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Complex magnetic structure and spin waves of the noncollinear antiferromagnet Mn5Si3
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The investigations of the interconnection between micro- and macroscopic properties of materials hosting
noncollinear antiferromagnetic ground states are challenging. These forefront studies are crucial for unraveling
the underlying mechanisms at play, which may prove beneficial in designing cutting-edge multifunctional mate-
rials for future applications. In this context, Mn5Si3 has regained scientific interest since it displays an unusual
and complex ground state, which is considered to be the origin of the anomalous transport and thermodynamic
properties that it exhibits. Here, we report the magnetic exchange couplings of the noncollinear antiferromagnetic
phase of Mn5Si3 using inelastic neutron scattering measurements and density functional theory calculations. We
determine the ground-state spin configuration and compute its magnon dispersion relations which are in good
agreement with the ones obtained experimentally. Furthermore, we investigate the evolution of the spin texture
under the application of an external magnetic field to demonstrate theoretically the multiple field-induced phase
transitions that Mn5Si3 undergoes. Finally, we model the stability of some of the material’s magnetic moments
under a magnetic field and we find that very susceptible magnetic moments in a frustrated arrangement can be
tuned by the field.
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I. INTRODUCTION

The noncollinear spin arrangements in magnetic materials
gives rise to important macroscopic phenomena that can be
exploited for developing future information and communi-
cation technologies. Characteristic examples are the recent
observation of large anomalous transport properties near room
temperature, such as the anomalous Nernst [1] and Hall [2,3]
effects, in the metallic noncollinear antiferromagnetic systems
Mn3X (with X = Sn, Ge). In turn, these discoveries have ini-
tiated spectroscopic studies that have provided insight into
the intimate coupling between the various degrees of free-
dom, i.e., spin, lattice, and electronic, which could explain the
interesting anomalous phenomena in these materials [4–6].
Therefore, it is evident that an experimental study of the spin
dynamics and a comparison with theoretical models is crucial
for understanding the origin of noncollinear spin arrange-
ments and the peculiar properties that arise in ordered solid
materials.
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Mn5Si3 is another Mn-based metallic antiferromagnet
(AFM) that has lately regained scientific interest owing to in-
teresting thermodynamic (inverse magnetocaloric effect [7,8],
inverted hysteresis loop, and thermomagnetic irreversibility
[9]) and transport (large anomalous Hall effect [10]) phe-
nomena. It has two stable AFM phases, namely, AFM2 for
60 < T < 100 K and AFM1 for T < 60 K, that are con-
firmed by a plethora of macroscopic measurements [7,9–
13] in thin film, polycrystalline, and single crystal samples.
While neutron diffraction studies in powders [14] and single
crystals [15] are in agreement regarding the collinear spin
arrangement in the AFM2 phase, in past years several con-
tradicting spin structures [14,16–18] have been proposed for
the noncollinear AFM1 phase, where the interesting thermo-
dynamic and transport properties are observed. So far, there
has not been a dedicated study concerning the spin dynam-
ics in the AFM1 phase, which could give additional insight
into the magnetic spin structure. Therefore, in the present
paper, we perform inelastic neutron scattering (INS) mea-
surements and density functional theory (DFT) calculations
supplemented with various models to investigate spin waves
in the noncollinear AFM1 phase of Mn5Si3 and to char-
acterize the magnetic ground-state properties and electronic
structure.
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FIG. 1. Magnetic structures of Mn5Si3. (a) The collinear AFM2
phase according to Refs. [14,15,19]. Proposed noncollinear AFM1
phase from (b) Refs. [18,20], (c) Ref. [14], and (d) the present paper.
Sites occupied by Mn1, Mn2, and Si atoms are shown with red,
magenta, and yellow spheres, respectively. The green arrows depict
the orientation of the magnetic moments and the blue solid lines
indicate the relevant exchange interactions used in the Heisenberg
Hamiltonian (see details in text). The black triangle highlights a
noncollinear spin arrangement formed by the Mn1 and Mn2 mag-
netic moments, which is a common feature to all proposed AFM1
magnetic structures.

In the paramagnetic (PM) state, Mn5Si3 crystallizes in
hexagonal space group P63/mcm with two distinct crystal-
lographic positions for the Mn atoms (sites Mn1 and Mn2)
[14]. With decreasing temperature, the onset of AFM orders
(first at TN2 ≈ 100 K and then at TN1 ≈ 60 K) results in a
reduction of the crystal symmetry. For temperatures between
60 < T < 100 K (AFM2 phase), the crystal structure can be
described by a centrosymmetric orthorhombic cell with space
group Ccmm, where Mn2 divides into two sets of nonequiva-
lent positions [14,15]. In this cell, magnetic reflections follow
the condition h + k odd, the magnetic propagation vector is
κ = (0, 1, 0), and only two-thirds of the Mn2 atoms acquire
magnetic moments aligned parallel and antiparallel to the
b axis of the orthorhombic unit cell [14,15] [see Fig. 1(a)
for a more detailed discussion in the upcoming sections]. In
addition, recently performed DFT calculations are in line with
the experimentally established collinear magnetic structure
of the AFM2 phase [19]. For T < 60 K (AFM1 phase), the
crystal symmetry is further reduced, the magnetic moments

FIG. 2. Temperature and magnetic field phase diagram of
Mn5Si3 for B ‖ ĉ based on Ref. [12]. The borders between the phases
are determined from different macroscopic measurements: magneti-
zation, resistivity, and Hall effect.

reorient in a highly noncollinear and noncoplanar arrange-
ment, while the propagation vector remains the same as in the
AFM2 phase. Albeit, the magnetic structure has monoclinic
[14,18,21] or possibly lower symmetry [22], and the atomic
positions can be described with an orthorhombic cell without
inversion symmetry (space group Cc2m) [18,21]. According
to the proposed magnetic structures [see Figs. 1(b) and 1(c)],
the AFM1 phase is quite complex and rather unusual, as the
Mn atoms acquire different magnetic moments even if they
have similar chemical environments. Despite the controversy
regarding the spin orientation in the AFM1 phase, it is ac-
cepted that not only two-thirds of the Mn2 (as in the AFM2
phase) but also the Mn1 atoms carry a magnetic moment,
leaving still one-third of the Mn2 atoms without moment
[14,16,18].

In Mn5Si3, apart from the reduction of temperature, the ap-
plication of an external magnetic field results in field-induced
transitions [9,11,12,23]. The magnetic phase diagram as a
function of temperature and magnetic field as established
by magnetization and electrical transport measurements is
shown in Fig. 2. A very steep phase boundary TN2 (B) is
outlined between the AFM2 phase and the PM state, and in
the temperature range where the AFM2 phase is observed, no
field-induced transition is reported up to the maximum inves-
tigated field of 10 T. Below 60 K, the increasing magnetic
field precipitates transitions from the AFM1 phase to another
intermediate AFM phase [9,12] (marked AFM1′ in Fig. 2)
before reaching the collinear AFM2 phase. Neutron scattering
investigations under field in single crystal [8,21] and poly-
crystalline [14] samples confirm the existence of these phase
transitions. We also note that for Mn5Si3 a modified B − T
phase diagram from the one shown in Fig. 2 was proposed
for flux grown single crystals [13]. The differences were sug-
gested to originate from the inherent stress that the samples
acquire when grown by different techniques.

II. METHODS

A. Experimental details

Two single crystals (with mass of about 7 g each) of
Mn5Si3 were individually mounted on an aluminium sample
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holder and oriented in the [100]/[010] and [010]/[001] scat-
tering plane of the orthorhombic symmetry, respectively. The
single crystals were grown by the Czochralski method and
are the same that were used in previous studies [8,19]. In
Ref. [8], a few scans at constant E (namely, at 3, 5, and
7 meV) were performed to investigate the evolution of the
spin excitation spectrum of Mn5Si3 under temperature and
external magnetic field. The study highlighted the importance
of field-induced spin fluctuations (at T = 50 K and B = 10 T)
and their relation to the inverse magnetocaloric effect. In
Ref. [19], INS spectra were collected at T = 80 K for in-
vestigating the magnons in the collinear AFM2 phase. In the
present paper, the spin waves in the AFM1 phase of Mn5Si3
were investigated as a function of the wave-vector Q and the
energy transfer E at T = 10 K. In this paper, we use the
orthorhombic coordinate system and the scattering vector is
expressed in Cartesian coordinates Q = (Qh, Qk, Ql ) given in
reciprocal lattice units (r.l.u.). The wave vector q is related to
the momentum transfer through h̄Q = h̄G + h̄q, where G is
an AFM zone center and G = (h, k, l ).

INS experiments were carried out at the Institut Laue-
Langevin (ILL) using the cold and thermal neutron three-axis
spectrometers (TASs) IN12 [24] and IN22, respectively. The
instrument resolution was in each case adapted to the studied
momentum and energy range. Both TASs were set up in a W
configuration and inelastic scans were performed with con-
stant k f , where k f is the wave vector of the scattered neutron
beam. A pyrolytic graphite (PG(002)) monochromator and
analyzer were used. Higher-order contamination was removed
using a velocity selector (at IN12) and a PG filter (at IN22)
before the monochromator and in the scattered neutron beam,
respectively. The single crystals were cooled below room tem-
perature with a 4He flow cryostat. The neutron data collected
at ILL are available at Refs. [25–27].

B. Modeling the AFM1 phase of Mn5Si3

The starting point for modeling the noncollinear phase
(AFM1) of Mn5Si3 is the Heisenberg Hamiltonian proposed in
a recent study in Ref. [19], where first-principles calculations
were performed to determine the ground state electronic and
magnetic properties of the collinear phase (AFM2). In the
following paragraph, the methods and the relevant results of
Ref. [19] are briefly summarized.

DFT was employed using the full-potential Korringa-
Kohn-Rostoker Green’s function (KKR-GF) method includ-
ing spin-orbit coupling, as implemented in the JUKKR
code [28], using the local spin density approximation [29].
The magnetic exchange tensor, which parametrizes the spin
Hamiltonian, was obtained through the infinitesimal rotations
method [30,31]. The Hamiltonian reads as

H = −
∑

i j

Ji jSi · S j −
∑

α

kα
∑

i

(
Sα

i

)2
, (1)

where the first term captures the magnetic exchange in-
teractions and the second term accounts for the biaxial
magnetocrystalline anisotropy. Si refers to the spin, which
is set to S = 1. The magnetic exchange interactions for the
AFM2 phase were obtained from first-principles calculations.
The DFT calculations also indicated that b and c are the

TABLE I. Calculated exchange constants Ji j for Mn5Si3 that
stabilize our proposed magnetic structure for the noncollinear AFM1
phase. The distance refers to the corresponding Mn–Mn bond length.
Positive (negative) values characterize FM (AFM) coupling.

Parameter Type Value (meV) Distance (Å)

J1 Mn2–Mn2 −12.23 2.825
J2 Mn2–Mn2 −2.16 2.907
J3 Mn2–Mn2 +3.98 4.054
J4 Mn2–Mn2 −2.89 4.371
J5 Mn1–Mn1 +11.99 2.407
J6 Mn1–Mn2 −2.17 2.959

primary and the secondary easy axis, respectively [19], with
kb = 0.12 meV per magnetic atom (meV/p.m.a) and kc =
0.03 meV/p.m.a. To match the INS data for the spin-wave
gap at the magnetic zone center, the authors in Ref. [19] set
kc = 0.09 meV/p.m.a. and scaled down uniformly the DFT
parameters, exchange interactions, and anisotropy constants,
by a factor of 10.

Based on refinements on neutron diffraction data
[14,16,18], the Mn1 sites of the noncollinear phase (AFM1)
of Mn5Si3 acquire a finite magnetic moment. As we are tech-
nically limited to extract exchange interactions from collinear
phases, we performed a DFT calculation with the magnetic
moments in a ferromagnetic (FM) configuration [19]. In this
state, the Mn1 sites have a finite magnetic moment (about half
of the moment in the Mn2 sites, similar to the value obtained
in Ref. [18]), which then allows us to calculate its exchange
interactions with the other moments. Using this calculation,
one can estimate the exchange coupling between the nearest-
neighbors Mn1–Mn1 (J5) and Mn1–Mn2 (J6) interactions.
Thus, in the model introduced in the previous paragraph, we
add a finite magnetic moment in the Mn1 sites, a FM coupling
between the Mn1 sites along the c axis, and an AFM coupling
between the Mn1 and Mn2 sites (see Table I).

To investigate the AFM1 phase of Mn5Si3, we consider
an orthorhombic cell as described in Ref. [18] and we use
the Hamiltonian parameters as obtained from DFT without
any rescaling or adjustment. The values for the magnetic
exchange interactions are shown in Table I and the parameters
for the biaxial magnetic anisotropy are kb = 0.12 meV/p.m.a
and kc = 0.03 meV/p.m.a. As the INS measurements were
performed at a low temperature (T = 10 K), we do not need
to rescale the Hamiltonian parameters to account for ther-
mal fluctuations when modeling the spin-wave spectrum. In
Fig. 1(d) and in Table I, J1, J2, and J3 correspond to cou-
plings between the Mn2 spins in the same [Mn2]6 octahedra,
J4 refers to the interaction between Mn2 spins located in
adjacent [Mn2]6 octahedra, J5 couples the Mn1–Mn1 spins
along the c direction, and J6 concerns the shortest distance
between Mn1–Mn2 spins. The exchange parameters J1 to J4

and the anisotropy parameters were reported in Ref. [19] for
the investigation of the AFM2 phase, while J5 and J6 resulted
from our DFT calculations in the present paper. These two
additional exchange interactions (J5 and J6) connecting the
Mn1–Mn1 and Mn1–Mn2 atoms make the ground-state spin
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configuration and the spin-wave spectrum of the AFM1 phase
completely different compared to the AFM2 phase.

Spin dynamics simulations using the Spirit code [32] were
performed for determining the ground-state spin configuration
[see Fig. 1(d)]. After the completion of this step, the spin-
wave excitations of the quantum Heisenberg Hamiltonian
were obtained by employing the linear spin-wave approxi-
mation. The spin-wave excitations are the eigenstates of the
dynamical matrix associated with the quantum Heisenberg
Hamiltonian in Eq. (1), as explained in detail in Ref. [33].
From the calculated magnon eigenvalues and eigenstates, the
inelastic scattering spectra were derived using second-order
time-dependent perturbation theory [33–35].

III. RESULTS AND DISCUSSION

A. Spin waves in the AFM1 phase of Mn5Si3

The investigation of the magnon spectrum in the non-
collinear AFM1 phase was initiated with a collection of
energy spectra around the magnetic zone center G = (1, 2, 0)
at T = 10 K. Figure 3(a) shows the energy dependence of
the measured low-energy excitations at different Qh positions,
where Q = (Qh, 2, 0). In each Qh position, the first peak is
centered at E = 0 meV and corresponds to the elastic line,
while the second one at finite E , which propagates to higher
energy transfers as Qh increases, unambiguously points to
gapped spin waves. The low-energy magnons along the (h00)
direction in the AFM1 phase of Mn5Si3 are shown in Fig. 3(b)
together with the dispersion of the AFM2 phase for compari-
son.

Similarly to the AFM2 phase, the data in the AFM1
phase can be described by the empirical dispersion rela-
tion E =

√
�2 + C2q2 [36] and the obtained values for the

spin gap � and the constant C(h00) are 0.712(7) meV and
28.4(4) meV/r.l.u, respectively. Comparing the spin dynam-
ics of two phases in the same (q, E ) region reveals that the
noncollinear AFM1 phase is characterized by a single gapped
magnon branch at q = 0 in contrast to the collinear AFM2
phase where a splitting of the spin-wave modes is detected
(double spin gap) due to the system’s biaxial anisotropy [19].
The spin gap at T = 10 K (AFM1 phase) is about twice
the gap at T = 80 K (AFM2 phase) and its origin might be
attributed to a local easy axis within this phase. One other
important feature that becomes evident by comparing the val-
ues of the constants C(h00) is that the magnon dispersion in
the AFM1 phase is about five times steeper than in the AFM2
phase.

Further INS measurements with constant Q-scans were
carried out around different magnetic zone centers for higher
energy transfers where the kinematic constraints could be
satisfied. Figure 3(c) shows a spectrum measured at the mag-
netic zone center G = (2, 1, 0) at T = 10 K up to the energy
transfer of 20 meV. The observed peak can be described by a
single Gaussian function and is assigned to an optical magnon
branch that originates at about 10 meV.

Since steep magnons were measured at low energies close
to the magnetic zone center G = (1, 2, 0), scans at constant E
were performed to further obtain the dispersion relations for
higher energy transfers. Spin-wave excitations were measured

FIG. 3. (a) Measured energy spectra at Q = (Qh, 2, 0) in the
AFM1 phase of Mn5Si3. Data were obtained at T = 10 K at IN12
with k f = 1.05 Å−1 and 40′-open-open collimations were installed.
(b) Low-energy magnon dispersion in the AFM1 (shown in black)
and AFM2 [19] (shown in red) phases along the (h00) direction.
(c) Energy scan at Q = (2, 1, 0) at T = 10 K obtained at IN22
with k f = 2.662 Å−1. The solid lines in (a) and (c) indicate fits
with Gaussian functions and in (b) fits with the empirical dispersion
relation E = √

�2 + C2q2.

along three high-symmetry directions of the orthorhombic
symmetry ((h00), (0k0), and (00l)) around different AFM
zone centers, namely, G = (2, 1, 0) and G = (0, 3, 1). Fig-
ure 4 shows characteristic inelastic scans where the observed
intensities that correspond to spin-wave scattering are fitted
using double Gaussian functions on top of a flat background.
For E < 10 meV, the peak widths increase with increasing
energy transfer along all three directions [see Figs. 4(a)–4(c)].
This broadening is independent of the instrumental resolution
and is attributed to the contribution to the scattering intensities
of an optical branch that is expected to originate at about
10 meV [see Fig. 3(c)]. For E > 10 meV in the investigated
Q and energy range, no further significant change in the peak
widths is observed, as can be seen in the raw data shown in
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FIG. 4. Inelastic spectra at different constant energy transfers
measured at T = 10 K at (a) Q = (Qh, 1, 0), (b) Q = (0, Qk, 1),
and (c), (d) Q = (0, 3, Ql ). The solid lines are fits with Gaussian
functions. The spectra are shifted for clarity in intensity conserving
the same scale. The data in (a), (d) and (b), (c) were obtained at IN22
(with k f = 2.662 Å−1) and IN12 (with k f = 2 Å−1), respectively.

Fig. 4(d). We note that the asymmetry of the scattering inten-
sities which is observed in Fig. 4(b), leading to sharper and
more intense spin-wave peaks at −q compared to +q, can be
attributed to the instrumental resolution focusing conditions.

The experimentally and theoretically determined magnon
dispersion relations of Mn5Si3 in the noncollinear AFM1
phase are shown in Fig. 5. The color mapping represents

FIG. 5. Spin-wave dispersion relations of Mn5Si3 in the non-
collinear AFM1 phase along the three high-symmetry directions of
the orthorhombic symmetry: (a) (h00), (b) (0k0), and (c) (00l). The
data points are obtained from INS measurements and the color map
corresponds to the calculated inelastic scattering signal.

the intensity of the calculated inelastic scattering signal. By
using the minimal Hamiltonian (see Sec. II), we capture
theoretically the main features of the magnons observed ex-
perimentally with INS along the three main crystal axes.
Usually, energy-dependent magnon damping is taken into
account in theoretical calculations to reproduce some of the
measured features of spin excitations in metallic magnetic
systems [4,37]. In our INS data (see Figs. 4), we observe
almost a uniform intensity throughout the whole measured
energy range, thus not requiring an energy-dependent broad-
ening in the calculated spin-wave spectra. Returning to the
model results, the acoustic spin-wave modes are centered
around the AFM zone centers and have the characteristic V
shape typically observed in several systems [4–6,38–40]. An
optic mode with an energy minimum of about 12 meV is in
good agreement with the one determined experimentally with
INS [see Fig. 3(c)]. The height of this optic mode at the AFM
�-point is strongly dependent on the J6 exchange interaction,
which couples the spins in the Mn1 and Mn2 sites. In the
theoretical scattering spectrum shown in Fig. 5(a), we observe
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also a flat feature at about 3 meV. According to our model, this
mode appears because of the existence of a magnetic moment
in the Mn1 sites and its dispersionless behavior is due to the
small value of J6.

B. Field-induced phase transitions

To examine further if the theoretically obtained exchange
interactions that stabilize a noncollinear spin arrangement
for Mn5Si3 [see Fig. 1(d)] and reproduce the experimentally
obtained magnon dispersion (see Fig. 5) are realistic, we sim-
ulated the evolution of the magnetic structure under an applied
magnetic field. To this aim, we included to our model Hamil-
tonian a Zeeman term with the field applied along the c axis,
since for this field orientation the magnetic phase diagram is
well established (see Fig. 2).

We started from a random spin configuration and per-
formed spin dynamics simulations to determine an equilib-
rium state under different magnetic fields. The same random
initial configuration was used for all fields. After obtaining
the equilibrium spin configuration, we calculated the energies
of the spin-wave modes. By analyzing the discontinuities in
the evolution of the spin-wave energies as a function of the
external field, we identified three phase transitions, marked as
A–C in Fig. 6.

In the ground state (B = 0 T), the spins are noncollinear
and lie in the bc plane, which is the most energetically favor-
able plane when taking into account the magnetocrystalline
anisotropies of the system. In this state, the Mn1 spins are
mostly along the easy axis b, while the Mn2 spins have signif-
icant components along the c axis, see Fig. 1(d). Our proposed
magnetic ground state for the AFM1 phase indicates that all
the Mn1 and two-thirds of the Mn2 sites carry a magnetic
moment. Although this is in agreement with most neutron
diffraction data [14,16,18], a difference is observed regarding
the spin orientation of the moments in the AFM1 phase in
literature [see Figs. 1(b)–1(d)].

At a magnetic field of ∼2.31 T, the system undergoes the
first phase transition [labeled A in Fig. 6], which can be imag-
ined as a spin-flop-like transition for the Mn2 spins where all
the spins then lie mostly in the ab plane. In previous studies,
a weak change of the magnetic susceptibility at 30 K was
reported in powder samples [14] and for T < 20 K a reduction
in the magnitude of the anomalous Hall effect was found in
single crystals [12]. These observations hinted at a change of
the spin configuration of Mn5Si3 for small magnetic fields
(B < 1 T) at low temperatures (T < 30 K). From powder
neutron diffraction studies [14], it is still not clear whether this
is a phase not previously identified or if the features observed
so far could be associated with weak rearrangement of the
spins on the Mn2 site due to magnetic frustration or magnetic
anisotropies. However, our model indicates a significant rear-
rangement of spins in all magnetic sites (Mn1 and two-thirds
of the Mn2) which results in another noncollinear phase. This
AFM phase survives in a narrow magnetic field range, which
dependents on the second anisotropy parameter kc. According
to our model, if kc is reduced the critical field for this first
phase transition also decreases.

At a magnetic field of about 2.6 T, a second transition
occurs [labeled B in Fig. 6], which is more subtle. According

FIG. 6. Spin configuration of Mn5Si3 (projected in the ab plane
of the orthorhombic cell) at various applied fields for B ‖ ĉ. For
simplicity, we show only the spin orientation (as arrows) of the Mn
atoms that have a magnetic moment according to our model. The
color scale refers to the in-plane (greenish) or out-of-plane (blue,
red, yellow) projection of the spins. Blue and red/yellow arrows
point in and out of the page, respectively. The dashed lines indicate
the possible field-induced phase transitions. The figures next to the
dashed lines show that spin configuration immediately before and
after the phase transition.

to our model, within this phase the spins lie mostly in the
ab plane and start to acquire a component along the c axis.
This phase is possibly associated with the reported AFM1′
in several studies [8,9,12] which, however, is observed at
higher magnetic fields of ∼5.5 T at 10 K in experiments
(see Fig. 2). Similarly to our results, previous investigations
indicate that the field-induced phase AFM1’ is expected to
host a noncollinear magnetic structure, as it has non zero Hall
resistivity [10,12]. A neutron powder diffraction study [14]
under a magnetic field of 4 T and for temperatures between 5
to 50 K, suggested a modification of the crystal and magnetic
structure, which leads the magnetic order in the Mn1 sites
to vanish. However, a sizable field-induced FM component
for all magnetic sites is measured along the field direction of
about 0.1 μB/Mn (single crystal neutron diffraction data at
T = 58 K and B = 3 T) [21], which is in agreement with our
simulations regarding the AFM1′ phase.

Finally, a third phase transition takes place [labeled C in
Fig. 6] at ∼6.4 T. This phase relates to the experimentally
reported field-induced AFM2 phase [8,9,12,21] and occurs
at about 9.5 T at 10 K (see Fig. 2). Magnetization [23] and
electric transport measurements [10,12], as well as INS stud-
ies [8], proposed that the field-induced AFM2 phase exhibits
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similar properties to the zero field collinear AFM2 phase ob-
served at 60 < T < 100 K. Consistently, our model indicates
that the Mn2 spins are mostly collinear and antiparallel to
each other as in the AFM2 phase illustrated in Fig. 1(a),
with the central difference that the Mn1 sites now host non-
vanishing magnetic moments aligned parallel to the magnetic
field direction. We note that to our knowledge and until now,
neutron diffraction studies have been performed for magnetic
fields less than 5 T [14,21] in the temperature range where
the transitions take place and, therefore, it is not clear if the
Mn1 moment collapses in the field-induced AFM2 phase for
stronger magnetic fields. Concerning the one-third of the Mn2
atoms that have no ordered moment at zero field [14,16,18] it
is suggested that they do not acquire a field-induced moment
with field. According to Ref. [21], the Mn magnetic moments
and their magnitude are dependent on the local environment,
and an aligned moment in this position (one-third of the Mn2
atoms) may be only attributed to the presence of a local field
produced by aligned moments on neighboring magnetic atoms
(two-thirds of the Mn2 atoms) instead of a direct effect of the
magnetic field on a local magnetic moment.

Our results show that the spin texture of Mn5Si3 under
external magnetic field consists of a nontrivial AFM align-
ment of the Mn spins. As in the cases of Mn3Sn [1,2] and
Mn3Ge [3,41], one would expect that the noncollinearity of
the Mn moments in Mn5Si3 apart from the already discovered
large anomalous Hall conductivity [10] could also generate
an anomalous Nernst effect. The observation of an anomalous
Nernst effect with thermotransport measurements, so far not
reported for Mn5Si3, would be extremely useful to provide a
measure of the Berry curvature at the Fermi level [42] and
to pave the way for further studies in search of topological
signatures.

C. Susceptible Mn1 moments under a magnetic field

We have shown that our proposed model for the non-
collinear AFM1 phase of Mn5Si3 manages to qualitatively
reproduce all the phase transitions observed experimentally
in the B − T phase diagram. A central assumption of the
Heisenberg model is that the magnetic moments are rigid
against longitudinal variations; that is, their size is unchange-
able. This is reasonable for the Mn2 sites while being more
questionable for the Mn1 sites. In spite of this, we showed that
one can stabilize a collinear AFM2-like phase by applying an
external magnetic field while considered rigid Mn1 magnetic
moments. One open question is whether the size of these
moments can be affected by the influence of an external field
and what the mechanism is behind that.

We assume that the Mn1 magnetic moments are longitudi-
nally susceptible, i.e., the energy cost to change their length is
comparable to the other energy scales, such as the exchange
and Zeeman energies. Then, it could be energetically favor-
able for the system to collapse a magnetic moment instead
of having to deal with a group of three or more moments
frustrated due to the exchange interaction.

To test this hypothesis, we consider a system of three spins
in an equilateral triangle coupled antiferromagnetically, see
Fig. 7. First, we recapitulate the results for the case in which
all three spins and their mutual interactions are equivalent.

FIG. 7. Model three-spin system. The spin in site 1 is susceptible
to variations in its spin length. An external field is applied parallel to
S1.

The exchange interaction is described by

HJ = −1

2

∑
i j

Ji jSi · S j = JS2(2 cos α + cos β ), (2)

where α and β are the angles between the corresponding spins
and we considered that Ji j = −J (with J > 0) for all interac-
tions. Thus, the exchange energy of a FM alignment is 3JS2;
for a state with two parallel spins and another antiparallel, the
energy is −JS2; and the energy of a 120◦ state (Fig. 7 with
α = β = 120◦) is −3JS2/2. The latter state is clearly more
favorable than the other two states and is therefore the ground
state.

Now we relate this model to the situation found in Mn5Si3
[see the black triangle in Fig. 1(d)]. We consider that two mag-
netic moments are rigid with respect to longitudinal variations
(in analogy to the Mn2 moments in Mn5Si3), while the third
moment (for example, on site 1 in Fig. 7, relates to the Mn1
moment in Mn5Si3) is susceptible and we model its potential
energy with the simplest quadratic form,

E (S1) = 1

2χ
(S1 − S0)2, (3)

with χ > 0, such that there is an energy cost to increase or
decrease S1 from a reference value S0. The rigid spin limit
is obtained for χ → 0. Furthermore, we consider that the
coupling between S1 and the other two spins is given by J ′ > 0
and can be different from J that couples S2 to S3. We apply an
in-plane magnetic field B parallel to S1, as in Fig. 7 and then
the Hamiltonian reads

H = 2J ′SS1 cos α + JS2 cos 2α

+ 1

2χ
(S1 − S0)2 − BS1 − 2BS cos α, (4)

where S2 = S3 = S, and we used the relation 2α + β = 2π

(the spins are assumed to always be in the same plane).
By minimizing the Hamiltonian with respect to S1, one

obtains that

∂H
∂S1

= 0 → S1 = S0 + χ (B − 2J ′S cos α). (5)

With respect to α, the stationary condition gives

∂H
∂α

= 0 → cos α = B − J ′S1

2JS
or sin α = 0. (6)
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The first solution minimizes the Hamiltonian while the sec-
ond, sin α = 0, gives two collinear states with spins 2 and 3
parallel to each other maximizing the Hamiltonian. Assuming
that sin α �= 0, we find

S1 = a(S0 + bχB), where

a =
(

1 − χ
(J ′)2

J

)−1

and b =
(

1 − J ′

J

)
. (7)

We are assuming that J, J ′, χ > 0, so a diverges for χ =
J/(J ′)2 and b = 0 for J ′ = J . Let us first consider the case
when a is positive (χ < J/(J ′)2). In this case, S1 is finite at
zero field. For J ′ > J (b < 0), S1 reduces linearly with the
field; it remains constant if J ′ = J and it increases for J ′ < J .
Another interesting scenario is for χ → ∞ (a → 0). In this
case, S1 vanishes for zero field. Then, it increases parallel or
antiparallel to the field depending on the sign of b.

IV. CONCLUSIONS

By combining INS measurements and DFT calculations,
we investigated the magnetic ground-state and spin dynamics
of the AFM1 phase of Mn5Si3. The experimentally obtained
spin excitation spectrum along the three main crystal axes
of the orthorhombic symmetry at T = 10 K is characterized
by a spin gap of the order of 1 meV, steep magnon dis-
persions and a low optic magnon mode that originates at
about 10 meV. The INS results can be well described by
a Heisenberg Hamiltonian using six exchange interactions.
In addition, our theoretical model suggests a noncollinear
magnetic ground state for Mn5Si3, which is different from all
the previous proposed ones based on neutron diffraction data.
According to our model, the Mn1 spins are aligned mainly
along the easy axis b, while the Mn2 spins have components
in the bc plane, which is a result of the magnetocrystalline
anisotropies of the system that makes the bc plane the most
energetically favorable one. The existing controversy in lit-
erature and our results demonstrate that the magnetic ground
state of Mn5Si3 needs to be reexamined by employing modern
polarized neutron diffraction techniques.

Applying an external magnetic field parallel to the c axis of
the orthorhombic cell results in field-induced transitions that

are overall in qualitative agreement with the experimentally
established B − T phase diagram. Furthermore, our paper
supports the scenario of another AFM phase at weak mag-
netic fields that has been hinted to exist in previous studies.
However, a clear phase boundary between this phase and the
already confirmed AFM phases needs to be evidenced experi-
mentally by magnetization measurements on single crystals.
Also, neutron diffraction studies on single crystals for dif-
ferent magnetic fields at base temperature would be highly
desirable to investigate experimentally the spin texture of all
field-induced transitions and compare them with our results.

Finally, we attempt to elucidate the mechanism behind
the establishment of a collinear AFM2-like spin arrangement
due to an external magnetic field from a highly noncollinear
AFM1 phase at zero field. To this aim, we employ a theoretical
model where we examine the stability of a magnetic moment
in a frustrated spin arrangement and under the influence of
a magnetic field. The proposed model demonstrates that if
one moment is sensitive to longitudinal variations, then it
can change its magnitude under an external magnetic field.
Therefore, our model supports the scenario where Mn5Si3
under magnetic field can acquire a collinear AFM2-like spin
arrangement for the Mn2 spins that coexist with nonvanishing
Mn1 moments.
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