles, complet-
ing the magnetostatic analogy [15]. At low temperatures,
these monopole excitations are dilute, and spin ice realizes
a magnetic analog of an electrolyte and much of its rich asso-
ciated physics [19,20]. The presence of magnetic monopoles

FIG. 1. Illustration of the square-ice model on the checkerboard
lattice, highlighting the lattice spacing a and nearest-neighbor ex-
change constant J . Nearest-neighbor sites (denoted by dots) are
connected with lines. Superimposed is an (excited) spin state having
the majority of tetrahedra satisfying the ice rules with QI = 0 and
two hosting monopole defects, one having QI = +1 and the other
QI = −1 (illustrated by filled circles). A tetrahedron, labeled I , is
shown shaded with the four constituent spins numbered.
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has direct implications for many experimental probes of
spin ice, such as magnetic susceptibility and relaxation
[21–26] as well as mesoscale and nanoscale magnetic noise
measurements [27–29].

A particularly compelling manifestation of mobile mag-
netic monopoles would be conduction of heat, giving a
magnetic contribution to the thermal conductivity at low tem-
peratures, distinct from that of the lattice. While there is a
growing body of experimental work exploring thermal trans-
port in frustrated magnets broadly [30–32], and in spin ice
in particular [33–38], the interpretation of this data is hin-
dered by the lack of theoretical predictions for the thermal
conductivity. Indeed, to date, to the best of our knowledge,
there have been only a handful of explicit calculations of
thermal transport in classical Ising models [39–45], with most
studies that can access the paramagnetic regime considering
only classical Heisenberg models (see, e.g., Refs. [46–51]).
Going further, for frustrated Ising models such as in spin ice,
we know of no such calculation, even for simple toy models.2

In this paper, we explore thermal transport in a mini-
mal frustrated model: square ice, a two-dimensional version
of spin ice. This lower-dimensional model shares many of
the features of the three-dimensional models used to study
spin-ice materials, such as its macroscopic ground-state de-
generacy3 and fractionalized magnetic monopole excitations.
After a brief review of the physics of square ice (Sec. II)
and the phenomenology of thermal transport (Sec. III), we
augment the square-ice model with energy-conserving Monte
Carlo dynamics to access the thermal conductivity (Sec. IV).
We compute the thermal conductivity κ using two different
techniques (Sec. V): using an explicit thermal bath and the
Green-Kubo formula, obtaining consistent results. We com-
pare this thermal conductivity to that expected from diffusion
of magnetic monopoles, computing the effective diffusion
constant D = κ/C, finding that, at low temperatures, this dif-
fusion constant tends to zero (Sec. VI). To understand this
result, we directly compute the mean-squared displacement
of a monopole at T = 0, finding that it is subdiffusive, scaling
as ∝tα with α ≈ 0.92 < 1, due to power-law correlations be-
tween the steps of its random walk at different times. Finally,
we comment on aspects of these results which we expect
to carry over to three-dimensional spin ice, as well as the
implications these results may have for experimental studies
of spin-ice materials such as Dy2Ti2O7 and Ho2Ti2O7 and
highlight some open questions.

II. SQUARE ICE

Before delving into our results on thermal transport, we
first review some of the important features of the square-ice

2Energy transport in some disordered Ising models has been stud-
ied [87,88], though this is distinct from the kind of nondisordered
frustration of interest here.

3At zero temperature this reduces to the celebrated six-vertex
model [53].

model. The simplest version of square ice is an Ising model
defined on a two-dimensional checkerboard lattice with only
nearest-neighbor interactions (see Fig. 1). This can be viewed
as a three-dimensional pyrochlore lattice, as is relevant for
spin ice, projected into a two-dimensional plane. We write the
energy as

E = J
∑
〈i j〉

σiσ j, (1)

where J > 0 is the (antiferromagnetic) exchange constant,
σi = ±1 are Ising spins, and

∑
〈i j〉 indicates a sum over

nearest-neighbor bonds of the checkerboard lattice (see
Fig. 1). More explicitly, each site has six nearest neighbors
along the directions ±x̂, ±ŷ, as well as along two diagonals.
The diagonal directions are site dependent: if the sites are
labeled by (integer) coordinates rx, ry then when (−1)rx+ry =
+1 the ±(x̂ + ŷ) diagonals are included, when (−1)rx+ry =
−1 the ±(x̂ − ŷ) diagonals are included. We refer to the fully
connected plaquettes of the checkerboard lattice as “tetrahe-
dra,” following the three-dimensional nomenclature.

Using this notation, this model can be rewritten in a more
suggestive form as

E = 2J
∑

I

Q2
I − JN, (2)

where I denotes a tetrahedron, N is the total number of spins,
and QI is the charge defined as

QI ≡ 1

2
(−1)I

∑
i∈I

σi, (3)

where
∑

i∈I is a sum over the four spins of the tetrahedron I .
This charge can take values QI = 0,±1,±2. The sublattice
sign (−1)I ensures that the total charge is fixed to zero. The
ground-state manifold of this model is highly degenerate,
with any state with all tetrahedra satisfying QI = 0, i.e., two
spins positive and two negative, having a minimal energy
E = −JN . The high level of degeneracy manifests itself as
a residual entropy at T = 0, determined, by Lieb [52], to
be exactly4 S0 = 3N/4 ln (4/3). This ground-state manifold
is equivalent to the (exactly solvable) six-vertex model with
equal weight for each vertex type (a = b = c = 1, � = 1

2 )
and thus many of its features can be computed explicitly. The
two states of each Ising spin map to the two arrow directions
in the six-vertex model (with the lattice being rotated by π/4);
we refer the reader to Baxter [53] for details.

The correlated paramagnet present at T = 0, a classical
spin liquid, persists to finite temperatures T � J , smoothly
crossing over to a trivial paramagnet for T 	 J without
any phase transitions. Excitations out of this ground-state
manifold present themselves as tetrahedra with QI = ±1 or
QI = ±2. These defects can be interpreted as “charges” with
QI = ±1 corresponding to (single) monopoles and QI = ±2
to double monopoles. Since

∑
I QI = 0, by definition these

charges must appear in oppositely charged pairs to maintain

4Lieb’s result assumes frames this constant in terms of the number
of molecules in water ice; translating this to spins gives the additional
factor of 1

2 .
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overall neutrality. At low temperatures T � J , the system is
predominantly in an ice state with QI = 0 for most I , with
monopole defects being dilute [14,15]. Naïvely, we would
expect the density of monopoles to go roughly as ρ1 ∼ e−�1/T

where �1 = 2J is the energy cost to excite a single monopole.
Similarly, the density of double monopoles should go as ρ2 ∼
e−�2/T where �2 = 8J; this is negligible (ρ2 � ρ1) until tem-
peratures where T ∼ O(J ) and thus can be typically ignored
for T � J [19].

III. THERMAL CONDUCTIVITY

The thermal conductivity tensor κμν relates the difference
in temperature across a sample to the energy that flows in
response, with

Jμ = −
∑

ν

κμν∇νT, (4)

where J is the total energy (or heat) current and ∇T is the
thermal gradient. To define this energy current more precisely,
consider the continuity equation

∂εi

∂t
+ divi( j) = 0, (5)

where εi is the energy density (satisfying E = ∑
i εi) and

divi( j) ≡ ∑
j ji j is the (lattice) divergence at site i and ji j is

the energy current from site i to j. This continuity equation en-
sures that energy is preserved not only globally, but locally as
well, so that energy currents are well defined. The total current
is then defined as

J = 1

2

∑
i j

(r j − ri ) ji j, (6)

where ri is the position of spin i. Note that, for the square-ice
system, lattice symmetries constrain the components of κμν .
Invariance under 90◦ rotations implies κxx = κyy and κxy =
−κyx. Absent a magnetic field, time-reversal symmetry then
requires that κxy = κyx and thus the off-diagonal elements
vanish. The thermal conductivity is therefore isotropic, and
we define κμν ≡ κδμν .

In order to compute the thermal conductivity, we therefore
must have some notion of dynamics that preserves energy
locally and globally. Once a specific model and dynamics are
chosen, the local energy current ji j can then be determined
explicitly through the continuity equation [Eq. (5)]. We defer
discussion of the practicalities of computing κ using these
definitions to Sec. V, first proceeding to define our models
and their dynamics.

IV. KINETIC MONTE CARLO

To enable the calculation of thermal conductivity we ex-
tend the square-ice model [Eq. (1)] to a kinetic Ising model
that includes discrete time steps and locally preserves the en-
ergy. To do this, we broadly follow the strategy of interpreting
the discrete-time dynamics of a Monte Carlo simulation as
a proxy for the true dynamics of an Ising system, as has
been successfully used to understand the dynamics of three-
dimensional spin ice [18,54]. In this class of methods, one
sweep through the lattice (one proposed update per spin) is

defined as taking place over a time step of duration δt . Spins
are chosen randomly throughout each sweep, meaning that,
during a single sweep, some spins may be chosen more than
once or not at all.

The simplest type of updates that can be used in Monte
Carlo simulations are those which only change the spins at a
single site, so-called “single-spin-flip” dynamics. Using this
method, a flip of a single spin of the system is proposed at
random, say site k, resulting in a change in energy of

�Ek = −2Jσk

∑
〈ik〉

σi. (7)

In a conventional simulation in the canonical ensemble (say
using a Metropolis update) at temperature T , such a flip is
accepted with probability min(1, e−�Ek/T ), working with units
where kB = 1. However, updates governed by such dynam-
ics are not necessarily energy preserving. To ensure these
single-spin-flip updates locally preserve energy, as is neces-
sary to examine thermal conductivity, two modifications to
this model are introduced. First, the single-spin-flip method
is augmented with a local “demon” bath [39,41,55,56] to
maintain a fixed total energy. Second, a closely related mi-
crocanonical single-spin-flip method [39,40,57] is considered
that does not introduce any new degrees of freedom.5

A. Single-spin flip with demons

The first method which we use to ensure energy preserva-
tion in the system introduces auxiliary variables that exchange
energy with the spins. These variables give or receive the
required energy change �Ek of each spin flip and thus keep
the total energy of the system unchanged.

The notion of including extra degrees of freedom, so-called
“demons” (following Maxwell [58]), as a method for perform-
ing microcanonical simulations in statistical physics was first
introduced by Creutz [55]. Effectively, it serves as a simple,
explicit model for a thermal bath; by allowing the system of
interest to exchange energy with the demons, the spins and the
demons can reach a mutual (thermal) equilibrium [55,56].

Explicitly, N independent demons are introduced, one for
each site of the system. Each demon acts locally, interacting
only with the spin at the same site and can store an arbitrary
positive amount of energy Di � 0. The total energy of the
system E is the sum of the energy of the spins [Eq. (1)] and
the energy of the demons

E = J
∑
〈i j〉

σiσ j +
∑

i

Di ≡ Espin + Edemon.

To ensure energy conservation, for each proposed spin flip, the
update is accepted or rejected based on whether the demon can
provide the required change in energy.

Each proposed spin flip proceeds as follows: if �Ek � 0
then the demon simply absorbs that energy and the move
is accepted with σk → −σk and Dk → Dk − �Ek . However,

5We expect the use of, say, Glauber dynamics [89] instead of
Metropolis dynamics in either method to produce qualitatively sim-
ilar results for the thermal conductivity, though quantitative details
may change.
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if �Ek � 0, then the update is only accepted if Dk � �Ek

since Dk must remain positive. In this way, although energy
is not conserved for the spins alone, it is conserved by the
combination of the spins and the demons, with each update
maintaining a constant Espin + Edemon [55].

In contrast to the traditional Metropolis update algorithm,
which simulates within the canonical ensemble at some fixed
predefined temperature, with the addition of demons, the total
energy is conserved and the updates no longer depend on
an explicit temperature parameter [55,56]. However, at late
times, we expect that the demons and the spins will reach a
(mutual) thermal equilibrium with a well-defined temperature
T . Following Creutz [55], this temperature can be determined
using the expectation values of the demon energies and thus
a (local) temperature can be defined for each demon. Since
the demons are in thermal contact with the spins, at late times
when thermal equilibrium between the two is reached, their
temperatures must be equal.

To use the demons as local thermometers, the local tem-
perature must be related to some observable associated with
the demon. Noting that the energy changes �Ek come only in
multiples of ±4J , the energies of the demon can thus take only
values of the form Dk = 4Jnk where nk = 0, 1, 2, . . . ,∞.
Therefore, in equilibrium, the statistical mechanics of each
demon is equivalent to a quantum harmonic oscillator with
energy spacing 4J . Specifically, in thermal equilibrium, this
implies that the average demon energy at site k, 〈Dk〉, is given
by

〈Dk〉 = 4J

e4J/Tk − 1
, (8)

where Tk is the (local) temperature of the demon. This can be
inverted to obtain

Tk = 4J

ln
(
1 + 4J

〈Dk〉
) . (9)

When the system has reached equilibrium we would expect all
demons to have reached a common temperature, with Tk ≡ T ;
this is not necessarily true when the system is not uniform or
the system has not yet reached equilibrium.

B. Microcanonical single-spin flip

As the true dynamics of the Ising spins, say in spin-ice
materials, is certainly more complicated than the ad hoc model
using demons defined here, it will be useful to compare these
results to other choices of dynamics to clarify what features
are strongly dependent on this choice.

To this end, we also consider a microcanonical variant
of the single-spin-flip update. As in Sec. IV A, a spin k is
chosen at random and again the change in energy required
to flip this spin, �Ek , is calculated via Eq. (7). However,
unlike the demon method, this spin flip is only accepted if
�Ek = 0. Similar dynamics have been studied as an example
of a cellular automaton [59], and in modeling thermal trans-
port in ferromagnetic Ising models [42]. Since this method is
equivalent to the demon method provided �Ek is forced to be
zero, the expression for energy current will be identical if we
set �Ek = 0 [see Eq. (13)]. It should be emphasized, however,
that without the demons it is difficult to determine the local

FIG. 2. Illustration of a checkerboard lattice of dimensions Lx ×
Ly with thermal bath regions of width W = 3 and temperatures T +

(the hot bath) and T − (the cold bath). Open boundary conditions are
imposed along the x̂ direction with the periodic boundary conditions
imposed along ŷ. The thermal bath induces a temperature gradient
along x̂, with energy current J flowing from the hot bath to the
cold bath. Due to translational symmetry along ŷ and conservation
of energy, this current is uniform.

temperature of the system. This affects the available methods
for computing κ; while we can use both the thermal bath
method (Sec. V A) and the Green-Kubo method (Sec. V B)
for demon dynamics, for the microcanonical single-spin-flip
dynamics we can only use the Green-Kubo approach.

V. MEASURING THERMAL CONDUCTIVITY

Having outlined the kinetic Monte Carlo methods used, we
now discuss how the thermal conductivity κ is determined.
First, the system is augmented with thermal baths at different
temperatures at opposing ends, between which the induced
energy current can be measured and thus κ determined. Sec-
ond, κ is computed directly from the Green-Kubo [60,61]
formula. This method does not rely on the baths, but does
require knowledge of the total-energy current in terms of the
spins.

A. Thermal bath method

Conceptually, the simplest strategy to determine κ is to
(loosely) emulate the experimental protocol: by holding the
ends of a finite sample at a (small) temperature difference
�T , an energy current Jx is induced with κ = Jx/�T . The
presence of explicit baths allows the total current flowing from
one bath to the other to be computed straightforwardly, while
the local thermometers provided by the demons allows access
to the induced temperature gradient.

Explicitly, consider a finite sample geometry, as shown in
Fig. 2. Open boundary conditions are imposed along the x̂
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direction, defining two “bath” regions of width W sites on
the left and right edges of the sample. In the ŷ direction, the
usual periodic boundary conditions are kept. To keep the bath
regions at some fixed temperature, spin flips in those regions
are performed using canonical Metropolis updates. The re-
mainder of the system is updated using the energy-preserving
demon dynamics (Sec. IV).

In this setup, one bath is held at a low temperature T −,
with the other being held at a higher temperature T +, inducing
a site-dependent temperature Ti across the sample. Due to
translation symmetry along ŷ, Ti can be written as Ti ≡ T (xi ),
depending only on the coordinate along x̂. For small temper-
ature differences T + − T −, the variation of T (x) should be
linear in x, while for larger changes it can become nonlinear.
The temperature at fixed x can be determined by averaging the
demon energy along the ŷ direction 1

Ly

∑
iy

〈Dix,iy〉 for each ix
and then computing the temperature as in Eq. (9).

The total current flowing between the baths Jx can be com-
puted directly from the energy imparted to the system in the
bath regions by the Metropolis updates. Since open boundary
conditions have been implemented along the x̂ direction, and
the bulk (nonbath region) preserves energy, energy can only
enter and leave the system through the two baths. Translation
along ŷ then implies that the total current passing through a
surface with fixed x is constant, independent of x, throughout
the bulk of the system. More concretely, the net energy flow
into the cold bath, say Jx

B− , must be equal and opposite to
the net flow into the opposite bath Jx

B+ = −Jx
B− . We thus can

identify the current flowing through the middle of the sample:

Jx ≡ Jx
B+ ≡ Jx

B+ − Jx
B−

2
,

where the latter expression provides improved statistics. The
energy flow into and out of the baths per time step (that is,
per sweep) can be computed directly from the energy changes
�Ei of the Metropolis updates. For an Lx by Ly system, we
define

Jx
B± ≡ 1

Ly

∑
i∈B±

〈�Ei〉 , (10)

where
∑

i∈± denotes a sum over the site belonging to the left
(B−, blue region in Fig. 2) or right (B+, red region in Fig. 2)
baths. Note that once the system has reached equilibrium, each
bath current Jx

B± becomes independent of Monte Carlo time.
Once Jx and Ti are computed, κ can be directly determined

from its definition. For a one-dimensional geometry with
isotropic thermal conductivity and slowly varying temperature
T (x), Eq. (4) reduces to

Jx = −κ (T (x))
dT (x)

dx
.

Since the energy current Jx is a (known) constant, this can be
written

κ (T (x)) = −Jx

(
dT (x)

dx

)−1

, (11)

giving κ at temperature T (x) from the derivative dT/dx.
Absent corrections from nonlinear thermal conductivities,

this relation holds for arbitrary temperature differences �T ≡

FIG. 3. Thermal conductivity κ for a 256 × 128 system com-
puted using the thermal bath method (see Sec. V A) with bath size
W = 3 as a function of temperature T/J . Natural units with J , a, δt ,
and kB set to unity are used. The inset shows the temperature gradient
induced by the baths as a function of position along x̂, calculated via
Eq. (9) using the demon energies averaged along the ŷ direction, with
bath temperatures T −/J = 0.1 and T +/J = 10.0. Error bars shown
are estimated using a standard bootstrap method [62].

T + − T − between the baths. Due to inversion symmetry, the
next term is expected to appear at third order, with

Jx = −κ
dT

dx
− κ3

d3T

dx3
+ · · · ,

so then as long as κ3(d3T/dx3) � κ (dT/dx) then κ (T (x))
can be extracted. Therefore, if T (x) is changing slowly
enough, we do not need to restrict T ± to the small temperature
differences necessary to induce a linear temperature gradient.
Indeed, by choosing T − ≈ 0 on a sufficiently wide lattice (to
suppress higher derivatives) κ (T ) can be obtained over the full
range 0 � T � T+ from a single simulation. Practically, on the
lattice we approximate the derivative in Eq. (11) using central
differences to obtain

κ (Ti ) = − 2Jx

Ti+x − Ti−x
, (12)

where Ti±x are the temperatures of the columns to left and
right of the column i and the lattice spacing a is set to be unity
throughout.

Note that we have confirmed that the thermal conductivity
obtained for sufficiently large lattice sizes (along the gradient
direction) and different bath temperature differences �T yield
consistent values for κ . We have also confirmed that these
results are independent of the sizes of the baths W , so long
as the bath width is larger than one.

The thermal conductivity κ calculated using the thermal
bath method is shown in Fig. 3. At high temperature T 	 J
transport is incoherent, reflecting fluctuations in the energy
current with κ ∝ 〈J2

x 〉 /T 2 (also see inset Fig. 5). This power
law ∝1/T 2 is a generic feature of kinetic Ising models at high
temperature, as has been noted in the literature [41,42]. For
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FIG. 4. Comparison of the thermal conductivity κ using demon
dynamics as a function of temperature for a 256 × 128 system com-
puted using the thermal bath method (Fig. 3, Sec. V A) and for a
256 × 256 system using computed using the Green-Kubo formula
(Sec. V B), showing excellent agreement. The inset shows the rel-
evant energy current autocorrelation function (at T/J = 1.0) that
appears the Green-Kubo formula (14), scaled by the dominant t = 0
element, showing that it quickly decays to zero.

temperatures T ∼ J , κ increases to a maximum at T/J ≈ 1
before dropping quickly toward zero for T � J . This is in line
with expectations from transport by monopole excitations. At
low temperatures the monopoles are dilute with exponentially

FIG. 5. Comparison of the thermal conductivity κ as a function
of temperature for a 256 × 256 system using the single spin-
flip method with demons and the microcanonical single-spin-flip
method, both computed using the Green-Kubo formula. Agreement
is quantitative at low temperature, but only qualitative at high tem-
peratures. Since at high temperature κ ∝ 1/T 2, the inset shows κT 2

for the two methods. This κT 2 value can be related to the fluctuations
of the energy current 〈J2

x 〉, as discussed in the text.

small density ∝e−2J/T and thus κ is small. As the tempera-
ture is raised, the increased population of monopoles raises
κ until T ∼ J where the description in terms of a dilute
monopole gas begins to break down. We note that the pres-
ence of maximum at T ∼ O(J ), and a decline toward zero at
T = 0 is also seen in the ferromagnetic square-lattice Ising
model [41,42], though it proceeds much more steeply for that
system.

The inset of Fig. 3 shows the variation of the local tempera-
ture as a function of position x/a. Due to the large temperature
difference between the two baths (T +/J = 10.0 and T −/J =
0.1) the local temperature T (x) is not a simple linear function
of x, but has significant curvature. However, since the current
is constant, and the system is sufficiently wide, κ (T ) can still
be reliably extracted, though the computed points become
sparser at low temperatures.

B. Green-Kubo formula

To further confirm that the nonlinear temperature distribu-
tion involved in the thermal bath method yields the correct
thermal conductivity, we also consider a direct calculation
of κ using the Green-Kubo formula (see Appendix B for
a relevant derivation). In contrast to the bath method, to
use this formula, a precise definition of the local current
ji j [Eq. (5)] that defines the total current J [Eq. (6)] is
needed.

The local energy current ji j (t ) from site i to site j, during a
specified sweep at time t , can be written as the sum over cur-
rents induced by each spin flip. Explicitly, the current from a
(proposed) flip at site k is written as j (k)

i j with (see Appendix A
for a derivation)

j (k)
i j =

{
Jσiσ j (δik − δ jk ), Dk � �Ek

0, Dk < �Ek
(13)

where J is the exchange constant (not to be confused with the
total current) and δik − δ jk governs the direction of the current
flow, ensuring j (k)

i j = − j (k)
ji . The energy current ji j (t ) can then

be computed by adding up the j (k)
i j over the sweep, updating

the spin configuration after each step. For the microcanonical
single-spin-flip case, the expression is identical, except for the
restriction that �Ek = 0.

From the ji j (t ) time series for the total current, Jt [Eq. (6)]
can be obtained, which can then be used to determine κ via
the Green-Kubo formula [60]

κ = 1

NT 2

∞∑
τ=0

〈
Jx
τ Jx

0

〉(
1 − 1

2
δτ,0

)
, (14)

where N is the number of spins and T is the temperature. Note
that we continue to use natural units where the lattice spacing
a, time step δt , and kB are set to unity.6

6Restoring these factors adds a factor of δt/kB to the two-
dimensional thermal conductivity giving units of W/K. For the
three-dimensional thermal conductivity with units W/(Km), one
must also divide by the layer spacing.
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This formula can be viewed as the autocorrelation function
for the energy current A(τ ), defined as (noting that 〈Jτ 〉 = 0)

A(τ ) ≡ 〈
Jx
τ Jx

0

〉 − 〈
Jx
τ

〉〈
Jx

0

〉
, (15)

integrated over all times and scaled by 1/NT 2, with the τ = 0
component having half-weight. Practically, when computing
this autocorrelation function, noise dominates at large values
of τ . We thus do not extend the sum over the total number
of sweeps, but instead exploit that at large times A(τ ) should
decay quickly (see Fig. 4). The sum can thus be truncated at
some time much smaller than the total number of sweeps; the
range 0 � τ � 102 was typically used in our simulations. We
have confirmed that our results are not sensitive to the precise
choice of this cutoff.

As Eq. (14) makes use of the overall temperature T , we
must ensure that the system can be initialized at, or at least
near, a desired temperature. To do this, the initial total energy
E (which is conserved by the dynamics) is chosen so that
it matches the expected energy 〈E〉 found in the canonical
ensemble at the desired temperature T . How this is done
depends on the dynamics chosen; different initialization meth-
ods are used for the demon dynamics vs the microcanonical
single-spin-flip dynamics.

For the method with demons (Sec. IV A), we employ a
strategy to approximately reach a desired temperature, with-
out needing to perform additional Monte Carlo simulations to
initialize the state. First, the spins are set to be in a ground
state, meaning all tetrahedra having QI = 0 [Eq. (3)] giving
Espin = −JN . The total demon energy is chosen such that the
combination of the spins and the demons gives approximately
the desired temperature. To do this, the total energy in the
canonical ensemble is approximated as

E (T ) ≈ N

(
E1(T ) + 4J

e4J/T − 1

)
,

where E1(T ) is the energy per spin in the single tetrahedron
approximation (see, e.g., Ref. [63]), where only four spins are
kept. Explicitly,

E1(T ) = 6J (e6J/T − e2J/T )

Z1(T )
, (16)

where Z1(T ) ≡ 2e−6J/T + 6e2J/T + 8 is the partition function
for the single tetrahedron. If we choose the initial demon
energy to then be

Edemon = N

(
E1(T ) + 4JN

e4J/T − 1
+ J

)
, (17)

then Espin + Edemon ≈ E (T ). Practically, the demon ener-
gies are randomly incremented until the total demon energy
reaches this value. Importantly, the final temperature of the
spins used in Eq. (14) is computed using the average demon
energy and not this initial target temperature; the use of the
single-tetrahedron approximation thus only serves to approx-
imately obtain the desired set of temperatures.

Note that without the demons we do not have a convenient
way to impart the initial state with a given energy E . For the
microcanonical single-spin-flip simulations (Sec. IV B) we
therefore fall back to performing a Monte Carlo simulation
using a standard Metropolis algorithm at temperature T with

single-spin-flip updates (until thermalization) to generate an
initial state with the desired energy (see Sec. IV).

The results for κ computed using the Green-Kubo for-
mula are shown in Fig. 4, along with the κ computed using
the bath method. One can see that they agree quantitatively,
confirming our assertion that the nonlinear temperature gra-
dients involved in the thermal bath method do not affect the
results. The same features noted in Sec. V A can be seen,
with essentially perfect agreement between the results from
the thermal bath and Green-Kubo methods. The inset of Fig. 4
shows the energy current autocorrelation function that appears
in the Green-Kubo formula [Eq. (14)]. One can see that it
decays very quickly; by t ∼ O(101) it is essentially zero, thus,
a cutoff larger than this has little effect on the thermal con-
ductivity. Note that A(t ) in the inset is scaled by the dominant
t = 0 element, with the next largest contribution being �5% of
A(0). The dominance of A(0) persists even to low temperature
with T/J � 1.0. The approximation κ ≈ 〈J2

x 〉 /(2NT 2) is thus
surprisingly accurate over the whole temperature range. This
quick decay of A(t ) does not depend strongly on temperature;
though we only showed A(t ) for T/J = 1.0 in the inset of
Fig. 4, these features do not change qualitatively for larger or
smaller values of T/J .7

Although both the thermal bath method and Green-Kubo
formula produce results for κ that agree quantitatively, there
are some notable practical differences between the two meth-
ods. First, the thermal bath method is significantly more
efficient with respect to computation time, as one simulation,
with a run time which scales as O(N ), yields the thermal
conductivity for O(L) temperature points. Conversely, when
using the Green-Kubo formula directly, a single simulation,
with run time still scaling as O(N ), produces the value of
thermal conductivity for only a single temperature. Second,
the thermal bath method has the additional complication that
one must ensure that the temperature gradient dT/dx remains
sufficiently small, which is dependent on the size of the (a
priori unknown) nonlinear corrections. Thus, in order to pro-
duce reliable results using the thermal bath method, one must
choose the temperatures T ± at which to hold the baths and
the length of the system along the gradient such that these
corrections are negligible. Note that using the Green-Kubo
method also requires initialization of the demon energies to fix
the system at a specific temperature; when baths are present,
the temperature is fixed naturally.

C. Dependence on choice of dynamics

In order to examine the dependence of these results on the
details of the dynamics, we computed κ using the alternate
microcanonical dynamics, as described in Sec. IV B. A com-
parison of the thermal conductivity for these two choices is
shown in Fig. 5. There is quantitative agreement between the
two methods at low temperature, with both showing κ → 0
as T → 0 and maxima of similar magnitude at T ∼ O(J ).

7More precisely, A(1) ∼ −0.03A(0) is ubiquitous across the full
temperature range, while the next element A(2) shows some tem-
perature dependence; for T � J having more weight, A(2)/A(0) ∼
−10−2, while for T � J one has A(2)/A(0) ∼ −10−3.

104405-7



RUAIRIDH SUTCLIFFE AND JEFFREY G. RAU PHYSICAL REVIEW B 105, 104405 (2022)

However, at high temperature (T � J) the two methods agree
qualitatively, with both methods going as ∝(J/T )2, but dis-
agree quantitatively with the coefficients of the O[(J/T )2]
being different. The inset of Fig. 5 highlights this behavior,
showing (T/J )2κ in the high-T regime. Both approach con-
stants, with the microcanonical method scaling as ∼0.4(J/T )2

while the demon method scaling as ∼2(J/T )2 over the same
temperature range. For the demon method, this coefficient
of 2 can be reproduced via a high-temperature expansion,
assuming that κT 2 ∝ 〈J2

x 〉 and currents induced during each
sweep are uncorrelated.

Much of this difference in the two methods arises from
differences in the likelihood of flipping a spin at high T .
Specifically, for T 	 J , if the spin flips are uncorrelated,
one can approximate κT 2 ∼ 〈J2

x 〉/(2N ) [Eq. (14)], with the
scale of the current fluctuations being directly related to the
acceptance rate. Using the demon method, at high T , every
spin flip is accepted as the demons will always have enough
energy to flip the spin irrespective of the cost. In contrast,
when using the microcanonical method, a spin k is only
flipped if �Ek = 0. At high temperature, where all possible
spin configurations of the neighbors are equally likely, this
amounts to a 5

16 ∼ 31.3% probability of a spin flip. We would
naïvely expect, at least to a first approximation, provided we
have uncorrelated spin flips in both cases, that the ratio of
thermal conductivities to have this ratio for T 	 J . However,
as shown in the inset of Fig. 4, we see a ratio closer to ∼20%.
This small remaining discrepancy is likely due to the fact that
spin flips are significantly more correlated when using the
microcanonical dynamics, with the t > 0 elements of the cur-
rent autocorrelation function A(t ) remaining important even at
high temperature.

Relatedly, it is important to note that Ising models do not
have nontrivial dynamics on their own. Interpreted strictly,
a classical Ising model has no dynamics: from the classical
perspective, there are no conjugate momenta, from a quantum
perspective all the operators commute. Therefore, we have
some freedom to choose the details of the dynamics when
extending to a kinetic Ising model and, as we have seen above,
dynamical quantities such as the thermal conductivity can
depend on this choice. We note that, despite this fact, the
chosen dynamics do yield identical static properties at long
times, matching the conventional canonical ensemble.

As a perspective on the possible origin of these different
kinds of dynamics, we note that classical Ising models can
be supplemented by small quantum mechanical terms that
induce dynamics, such as transverse exchanges or transverse
fields (see Ref. [5] for some relevant quantum spin-ice mod-
els). Given the incredibly slow dynamical timescales in the
classical spin ice Dy2Ti2O7 [i.e., the spin-flip rate is O(ms)],
we expect any quantum terms to be much smaller than the
Ising exchanges (see also Ref. [64]). The static properties for
temperatures much larger than these quantum terms should
thus be determined almost entirely by the classical Ising part.
However, the dynamical properties, which include transport
coefficients, would be sensitive to both the size of these quan-
tum terms and their precise form. In this way, the differences
in our results for different choices of dynamics may corre-
spond to different possible choices for these small quantum
terms that would render the model dynamical.

VI. DIFFUSION OF MONOPOLES

It is natural to interpret the thermal conductivity as aris-
ing from the motion of the monopoles transporting energy.
Since the monopoles are excitations out of the ground-state
manifold with QI = ±1 they carry a finite amount of energy
�1 = 2J . Since these monopole defects are not fixed and can
move through the system at no energetic cost as the spins on
the monopole tetrahedra are flipped, they can serve as vehicles
for the transport of energy within the system.

We can see this explicitly from a “macroscopic” perspec-
tive, via the continuity equation for energy density

∂ε

∂t
= −∇ · j,

where j(r, t ) = −κ∇T (r, t ) is the local energy current and
we assume both ε and T vary slowly with position and time.
Assuming each region of the system is in a local thermal equi-
librium, ε and T can be related through ε(r, t ) ≡ ε(T (r, t )).
This implies that

∇ε =
(

∂ε

∂T

)
∇T,

where C ≡ ∂ε/∂T is the heat capacity per spin (equivalent to
per volume in natural units). The energy density thus obeys a
diffusion equation

∂ε

∂t
≈ D∇2ε, (18)

where D ≡ κ/C is the thermal diffusivity. At low temperature
where the density of defects is low, the energy density can be
related to the monopole density, as

ε(r, t ) ≈ ε0 + �1n1(r, t ) + · · · ,

where ε0 is the energy density of the ice background, �1 is the
cost of an isolated monopole, and n1 is the monopole density.
A similar diffusion equation for n1 then follows, with

∂n1

∂t
≈ D∇2n1. (19)

Thus, at low temperature the monopole diffusion constant D is
identical to the thermal diffusivity κ/C. This result can also be
obtained directly from the Green-Kubo formula for κ , though
through a more complicated argument (see Appendix D).

The monopole diffusion constant can thus be obtained by
reanalyzing the results for κ presented in Sec. V. For definite-
ness, we consider single-spin-flip dynamics with demons and
examine κ obtained for our largest 256 × 256 system from
the Green-Kubo formula. We show D ≡ κ/C as a function of
temperature in Fig. 6. From the argument presented above, we
would expect that, if the monopoles are diffusive, D ≈ const
at low temperatures where the density of monopoles is low.

The value of D can be roughly estimated from a simple
random walk on the lattice of tetrahedra. Define the diffusion
constant for such a random walker with position R(t ) at time
t as the limit

〈|R(t ) − R(0)|2〉 ∼ 4Dt, (20)

as t → ∞. Elementary arguments, taking into account dis-
tance between the centers of the tetrahedra (aM = √

2a) and
the average number of hops per time step (δtM = δt/3) yield
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FIG. 6. Diffusion constant, D ≡ κ/C, where C is the heat capac-
ity, as a function of temperature for a 256 × 256 system computed
using single-spin-flip with demons via the Green-Kubo formula. An
estimate for the diffusion constant, 7a2/6δt , obtained by a random
walk through the lattice with some forbidden direction is also shown.
While somewhat constant for moderate to high temperatures, for
T � J the diffusion constant appears to be approaching zero. Natural
units with a, J , δt and kB being unity have been used. Note that the
error bars become large as T → 0, this is due to the fact that two
small quantities are being divided, as both κ and C go to 0 at low
T . The temperature dependence of D, including the low temperature
downturn for T � J , is insensitive to system size L, as shown in the
in the inset.

D ≈ 3a2/(2δt ). Including that one monopole hopping direc-
tion is forbidden at each step reduces this by a factor of 7

9
giving an improved estimate of D ≈ 7a2/(6δt ) or, in natural
units, D ≈ 7

6 = 1.16̄ (see Appendix C for details).
Returning to Fig. 6, we see that at higher temperatures T �

J , D is relatively constant, of O(1). As temperature is lowered,
while D is starting to approach the estimated value, for T � J ,
D begins to drop precipitously towards zero. We note that at
low temperature, the error bars become large. This is due to
the fact that κ and C both go to zero exponentially fast, and
thus their relative errors are enhanced as T → 0. This then
amplifies the error of κ/C, leading to the large error bars.8

Since this is the regime where we expect the monopole
picture to work best, we need to examine carefully which of
our assumptions has failed (as D is not reaching 7a2/6δt). We
thus complement these results with a direct computation of
the monopole diffusion constant D, using a method that allows
us to approach T = 0. To this end, consider a system with a
single pair of monopole excitations that are allowed to hop,

8The error in D is calculated using standard error propagation [90],
with δD = D

√
(δκ/κ )2 + (δC/C)2. This expression could poten-

tially underestimate or overestimate the errors if the errors in κ and
C were correlated. Given that the error bars at higher temperatures
appear to be small relative to the noise seen from temperature to
temperature we expect the errors have been underestimated.

but not annihilate. The mean-squared displacement for one of
these monopoles can be written

D ≡ lim
t→∞

{ 〈|R(t ) − R(0)|2〉
4t

}
, (21)

where R(t ) is the position of the monopole excitation.
Allowing the monopoles to hop, but not annihilate, is

identical to the microcanonical single-spin-flip simulations
discussed in Sec. IV B.9 More precisely, the system is first
initialized in a random ice state before a single spin is flipped
at random to create a monopole defect pair. The position of
these monopoles is then tracked to create a time series of
their position, with total number of times Nt , which can be
used to compute the mean-square displacement. As is done
for autocorrelation functions, the initial time is also averaged
over, with

〈|R(t ) − R(0)|2〉 = 1

Nt − t

Nt −t−1∑
t0=0

|R(t0 + t ) − R(t0)|2. (22)

In principle, one should also average over the initial ice state
and position of flipped spin, but in practice we have found
the system to be sufficiently self-averaging, rendering this
unnecessary.

Practically, the limit t → ∞ cannot be taken; for dis-
placements of order the system size L, finite-size effects
ultimately appear. If the monopoles were diffusing we would
expect the mean-square displacement to be ∝t . Thus, if D ∼ 1
then we expect these finite-size effects to present themselves
at t ∼ (L/4)2. Past this time, we expect the monopoles to
sample the whole lattice uniformly, yielding a plateau with
|R(t ) − R(0)|2 ∼ L2/6 from Eq. (20).

Results for the mean-square displacement are shown in
Fig. 7 for several different system sizes. Although we expect
the monopoles to exhibit diffusive behavior, it is clear that
this is not the case. While the mean-square displacement is
growing with time, the power law of that growth is lower than
the expected value of one. The monopole motion as T → 0 is
thus subdiffusive with

〈|R(t ) − R(0)|2〉 ∝ tα,

where α < 1. By fitting a power law for times t � (L/4)2,
one can estimate α ≈ 0.92. Furthermore, using the definition
of D given by Eq. (21) the diffusion constant in fact vanishes
as T → 0.

VII. DISCUSSION

In this section, we address the origin of the subdiffusive
monopole motion and comment on whether monopole trans-
port is a plausible explanation for the (magnetic) thermal
conductivity in spin-ice materials.

A. Origin of subdiffusive behavior

The absence of diffusion, i.e., 〈|R(t ) − R(0)|2〉 ∝ t at long
times, must be traceable to the influence of the spin-ice

9The demon method would give the same result, when T → 0, as
the average demon energy is exponentially small.
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FIG. 7. Mean-square displacement for a monopole at T = 0 as
a function of time for several system sizes obtained through Monte
Carlo simulation (see Sec. VI for details). This deviates from the
expected linear time dependence ∝t , with slope being 4D where
D is the monopole diffusion constant. Fitting a power law ∝tα , the
monopole motion is subdiffusive, with a mean-square displacement
∝t0.92 being consistent with the data.

background on allowed monopole hopping paths. The pos-
sibility of subdiffusion in square ice was discussed in Ref.
[65] based on an ansatz for a “memory function” associated
with monopole hops that scaled algebraically with time. Using
this ansatz, they estimated scaling of the mean-squared dis-
placement ∝tβ−1 where β ∼ 1.89, briefly reporting numerical
results consistent with this value.

To confirm that the subdiffusive behavior is originating
from memory effects in the monopole hopping process, we
examine the correlations between the monopole step direc-
tions in detail. In particular, we look at the step autocorrelation
function

〈d(0) · d(t )〉 ≡ 1

Nt − t − 1

Nt −t−2∑
t0=0

d(t0) · d(t0 + t ), (23)

where d(t ) ≡ R(t + 1) − R(t ) is the step taken by the
monopole at time t and initial times t0 are averaged over.
Note that one less time is included due to the definition of
d(t ) involving R(t + 1). If this function decays sufficiently
quickly, then diffusive behavior is expected; for an ideal ran-
dom walk we expect 〈d(0) · d(t )〉 ∝ δt,0. The result for the
step autocorrelation function is shown in Fig. 8, computed
using the same methods outlined in Sec. VI. This quantity
indeed scales algebraically at long time, decaying as ∼1/t1.04,
with an exponent slightly larger than one.10 Following the
notation of Nisoli [65], this corresponds to an exponent of
β/2 − 2, yielding β ∼ 1.92. This is consistent with their es-
timate for β, as well as our estimate from the mean-squared
displacement β = 1 + α ∼ 1.92 (from Sec. VI).

10From the (linear) fitting procedure, one can roughly estimate error
bars of −1.04 ± 0.02 for this exponent.

FIG. 8. Step autocorrelation function 〈d(0) · d(t )〉 for a
monopole as a function of time, as defined in Eq. (23), calculated
using the methods described in Sec. VI for a 64 × 64 system.
At long times its decay is algebraic; fitting a power law yields a
scaling of the form ∼t−1.04. This is consistent with the subdiffusive
monopole motion seen in Fig. 7.

We thus conclude that the subdiffusive behavior of the
monopole motion, and thus the vanishing of κ/C as T → 0,
originates from the algebraic correlations of the monopole
hoppings, as proposed in Ref. [65]. A more complete ana-
lytic and physical understanding of this exponent, however,
is still lacking. Note that some scaling exponents related to
monomers in fully packed loop models (equivalent to the
six-vertex model) are known [66,67] and may be connected
to the value observed in the scaling of the mean-squared
displacement.

B. Relevance for experiments on spin-ice materials

Thermal transport measurements on the spin-ice mate-
rials Dy2Ti2O7 and Ho2Ti2O7 have revealed an additional,
magnetic contribution to the thermal conductivity that ap-
pears at temperatures ∼O(1 K), close to the scale of the
magnetic interactions [33–38]. This magnetic thermal con-
ductivity has been interpreted (at least at low temperatures)
by some as being due to the transport of heat by magnetic
monopoles [33–35,37].

While results for thermal transport in two-dimensional,
nearest-neighbor square ice cannot be directly applied to
three-dimensional dipolar spin ice, we expect the broad qual-
itative features to carry over, namely, a high-temperature
1/T 2 tail, a peak at T ∼ O(Jeff ),11 and a relationship to the
monopole diffusion constant as T → 0. More quantitatively,
the results of Ref. [29] show that in three-dimensional spin
ice, the monopole dynamics are anomalous, that is, they do not
follow the frequency scaling expected for a diffusive motion.
While the precise exponent is close to that expected for an

11Here, Jeff is the effective nearest-neighbor Ising coupling, taking
into account both the superexchange and dipolar contributions [7].
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ideal random walk for nearest-neighbor spin ice, it becomes
more and more anomalous (subdiffusive) as dipolar and ex-
change corrections are included. We thus expect that, as in the
two-dimensional square ice, the thermal diffusivity (i.e., the
monopole diffusion constant) in three-dimensional spin ice
vanishes as temperature approaches zero.

Returning to comparison with experiment, first, consider
the magnitude of the expected magnetic contribution. Since
the monopoles are not ballistic, we expect that the sample size
is irrelevant and thus an estimate for the bulk thermal conduc-
tivity can be made. From Fig. 3, in natural units the maximum
value of the thermal conductivity is κ∗ ∼ 0.3. Restoring time
and length scales one finds

κ∗ ∼ 0.3
a2kB

δtV1
,

where δt is the spin-flip time, V1 volume per spin, and a is
the nearest-neighbor distance. The length scales are taken as
appropriate for spin-ice materials: a ∼ 3.5 Å, V1 ∼ 62.5 Å3,
assuming a conventional cubic unit cell is ∼10 Å in size [11].
For the spin-flip time δt , first consider the timescale extracted
from magnetic relaxation measurements [22,68]: δt ∼ 1 ms.
This yields the thermal conductivity

κ∗ ∼ 10−11 W

K m
.

This is far too small to account for the magnetic thermal
conductivity in spin-ice materials. For example, for Dy2Ti2O7,
Ref. [34] reports a maximum thermal conductivity of κ∗ ∼
10−1 W/(K m), 10 orders of magnitude larger. The drastic
difference in scale arises from slowness of the spin dynamics
in spin ice. For comparison, when converted to an energy, the
spin-flip time δt corresponds to h̄/δt ∼ 10−10 meV, 10 orders
of magnitude smaller than typical energy scales in rare-earth
magnets.

While the magnitude is wildly incorrect, the temperature
dependence of the thermal conductivity is similar to the exper-
imental data [34]: there is a high-temperature tail, a maximum
near T ∼ 1 K (similar to the location of the maximum in
the heat capacity), and κ approaches zero as T goes to zero.
The thermal diffusivity κ/C is also approximately temperature
independent above ∼1 K with a value of ∼0.25 × 10−5 m2/s.
This can be compared to the theoretical value. Restoring time
and length scales gives a maximum of heat capacity per unit
volume of C ∼ 6.6 × 104 J/(K m3),12 and thus a diffusivity
of size D ∼ 10−16 m2/s. As with the thermal conductivity
itself, the magnitude is wildy incorrect, differing by 10 orders
of magnitude from the experimental value.

One naïve explanation could then be that the dynamics that
are operative for energy transport are simply much faster than
expected based on magnetic relaxation. To match the overall
scale a spin-flip time of δt ∼ 102 fs, or equivalently an energy
scale h̄/δt ∼ 10 meV, would be needed. However, there is

12The heat capacities per spin for two-dimensional square ice and
three-dimensional spin ice are not qualitatively different, with their
maximum values being C/N ∼ 0.3 in natural units.

no known magnetic energy of this size in these systems.13 In
addition to such a large energy scale, one would also need a
mechanism to explain why the magnetic relaxation remains
slow, while energy transport is fast. For these reasons, we
do not consider an explanation via significantly faster spin
dynamics to be viable.

A more plausible explanation could involve the lattice,
with the interaction between the (slow) magnetic degrees
of freedom and the (fast) phonon excitations contributing
to the magnetic thermal conductivity. For example, scatter-
ing of phonons from a distribution of magnetic monopoles
(quasistatic on lattice timescales and carrying electric dipole
moments [69]) or the spin-ice background itself would likely
affect the phonon contribution to the thermal conductivity.
However, scattering from pointlike defects (e.g., monopoles)
or linelike defects (e.g., loops in the spin-ice background) are
expected to be insignificant relative to the boundary scattering
contribution at sufficiently low temperature [70].

Alternatively, renormalization of the sound velocity v and
thus the boundary scattering contribution due to spin-phonon
interactions is possible but would have to be quite large to
account for the observable magnetic conductivity. In Ref. [34],
one has κmag/κtot ∼ 0.25 at 1 K. Since we expect κ ∝ 1/v2

in the boundary scattering limit, to yield a 25% increase a
change of �v/v ∼ −0.1 would be needed over a range of
∼1 K or so. Since measurements of the relative change in the
sound velocity [71] in Dy2Ti2O7 and Ho2Ti2O7 are of order
|�v/v| ∼ 10−5 (and not always the correct sign), we take this
explanation as unlikely.

Finally, note that the two-dimensional square-ice model
can be more directly related to artifical spin ice [72,73]:
arrays of nanomagnets (ferromagnetic islands) engineered to
mimic the physics of spin ice. However, while the motion of
monopole defects has been studied in such systems [74–77],
it is not clear that thermal conductivity is a useful or practi-
cal quantity to measure. Indeed, the information encoded in
“macroscopic” quantities such as κ can likely be accessed
more directly given the detailed magnetic configuration which
may be imaged directly in space and as a function of time.
However, this more detailed information may shed light on the
mechanisms of thermal transport in frustrated systems more
broadly, which could prove useful in understanding solid-state
realizations where such information is not readily accessible.

VIII. CONCLUSION

In summary, we have explored thermal transport in square
ice using energy-conserving kinetic Monte Carlo methods.
We computed thermal conductivity using two different kinds
of stochastic dynamics, showing that the qualitative features
are independent of the dynamics considered. Furthermore,
at low temperatures, we found that energy is transported by
magnetic monopoles, with the thermal diffusivity vanishing
as we approach T = 0 due to subdiffusive motion of the

13While the gap to the first excited crystalline electric field energy
scale is of O(10 meV), this should play no role in the dynamics at
low temperature.
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monopole excitations. We explored the origins of this sub-
diffusive behavior and related them to algebraic correlations
between the monopole step directions. Finally, we concluded
that monopole transport due to single-spin-flip dynamics can-
not account for the magnetic contribution to the thermal
conductivity in real spin-ice materials.

We close with a few of the many important open questions
regarding thermal transport in spin ice, and in thermal trans-
port in frustrated magnets more broadly.

First, in spin ice, understanding the origin of the mag-
netic thermal conductivity in Dy2Ti2O7 and Ho2Ti2O7 needs
further study [33–38]. In particular, the role of the lattice
and spin-lattice coupling in producing an apparent magnetic
contribution to the thermal conductivity remains somewhat
elusive. A detailed accounting of the effects of phonon scat-
tering (resonant and nonresonant) from the magnetic degrees
of freedom, and its interplay with the evolution of the spin-ice
physics, is likely necessary to determine the viability of such
explanations.

Second, from a broader perspective, while we have focused
here on square ice, this methodology can be applied to other
frustrated models that exhibit different kinds of ground-state
manifolds or fractionalized excitations. Examples include
models of classical Z2 spin liquids [78], models exhibiting
fragmentation [79], or those realizing higher-rank gauge theo-
ries [80], to name only a few. Understanding the mechanisms
of energy transport in these systems, and the role played by
their fractionalized excitations, offers exciting opportunities
for future study.

Finally, another natural line of questioning concerns the
effect of magnetic fields and, consequently, the appearance of
the thermal Hall conductivity κxy. Puzzling measurements of
the thermal Hall effect in the Kitaev magnet RuCl3 [31,81,82]
and in pyrochlores such as Tb2Ti2O7 [30] and Yb2Ti2O7

[32] have sparked renewed interest in κxy and presented new
challenges to theory. More fundamentally, ambiguities in the
definition of the bulk thermal Hall conductivity [83,84] arise
even in this classical context (see Appendix B), and thus de-
veloping theoretical and computational methods for accessing
κxy is an important goal.

It is clear that there is significant work left to be done in
understanding thermal transport in frustrated magnets. This
includes both spin-ice models specifically, as well as in the
large and varied family of models and materials that exhibit
high frustration. We hope that the results and methods pre-
sented here will further motivate theoretical and experimental
studies of these systems.
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APPENDIX A: ENERGY CURRENT

In this Appendix, we derive the energy current given
in Eq. (13) of the main text. Consider a general (nearest-
neighbor) Ising model with a “demon” bath, as in

Sec. IV A:

E [σ, D] = J
∑
〈i j〉

σiσ j +
∑

i

Di,

where σi = ±1 and Di = 0, 4J, 8J, . . . . For a given configu-
ration of spins at time t , the spins and demons are updated
via a local flip. A spin k is picked at random from the lattice,
the spin-flip cost �Ek is computed [Eq. (7)] and the update is
performed as described in Sec. IV A. This can be written as

σ ′
k =

{+σk, Dk < �Ek,

−σk, Dk � �Ek,

D′
k =

{
Dk, Dk < �Ek,

Dk − �Ek, Dk � �Ek,

where σ ′ and D′ are the updated spin and bath variables and
σi and Di are unchanged for i �= k. By construction, the total
energy is conserved under these updates, with

E [σ ′, D′] = E [σ, D].

This can be written a bit more compactly in terms of a Heavi-
side function

σ ′
i = σi[1 − 2δik�Di��Ek ], (A1a)

D′
i = Di − δik�Di��Ek �Ek, (A1b)

where �C = 1 if C is true and �C = 0 otherwise.
Consider now a local energy density and how that defines

energy flow under these dynamics. Write the energy density

εi ≡ Di + 1

2
Jσi

∑
〈i→ j〉

σ j,

so that E = ∑
i εi. Note the factor of 1

2 to account for double
counting the bonds, i.e.,

∑
〈i j〉 ≡ 1

2

∑
i

∑
〈i→ j〉. One can then

obtain the change after one step using Eq. (A1):

ε′
i ≡ D′

i + 1

2
Jσ ′

i

∑
〈i→ j〉

σ ′
j

= εi − �Dk��Ek

{
δik�Ek + J

∑
〈i j〉

σiσ j[δik + δ jk]

}
,

where ε′
i is the new energy density and that i �= j has been

exploited to remove a few terms. This can be written more
suggestively if �Ek is expanded out:

ε′
i − εi = −∑

〈i→ j〉 [J�Dk��Ek σiσ j (δ jk − δik )].

Using the continuity equation to equate this to −∑
〈i→ j〉 j (k)

i j
the energy current for this update [as in Eq. (13)] can be
identified

j (k)
i j ≡ J�Dk��Ek σiσ j (δ jk − δik ), (A2)

where this quantity is only nonzero for nearest neighbors. To
obtain ji j (t ), these contributions are summed over a full sweep
of N randomly chosen sites k (with the spin configuration
updated after each accepted flip).
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APPENDIX B: GREEN-KUBO FORMULA

In this Appendix, an overview of the derivation of the Kubo
formula for the thermal conductivity in a (kinetic) Ising model
is provided. We follow the treatment presented in Saito et al.
[42], save for the evaluation of the 〈J〉0 term, for which we
provide a different, somewhat more general, argument that
yields the symmetric parts of the thermal conductivity matrix.

Consider a system with states defined by σ =
(σ1, σ2, . . . , σN ). We assume that we have a state σ(t ) at
each time t . The evolution of the state from time t to t + 1
takes the form

σ(t + 1) ≡ �(σ(t )),

where � encapsulates a (memoryless) updating process.14 We
assume that an energy E (σ) that is preserved by �, with
E (�(σ)) = E (σ), can be defined. The time evolution of any
observable O(σ) ≡ O0(σ) starting from state σ can then be
defined via

Ot+1(σ) ≡ Ot (�(σ)).

We assume that this dynamics will, in the long-time limit,
sample from the equilibrium distribution

Peq(σ) = e−βE (σ )∑
σ ′ e−βE (σ ′ ) , (B1)

for some inverse temperature β ≡ 1/(kBT ) starting from
some (essentially) arbitrary initial state. By construction, this
distribution is assumed to be invariant under the chosen dy-
namics, with Peq(�(σ )) = Peq(σ) for any possible inverse
temperature β since the energy E (σ ) is invariant.

To probe thermal transport, assume the initial state σ(0) is
drawn from a distribution with a thermal gradient

P0(σ) ≡ e− ∑
i βiεi (σ)∑

σ ′ e− ∑
i βiεi (σ )

, (B2)

where βi is a distribution of local inverse temperatures that
encodes the gradient and εi is the local energy density, which
decomposes as E = ∑

i εi. Explicitly, write βi = 1/(kBTi )
with

Ti ≡ T + ri · (∇T ),

where T is the mean temperature and ∇T is constant. Denote
the statistical averages with respect to P0 as

〈O〉 ≡
∑

σ

O(σ)P0(σ).

Since the dynamics preserves E (σ ), this distribution of states
will not be preserved as time evolves. Define the time-evolved
distribution as Pt with

Pt+1(σ) =
∑
σ ′

δσ,�(σ ′ )Pt (σ
′).

14Strictly, we derive the Green-Kubo formula for a deterministic
process that is time independent. Random picking of the spin strictly
violates this, as the process defined by � actually depends on time
t . However, since the updates are time independent “on average,” we
do not expect any issues in applying this formalism.

We are mainly interested in the statistical averages of observ-
ables as a function of time, denoted as

〈Ot 〉 ≡
∑

σ

P0(σ)Ot (σ),

for the average of O over an initial ensemble of states dis-
tributed as P0 that have been evolved for a time t . Equivalently,
the time dependence in the observable Ot can be traded
for the time dependence in the probability distribution Pt

with

〈Ot 〉 =
∑

σ

Pt (σ)O(σ).

This can also be done partially, e.g., with 〈Ot 〉 =∑
σ Pm(σ)Ot−m(σ) for any m � t .
Consider now the expectation of the energy current in

the presence of this temperature gradient. The current is
related to the energy density via the a discrete continuity
equation [Eq. (5)]

∂εi(σ)

∂t
≡ εi(�(σ)) − εi(σ)

δt
= −

∑
j

ji j (σ), (B3)

where ji j = − j ji defines a local energy current flowing from
site i to j and δt the duration of the discrete time step. The
total current can be defined as [Eq. (6)]

J ≡ 1

2

∑
i j

(r j − ri ) ji j . (B4)

Our goal is to compute the thermal conductivity κμν as
given in Eq. (4) which is defined as the response of the energy
current density to a small thermal gradient. We will be more
precise here, paying attention to the order of the long-time and
large-system size limits

lim
t→∞ lim

V →∞

[
1

V

〈
Jμ

t

〉] ≡ −
∑

ν

κμν (∇T )ν + · · · . (B5)

Strictly, the limit of infinite volume V → ∞ needs to be taken
first (keeping N/V fixed), and only then t → ∞ to prevent the
system from reaching equilibrium.

There are two timescales at play: first, there is time for
the initial thermal gradient to induce a steady, flowing energy
current that allows determination of the thermal conductivity:
call this τflow. The second scale is the thermalization time for
the whole system; eventually, the system will clear the thermal
gradient and adopt some uniform temperature: call this τtherm.
For a large system, the thermalization time τtherm should scale
with the system size, schematically like τtherm ∼ Nα , and thus
if N → ∞ is taken first, then τtherm 	 τflow. Pragmatically,
for a finite system the statement of limt→∞ thus means that
τflow � t � τtherm.

1. Perturbation theory for 〈Jμ
t 〉

Following the strategy of Saito et al. [42], look at
the evolution of the total current Jμ along some direc-
tion by breaking up its evolution into a sum of discrete
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changes

〈
Jμ

t

〉 = 〈
Jμ

0

〉 + t−1∑
τ=0

〈
Jμ
τ+1 − Jμ

τ

〉

= 〈
Jμ

0

〉 + t−1∑
τ=0

∑
σ

[
Jμ
τ+1(σ) − Jμ

τ (σ)
]
P0(σ)

= 〈
Jμ

0

〉 + t−1∑
τ=0

∑
σ

Jμ
τ (σ)[P1(σ) − P0(σ)].

Consider writing P1(σ) explicitly via the continuity equa-
tion [Eq. (B3)]. The energy in the presence of the thermal
gradient can be rewritten as∑

i

βiεi(σ) =
∑

i

βiεi(�(σ)) + δt
∑

i

βi

∑
j

ji j (σ).

Putting this into the definition of P1 yields

P1(σ) =
∑
σ ′

δσ,�(σ ′ )P0(σ ′)

= P0(σ)
∑
σ ′

δσ,�(σ ′ )e
−δt

∑
i βi

∑
j ji j (σ ′ ),

which, using that ji j = − j ji, simplifies to∑
i j

βi ji j (σ
′) = 1

2

∑
i j

(βi − β j ) ji j (σ
′),

depending on the difference of the inverse temperatures. As-
suming a small temperature gradient

βi − β j ≈ − 1

kBT 2
(ri − r j ) · ∇T + · · ·

gives an expression involving the total current J:

1

2

∑
i j

(βi − β j ) ji j (σ
′) = + 1

kBT 2
(∇T ) · J(σ ′).

The quantity P1 can then be expanded to leading order in ∇T
to obtain

P1(σ) − P0(σ) ≈ −P0(σ)δtβ2(kB∇T ) ·
[∑

σ ′
δσ,�(σ ′ )J(σ ′)

]
,

where we have used that
∑

σ ′ δσ,�(σ ′ ) = 1. Further, in this
expression P0 can be replaced with Peq, as corrections are
higher order in ∇T , yielding

〈
Jμ

t

〉 = 〈
Jμ

0

〉 − δtβ2(kB∇T ) ·
t−1∑
τ=0

∑
σ

Jμ
τ (σ)Peq(σ)

×
[∑

σ ′
δσ,�(σ ′ )J(σ)

]
.

Since the equilibrium distribution is invariant under the cho-
sen dynamics, this can be simplified∑

σ

Jμ
τ (σ)Peq(σ)δσ,�(σ ′ ) = Peq(σ ′)

∑
σ

Jμ
τ (σ)δσ,�(σ ′ )

= Peq(σ ′)Jμ
τ+1(σ ′).

This then yields

〈
Jμ

t

〉 = 〈
Jμ

0

〉 − δtβ2(kB∇T ) ·
t−1∑
τ=0

∑
σ

Peq(σ)Jμ
τ+1(σ)J(σ)

= 〈
Jμ

0

〉 − δtβ2
∑

ν

(kB∇νT )
t∑

τ=1

〈
Jμ
τ Jν

0

〉
eq ,

where in the last term the sum has been shifted by one.

2. Evaluation of 〈Jμ
0 〉

The first term 〈J0〉, which involves the distribution with lo-
cal temperatures, still needs to be evaluated. While we cannot
evaluate this in general, we can extract the symmetric part of
the thermal conductivity matrix. First, consider the expansion
in exponential in powers of ∇T :∑

i

βiεi(σ) ≈ β
∑

i

εi(σ) − β2(kB∇T ) ·
∑

i

riεi(σ) + · · ·

≡ βE (σ ) − �(σ).

A series expansion in � ∝ ∇T in the numerator and denom-
inator yields

〈Jμ〉 =
∑

σ Jμ(σ)e−βE (σ )+�(σ )∑
σ e−βE (σ )+�(σ )

≈ 〈Jμ〉eq + (〈Jμ�〉eq − 〈Jμ〉eq 〈�〉eq ).

Since 〈Jμ〉eq = 0, one is left with

〈Jμ〉 = β2(kB∇T ) · 〈JμP〉eq ,

where the energy polarization is defined as P ≡ ∑
i riεi (not

to be confused with the probability distribution).

3. Symmetric part of thermal conductivity

The expectation value 〈Jμ〉 is proportional to ∇T and thus
it contributes to the thermal conductivity. Using the definition
of κ in Eq. (B5) we thus have

κμν = 1

kBV T 2

{
−〈JμPν〉eq + δt

∞∑
τ=1

〈
Jμ
τ Jν

0

〉
eq

}
. (B6)

For the symmetric part of κμν , defined as κ̄μν ≡ (κμν +
κνμ)/2, the expectation 〈JμPν〉 can be related to the current-
current average 〈JμJν〉. Explicitly, we prove the identity

δt 〈JμJν〉eq = −〈JμPν〉eq − 〈JνPμ〉eq . (B7)

To see how this is true, first express J using the continuity
equation (B3):∑

i

ri[εi(�(σ)) − εi(σ)]

= −δt
∑

i j

ri ji j (σ) = −1

2
δt

∑
i j

(ri−r j ) ji j (σ) =+δtJ(σ).

This then yields
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δt2 〈JμJν〉eq =
∑

σ

∑
i j

rμ
i [εi(�(σ )) − εi(σ)]rν

j [ε j (�(σ)) − ε j (σ)]Peq(σ)

=
∑

σ

∑
i j

rμ
i rν

j [εi(�(σ))[ε j (�(σ)) − ε j (σ)] − εi(σ)[ε j (�(σ)) − ε j (σ)]]Peq(σ).

Some of these terms can be simplified using the time invari-
ance of the equilibrium distribution∑

σ

∑
i j

rμ
i rν

j εi(�(σ))ε j (�(σ))Peq(σ)

=
∑

σ

∑
i j

rμ
i rν

j εi(σ)ε j (σ)Peq(σ).

Putting this back in allows regrouping of terms as

δt2 〈JμJν〉eq = −
∑

σ

∑
i j

rμ
i rν

j

[
ε j (σ)[εi(�(σ )) − εi(σ)]

+ εi(σ)[ε j (�(σ)) − ε j (σ)]

]
Peq(σ)

= − δt

{∑
i

〈
rμ

i εiJ
ν
〉
eq +

∑
i

〈
rν

i εiJ
μ
〉
eq

}
,

so the identity in Eq. (B7) has been proved.
Putting this together, the symmetric part is given by

κ̄μν = 1

kBV T 2

{
1

2
δt

〈
Jμ

0 Jν
0

〉
eq + 1

2
δt

∞∑
τ=1

〈
Jμ
τ Jν

0 + Jν
τ Jμ

0

〉
eq

}
.

The first term can be absorbed into the sum by including a
τ = 0 correction, giving the final result15

κ̄μν = δt

2kBV T 2

∞∑
τ=0

〈
Jμ
τ Jν

0 + Jν
τ Jμ

0

〉
eq

(
1 − 1

2
δτ,0

)
. (B8)

The diagonal parts are simpler, with the symmetrization of the
current correlator being unnecessary:

κμμ = δt

kBV T 2

∞∑
τ=0

〈
Jμ
τ Jμ

0

〉
eq

(
1 − 1

2
δτ,0

)
.

Note that the antisymmetric part, which encodes the thermal
Hall effect, is not accessible through this strategy since the
energy polarization is difficult to define as a bulk quantity.
Evaluating the antisymmetric components requires dealing
with the nontransport part of the energy currents, i.e., the
energy magnetization (see, e.g., Refs. [83,84]).

APPENDIX C: ESTIMATES OF MONOPOLE
DIFFUSION CONSTANT

In this Appendix we review some simplest estimates for
the monopole diffusion constant. Consider a monopole on a

15This can be simplified somewhat by rewriting 〈Jν
τ Jμ

0 〉eq =
〈Jν

0 Jμ
−τ 〉eq then assuming a time-reversal symmetry so that

〈Jν
0 Jμ

−τ 〉eq = 〈Jμ
τ Jν

0 〉eq but this is not true in general (e.g., in any setup
where the thermal Hall conductivity is finite).

square lattice with lattice constant aM that starts at the origin at
t = 0. After each interval of time δtM the particle takes a step
to one of its nearest neighbors at random, in the directions +x̂,
+ŷ, −x̂, and −ŷ with equal probability. Write the (random)
position at time t as

R(t ) =
NM∑
n=0

dn,

where NM ≡ t/δtM 	 1. We assume each of the (random) dn

is drawn independently. The expected mean-squared displace-
ment from the origin is given by

〈|R(t )|2〉 =
NM∑

n,n′=0

〈dn · dn′ 〉 =
NM∑
n=0

〈|dn|2〉 = NMa2
M = a2

Mt

δtM
.

Here we have used that independence of the steps implies that
〈dn · dn′ 〉 = δnn′ 〈|dn|2〉 and that |dn|2 = a2

M for all possible
steps.

If the monopoles in square ice are considered as diffusing
randomly on the dual square lattice formed by the tetrahedra,
then aM = √

2a where a is the nearest-neighbor spacing. The
hopping time δtM needs to be related to the spin-flip time;
since each monopole can hop by flipping one of three different
spins on its tetrahedron, we expect that δtM = δt/3 where δt
is time for complete one attempted flip per spin (one sweep).
Using the most naïve approximation then yields

〈|R(t )|2〉 = 6a2t

δt
.

In two dimensions one has 〈|R(t )|2〉 ∼ 4Dt at long times
where D is the monopole diffusion constant. Therefore, this
would give the estimate D ∼ 3a2/(2δt ) or, in natural units
with a = δt = 1, a diffusion constant of D = 3

2 .
However, in square ice for each hop one of the four possible

directions is disallowed. The disallowed direction is also never
the direction that would cause the particle to backtrack and
so the hops are not uncorrelated. This estimate for D can be
improved by incorporating some of this physics. Explicitly,
assume that this disallowed direction is chosen independently
at random among the nonbacktracking directions and memory
of these choices is lost after one step. Thus,

〈|R(t )|2〉 =
NM∑

n,n′=0

〈dn · dn′ 〉 ≈
NM∑
n=0

〈|dn|2〉+2
NM−1∑
n=0

〈dn · dn+1〉 ,

where all terms 〈dn · dn+m〉 with m �= 0,±1 have been as-
sumed to be negligible. For the dn and dn+1 in the second term
there are only 16 possible combinations, so this expectation
can be computed by enumerating the possible monopole and
ice states to obtain

〈dn · dn+1〉 = −a2
M

9
.
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One thus obtains

〈|R(t )|2〉 ≈ NMa2
M

(
1 − 2

9

)
= 7a2

Mt

9δtM
= 14a2

3δt
,

taking NM 	 1. The naïve estimate for D is thus reduced by a
factor of 7

9 giving D ≈ 7a2/6δt or, in natural units, D ≈ 7
6 =

1.16̄. This estimate can be slightly improved by taking into
account the different average densities of type-I and type-II
ice states [65].

Note that for three-dimensional spin ice this argument
follows almost identically. One must only change the dual
lattice to diamond lattice with nearest-neighbor distance aM =√

3/2ann where ann is the distance between neighboring sites.
Given that in three dimensions 〈|R(t )|2〉 ∼ 6Dt , the diffu-
sion constant would be D ∼ 3a2/(4δt2) or D ∼ 3

4 in natural
units. The correction due to forbidden hopping directions
would give the same reduction of 7

9 , giving D ∼ 7
12 = 0.583̄ if

included.

APPENDIX D: FROM GREEN-KUBO TO
MONOPOLE DIFFUSION

In this Appendix we show how the Green-Kubo formula
for κ can be more directly related to the monopole diffusion
constant by expressing it in terms of fluctuations of the energy
polarization

P(σ) ≡
∑

i

εi(σ) ri.

Start by looking at Jt (for some given initial state) this natu-
rally says that Jt ≡ (Pt+1 − Pt )/δt, which can be inverted by
summation to yield

Pt − P0 = δt
t∑

τ=0

Jτ .

We thus can see that

〈(
Pμ

t − Pμ
0

)2〉
eq = δt2

t∑
τ1=0

t∑
τ2=0

〈
Jμ
τ1

Jμ
τ2

〉
eq

.

Due to symmetry under exchange of τ1 and τ2 this sum can be
rewritten as

t∑
τ1=0

t∑
τ2=0

〈
Jμ
τ1

Jμ
τ2

〉
eq

= 2
t∑

τ1=0

τ1−1∑
τ2=0

〈
Jμ
τ1

Jμ
τ2

〉
eq

+
t∑

τ=0

〈
Jμ
τ Jμ

τ

〉
eq ,

where the τ1 = τ2 case has been handled separately so it is not
counted twice. Since there is time translation invariance upon
taking the equilibrium average 〈Jμ

τ1
Jμ
τ2
〉

eq
= 〈Jμ

τ1−τ2
Jμ

0 〉eq, and
therefore

t∑
τ1=0

t∑
τ2=0

〈
Jμ
τ1

Jμ
τ2

〉
eq

= (t + 1) 〈(Jμ)2〉eq + 2
t∑

τ1=0

τ1∑
τ=1

〈
Jμ
τ Jμ

0

〉
eq ,

where the substitution τ ≡ τ1 − τ2 has been carried out. This
can be simplified if the sum over τ is extended to start at 0 and
compensating terms are added outside, giving

t∑
τ1=0

t∑
τ2=0

〈
Jμ
τ1

Jμ
τ2

〉
eq

= 2
t∑

τ1=0

τ1∑
τ=0

〈
Jμ
τ Jμ

0

〉
eq − (t + 1) 〈(Jμ)2〉eq .

To go further, we need to exploit some of the calculus of sum-
mations. First, define Cτ1 ≡ ∑τ1

τ=0 〈Jμ
τ Jμ

0 〉eq. The summation
by parts identity [85] can be used to write

t∑
τ=0

Cτ = (t + 1)Ct+1 −
t∑

τ=0

(τ + 1)(Cτ+1 − Cτ ).

The second piece can be simplified since Cτ+1 − Cτ =
〈Jμ

τ+1Jμ
0 〉

eq
. Putting this together one obtains

t∑
τ=0

Cτ = (t + 1)
t+1∑
τ=0

〈
Jμ
τ Jμ

0

〉
eq +

t∑
τ=0

(τ + 1)
〈
Jμ
τ+1Jμ

0

〉
eq

= (t + 1)
t+1∑
τ=0

〈
Jμ
τ Jμ

0

〉
eq +

t−1∑
τ=1

τ
〈
Jμ
τ Jμ

0

〉
eq .

We are mainly interested in the t 	 1 limit where t ± 1 ≈ t
so this can be simplified

t∑
τ=0

Cτ ≈ t
∞∑

τ=0

(
1 − τ

t

)
〈Jμ

τ Jμ
0 〉eq = t

∞∑
τ=0

〈Jμ
τ Jμ

0 〉eq .

Note that in this last step we have assumed that 〈Jμ
τ Jμ

0 〉eq
decays quickly enough that this second term does not survive
the large-t limit.16 Putting this all back together (for t 	 1)

〈(
Pμ

t − Pμ
0

)2〉
eq ≈ δt2

(
2

t∑
τ=0

Cτ − t 〈(Jμ)2〉eq

)

≈ 2tδt2
∞∑

τ=0

〈
Jμ
τ Jμ

0

〉
eq

(
1 − 1

2
δτ,0

)
.

The diagonal parts of the thermal conductivity can then be
written cleanly as

κμμ = 1

δtkBV T 2

⎧⎨
⎩ lim

t→∞

〈(
Pμ

t − Pμ
0

)2〉
eq

2t

⎫⎬
⎭.

The expression in the brackets is similar to the definition of the
diffusion constant for a particle, except instead of involving
the monopole position R, it involves the energy polarization
P.

In the low-temperature limit of square ice P can be related
to the monopole positions R. First, shift the energy so the ice
states have energy zero and the local energy density is

εi = J

2
σi

(∑
j

σ j

)
+ J = Jσi(−1)I (QI − QJ ),

where I and J are the two neighboring tetrahedra associ-
ated with site i and QI ≡ 1

2 (−1)I
∑

i∈I σi. Thus, any site
which belongs to two ice tetrahedra has εi = 0. If the defects
(tetrahedra with QI �= 0) are dilute, then it can be safely as-
sumed that (with high probability) a site only belongs to one,

16A correlation function 〈Jμ
τ Jμ

0 〉eq that decays like a power law (or
does not decay at all), as may happen for ballistic transport, would
violate this assumption.

104405-16



THERMAL CONDUCTIVITY OF SQUARE ICE PHYSICAL REVIEW B 105, 104405 (2022)

thus,

P ≈
∑
QI �=0

∑
i∈I

εiri.

In the unlikely event two defects are neighbors, then this
expression counts them twice, requiring a correction term. For
a tetrahedron with a single monopole this yields∑

i∈I

εiri = 2J (R − d ),

where R is the center of the tetrahedron and d is the “po-
larization” vector pointing from the tetrahedron center to the
minority spin. Thus, with N1 monopoles at locations Rn with
polarizations dn, then

P ≈ 2J
N1∑

n=1

(Rn − dn).

If monopole motion is assumed to be approximately uncorre-
lated, then only terms with n = n′ need to kept and and thus

〈|Pt − P0|2〉eq ≈ (2J )2N1 〈|R(t ) − R(0) − d(t ) + d(0)|2〉eq ,

under the assumption all monopoles are identical and thus the
sum simply gives the total number of monopoles N1 times the
correlator for a single monopole.

If at long times R and d are uncorrelated, d is unimportant.
Consider the quantity 〈|R(t ) − R(0) − d(t ) + d(0)|2〉eq which
can be written

〈|R(t ) − R(0)|2〉eq+〈|d(t ) − d(0)|2〉eq

+ 4 〈[R(t ) − R(0)] · d(0)〉eq ,

where we have assumed time-reversal symmetry to set
〈R(t ) · d(0)〉eq = 〈R(0) · d(t )〉eq. The last term vanishes since
〈R〉eq = 〈d〉eq = 0 absent correlations in R and d.17 The sec-
ond term does not survive the t → ∞ limit as it is bounded,
with 〈|d(t ) − d(0)|2〉eq � 2 (since |d| = 1/

√
2). Thus, we

have

lim
t→∞

{ 〈|Pt − P0|2〉eq

4tδt

}
≈ (2J )2N1 lim

t→∞

{ 〈|R(t ) − R(0)|2〉eq

4tδt

}
.

This quantity in terms of P has thus been related to the
monopole diffusion constant

D ≡ lim
t→∞

{ 〈|R(t ) − R(0)|2〉eq

4tδt

}
.

For the isotropic thermal conductivity κ ≡ (κxx + κyy)/2 we
then have

κ = 1

kBV T 2

{
lim

t→∞
〈|Pt − P0|2〉eq

4tδt

}
= (2J )2N1

kBV T 2
D.

For a dilute gas of monopoles one has E ∼ 2JN1 where N1 ≈
Ne−2J/(kBT ). This gives the heat capacity per unit volume of
C ∼ kB[2J/(kBT )]2(N1/V ) and thus D ≈ κ/C.

17For diffusive behavior we expect that |R(t )| ∼ O(
√

t ) and so this
term may vanish even if R and d are correlated, once the t → ∞
limit is taken.

APPENDIX E: CALCULATION OF THE HEAT CAPACITY

In this Appendix, we outline the methods used to compute
the heat capacity of the spins. When using the demon dy-
namics outlined in Sec. IV A, calculation of the heat capacity
is nontrivial since the combined demon and spin system is
microcanonical. The heat capacity of the spin subsystem is
isolated by treating the demons as a thermal bath and exam-
ining the energy fluctuations of the spins. Explicitly, we can
write the probability of finding the spins with energy Espin

using entropies Sspin and Sdemon as

P(Espin) ∝ exp [Sspin(Espin) + Sdemon(Edemon)],

where Edemon = Etotal − Espin is the energy of the demons
and Etotal is the total energy, which is conserved throughout
the simulation. Provided that the system is large, we expect
Espin to be strongly peaked near its average value 〈Espin〉.
Writing Espin = 〈Espin〉 + δEspin the probability can be Taylor
expanded

S(Espin) ≈ S(〈Espin〉) + δEspin

T
− δE2

spin

2T 2Cspin
+ · · · ,

S(Edemon) ≈ S(〈Edemon〉) − δEspin

T
− δE2

spin

2T 2Cdemon
+ · · · ,

where T is the (common) spin and demon temperature. Dis-
carding constant terms leaves the Gaussian distribution for
δEspin:

P(Espin) ∝ exp

[
− 1

2T 2

(
1

Cspin
+ 1

Cdemon

)
(δEspin)2

]
.

The heat capacities can thus be extracted from the variance
var(Espin) ≡ 〈E2

spin〉 − 〈Espin〉2 as

var(Espin)

T 2
= CspinCdemon

Cspin + Cdemon
.

Solving for the heat capacity of the spins, we obtain

Cspin = var(Espin)Cdemon

CdemonT 2 − var(Espin)
.

Since the statistical mechanics of each demon is equivalent
to a quantum harmonic oscillator with energy spacing 4J , we
can compute Cdemon directly as

Cdemon = N

(
4J

T

)2 e4J/T

(e4J/T − 1)2
.

The variance of the spin energy var(Espin) is accessible from
our simulations, yielding Cspin.

When considering the microcanonical update method from
Sec. IV B, one is unable to directly calculate the heat capacity
since, without the demon bath, the spin energy is conserved.
This is due to the fact that microcanonical updates force
�Ek = 0, thus meaning Espin is constant throughout the simu-
lation. For these simulations, we thus simply obtain Cspin from
a Monte Carlo simulation within the canonical ensemble at
temperature T using Metropolis update. Practically, as noted
in Sec. IV B, such a simulation is already performed to obtain
an initial state with the correct energy for our desired tem-
perature, and thus can be used to obtain the heat capacity.
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We note that the heat capacity from these initial Metropolis
simulations showed excellent agreement with Cspin obtained
from the demon dynamics.

Finally, we note that when we compute the diffusivity
D ≡ κ/C we use only the spin part of the capacity Cspin. While
the total heat capacity (including the demon contributions)

could have been included, using only the spin part better
emulates the comparison to experimental measures of this
quantity, for example, as in Ref. [34]. Further, for T � J this
difference is irrelevant, as the demon part, which vanishes
∝e−4J/T , is much smaller than the spin contribution which
goes as ∝e−2J/T .
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