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Magnetic anisotropy and orbital magnetic moment in Co films and Co/X bilayers (X = Pd and Pt)
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Magnetocrystalline anisotropy (MCA) energy and the anisotropy of the orbital magnetic moment (AOM),
relations between them, and methods of their calculation are investigated for the (001) fcc Co film and Co/X
bilayers (X = Pd and Pt), using a realistic tight-binding model. The relations derived by Bruno [Phys. Rev.
B 39, 865 (1989)] and van der Laan [J. Phys.: Condens. Matter 10, 3239 (1998)], including the AOM of Co
only, are found to give largely incorrect mean values of the MCA energy but reproduce its oscillatory variation
versus the Co thickness, with scaling factors needed for the bilayers. The presently proposed extension of the
Bruno relation, with the AOM of both Co and Pd or Pt included, predicts the correct sign of the MCA energy
for both bilayers and reproduces its magnitude and oscillation pattern very well, without extra scaling, for the
Co/Pd bilayer, though this relation is not satisfied locally, by the MCA and AOM layer terms. A similarly
extended van der Laan relation fails to reproduce the MCA energy, its sign, and the oscillation pattern, and
largely overestimates its magnitude. For all investigated systems, the Co orbital moment oscillates versus the Co
thickness with the 2 monolayer (ML) period for the out-of-plane direction of magnetization and the 5 ML period
for the in-plane direction while the oscillations of the Pd and Pt orbital moments are more complex and similar
for both magnetization directions. The exact and approximate MCA energies obtained with the force theorem
and the perturbation theory (PT), respectively, are close to each other for the Co film and the Co/Pd bilayer. For
the Co/Pt bilayer, only the mean value of the MCA energy is well approximated by the PT while its oscillation
amplitude is overestimated a few times due to the large SOC in Pt. It is also shown that the MCA energy includes
the intraband term, usually neglected, but, in fact, finite and vital for systems without the inversion symmetry as
its magnitude is comparable to that of the interband term for the Co/Pd bilayer.

DOI: 10.1103/PhysRevB.105.104403

I. INTRODUCTION

The spin-orbit coupling (SOC) has a pronounced effect on
properties of magnetic systems. In particular, alongside the
magnetic dipole-dipole interaction, it determines the magnetic
anisotropy of such systems, and, thus, the easy and hard
directions of their magnetization. The SOC contribution to
the difference between the system energies for the two direc-
tions is known as the magnetocrystalline anisotropy (MCA)
energy and it strongly depends of the electronic structure.
In ferromagnet/nonmagnet (FM/NM) systems, especially
FM/heavy metal bilayers, the SOC also plays a crucial role
in several other physical phenomena, like the Rashba, spin
Hall, and inverse spin galvanic effects which can be used
to manipulate electron spins with electric fields or electric
currents in spintronic applications. The spin-orbit interaction
also results in finite orbital magnetic moments which emerge
as a small but sizable addition to the spin moments forming
spontaneous magnetization in ferromagnetic metals [1]. In the
absence of the SOC, such orbital moments are fully quenched
in extended systems due to the time reversal symmetry [2].
Experimentally, the spin and orbital magnetic moments can
be determined separately for specific elements present in the
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system using the results of the x-ray magnetic circular dichro-
ism (XMCD) spectroscopy. Each of these two components of
the total magnetic moment is expressed with the relevant sum
rule in terms of the integrated line intensities of the absorption
spectra at the L2 and L3 edges measured with left and right
circularly polarized light in finite magnetic field [3–7].

The orbital moments in ferromagnetic materials depend
on the magnetization direction as does the energy of such
systems. A simple relation between the MCA energy and
the anisotropy of the orbital moment (AOM), represented by
the difference of the orbital moments for the easy and hard
directions of the magnetization, was originally proposed by
Bruno [8] and later elaborated by van der Laan [9]. The
relations have been invoked in the theoretical investigations
of the magnetic anisotropy not only for layered systems (see,
e.g., Refs. [10,11]) but also for nanoclusters [12–14]. In par-
ticular, these approximate relations are found to be satisfied
to a moderate degree for thin Fe films on a GaAs substrate
in the density functional calculations [15]. It is also shown
theoretically that the oscillatory patterns of the MCA energy
and AOM variations with increasing the film thickness are
well correlated with each other for unsupported Fe films [16].
However, the Bruno relation has not been explicitly investi-
gated to explain this correlation in Ref. [16], and, in particular,
the scaling factor between the MCA energy and AOM os-
cillations has not been examined. This theoretical finding is
line with an earlier experimental report where the correlation
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between the MCA energy and the AOM is found for the Fe
film on a vicinal Ag substrate [17].

Despite their limited accuracy, the Bruno and van der Laan
relations are often used to discuss the experimental results
for ferromagnetic films, specifically those obtained with the
XMCD measurements [17–22]. However, in experimental se-
tups, such films are in contact with a nonmagnetic substrate
and, optionally, an overlayer which may both have a strong
SOC. Therefore the direct use of the Bruno or van der Laan
relations should be done with even more caution since these
relations have been derived for homogeneous ferromagnetic
systems, characterized with a single SOC constant. For het-
erogenous systems, like magnetic multilayers, the relation
between the MCA energy and the AOM, even given its
approximate nature, may need suitable modifications. A mod-
ified form of the van der Laan relation proposed by Gimbert
and Calmels [23] for the Co/Ni bilayer represents the MCA
energy with the SOC constants and the orbital moments of
both parts of the bilayer. Such a particular form stems from
the expression for the MCA energy obtained within the per-
turbation theory (PT) approach, though the actual derivation
is not given in Ref. [23].

In this paper, the validity of the original Bruno and van der
Laan relations and their possible extensions are investigated
for multilayer systems and specifically elaborated for mag-
netic bilayers. In particular, the derivation of the extended van
der Laan relation, previously proposed for the Co/Ni bilayer
[23], is presented in detail. The present paper provides a more
general form of this relation, applicable to any multilayer sys-
tem, and specifically addresses the case of the Co/NM bilayer
where one of the layers is nonmagnetic but can strongly affect
the MCA and the AOM due to its large SOC. It also investi-
gated whether it is possible to establish a Bruno-like relation
that expresses the MCA energy with the full AOMs of both
ferromagnetic and nonmagnetic parts of the bilayer, instead
of the differences of the AOM spin components which appear
in the extended van der Laan relation. The MCA energy, its
spin-pair terms and the terms due to different pairs of the
SOCs of the constituent elements are calculated for the Co/Pd
and Co/Pt bilayers, alongside the Co film, and the results are
compared with the obtained orbital moments of Co, Pd, and Pt
in the respective systems. In particular, the oscillation patterns
in variations of the investigated quantities with increasing the
Co thickness are carefully examined and the identified oscilla-
tion periods are related to specific quantum-well (QW) states.
In addition, the contributions to the MCA energy from indi-
vidual atomic layers, the layer orbital moments, and the layer
terms of the AOM are examined, in particular, to investigate
if they satisfy a local Bruno-like relation. The calculations of
the MCA energy are performed with two methods, one using
the force theorem (FT) [24] based on the exact solutions of
the full Hamiltonian including the SOC, and the approximate
approach provided by the perturbation theory (PT). The form
of the commonly used PT expression for the MCA energy
[8,25,26] is re-examined for systems without the inversion
symmetry and its validity in relation to the strength of the SOC
is tested for the investigated systems.

The oscillations of the MCA energy with increasing the
thicknesses of both ferromagnetic and nonmagnetic layers
have previously been found for the Co and Fe films as well as

the Co/Cu and Co/Pd bilayers, experimentally [27–29] and
theoretically [16,28–33]. Such oscillations have been shown
to come from QW d states in Co and Pd [31–33] as well
as QW sp states in Cu hybridized with d states in Co [29].
The oscillation periods of the MCA energy are related to the
extremal dimensions of the three-dimensional Fermi surface
of the ferromagnetic or nonmagnetic element whose layer
thickness varies, in a similar way as it was originally found
for the oscillations of the interlayer exchange coupling with
increasing the thickness of a nonmagnetic spacer in magnetic
FM/NM/FM trilayers [34]. More recently, the MCA oscil-
lations versus the thickness of the Ta and Hf caps have been
predicted by the ab initio calculations for the Co2FeAl/Ta [35]
as well as Cu/FeCo/Hf and Cu/FeCo/Ta [36] heterostruc-
tures. Also, a recent paper reports the oscillations of in-plane
magnetic anisotropy with increasing the Au thickness which
have been observed for the Au/Fe(110) and Co/Au/Fe(110)
films with the magneto-optic Kerr effect [37].

II. THEORY

A. Spin-orbit coupling and magnetocystalline anisotropy
in layered systems

The spin S of an electron with the momentum p interacts
in an electric field E = −∇V (r) at position r via the SOC
Hso proportional to (p × E) · S [38]. For an atomically lay-
ered system with the effective potential V (r) approximated
by the sum of the layer-specific atomic-like potentials Vl (r′ =
|r − Rl j |), spherically symmetric around each atomic site (nu-
cleus) Rl j , the SOC takes the form (e.g., Refs. [2,11])

Hso =
∑

l j

ξ
(l )
at (|r − Rl j |)L(r − Rl j ) · S, (1)

where the operator of orbital angular momentum L(r − Rl j )
is calculated with respect to the consecutive atomic positions
Rl j . The radial function

ξ
(l )
at (r′) = h̄2

2m2
ec2

1

r′
dVl

dr′ , (2)

(where h̄, me and c are the reduced Planck constant, the
electron mass and the light velocity, respectively) defines the
strength of the SOC at each site in layer l and its expectation
value for the valence p and d orbitals yields the corresponding
SOC constants (the SOC vanishes for s orbitals due to its
angular part). In transition metals, where magnetic properties
are mainly affected by d orbitals, the SOC can be further
approximated by its common form

Hso =
∑

l j

ξlL(r − Rl j ) · S, (3)

which includes the layer-specific SOC constant ξl correspond-
ing to these orbitals. Note that the spin and orbital angular
momentum are assumed to be in units of h̄.

The energy E of a thin film of a ferromagnetic material
or a film comprising a ferromagnetic layer depends on the
direction of its magnetization M. One factor that leads to this
magnetic anisotropy is the magnetic dipole-dipole interaction
which gives rise to the dependence of the system energy on the
sample geometry (shape anisotropy) and, for films, promotes
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in-plane magnetization direction, parallel to the film surface.
The other contribution to the magnetic anisotropy comes from
the SOC and is called the MCA. For cubic films with (001)
and (111) surfaces, the MCA energy is defined, at zero tem-
perature, as the difference

EMCA = E (M̂⊥) − E (M̂||) (4)

between the total energies E (M̂) for perpendicular and in-
plane magnetization directions M̂, usually chosen as the z
and x (or y) axes, respectively, in the fixed frame of reference
Oxyz associated with the film crystallographic structure. For
the (001) fcc films and bilayers presently investigated, the x, y,
and z axes are assumed to be oriented along the (001), (010),
and (001) directions, respectively.

The MCA energy is determined by the electronic structure
of the system perturbed by Hso and, at zero temperature, it
is usually expressed by the difference Eb(M̂⊥) − Eb(M̂||) of
the band energies Eb = (1/N2D)

∑occ
mk εm(k) for two magneti-

zation directions where k denotes the two-dimensional wave
vector and m is the band index (replacing a pair of separate
spin and band indices valid in the absence of the SOC). This
approach, known as the force theorem (FT) [24], involves the
energies εm(k) of the occupied electron states in the non-
interacting Kohn-Sham system representing the interacting
electron system within the density functional theory (DFT)
and has proved to provide a very good approximation for
the MCA energy found with the total energies E (M̂) of the
interacting system; see, e.g., Refs. [11,35,39].

To improve the convergence of EMCA with increasing the
number N2D of k points in the two-dimensional Brillouin zone
(BZ) [2], the MCA energy is calculated at finite temperature
T ,

EMCA = EFT
MCA = F (M̂⊥) − F (M̂||), (5)

using the FT for the free energy F = Eb − T S where S is the
entropy. The free energy

F (M̂) = � + εFN (6)

can also be expressed in terms of the grand potential

�(M̂) = 1

N2D

∑
mk

g[εm(k)]εm(k) (7)

and the number of the electrons

N = 1

N2D

∑
mk

f [εm(k)] (8)

defined, respectively, with the function g(ε) = −kBT ln{1 +
exp[(εF − ε)/kBT ]} [40] and the Fermi-Dirac function f (ε) =
1/(1 + exp[(ε − εF)/kBT ]), where εF is the Fermi energy
(or, more precisely, the chemical potential) and kB denotes
the Boltzmann constant. The number N2D of k points in the
two-dimensional BZ is equal to the number of atoms in each
atomic plane (assuming one atom per primitive unit cell),
with the periodic boundary conditions imposed for electron
wave functions on its edges. Thus the above formulas with
the scaling factor 1/N2D define the MCA energy per one
surface atom. The use of the free energy in the definition (5)
of the MCA energy corresponds to describing the system in
the canonical ensemble where the number of electrons N is

fixed while the Fermi energies εF are different for the two
magnetization directions. The Fermi energy εF = εF(M̂) is
then found from the condition (8) with the energies εm(k) of
the occupied eigenstates |mk〉 of the perturbed Hamiltonian
H + Hso (where H is the Hamiltonian of the unperturbed
system).

The temperature is introduced here mainly to facilitate the
MCA calculations and its effect on the saturation magneti-
zation Ms, due to spin waves, is not considered. The actual
effect of temperature in this formulation is limited to reducing
the amplitude of the MCA oscillations [2] due to smearing of
the Fermi level; a strong reduction of the magnetic anisotropy
oscillations with temperature is confirmed experimentally for
Fe and Co films on vicinal substrates [27,28]. Such a smear-
ing is also used in the MCA calculations based on the DFT
approach (e.g., Refs. [21,39,41,42]) where the band energy is
found as the free energy, in fact (though the actual smearing
method can be different), like it is done, e.g., in the Vienna
ab initio simulation package (VASP) (see Refs. [43], [44],
and, in particular, [45]). For the presently assumed temper-
ature of T = 300 K, the parameter kBT , which determines
the smearing width, is 0.026eV while the MCA oscillations
for the (001) Co films are reported [2] to almost disappear
at T = 1000 K, or kBT = 0.086 eV. Thus the actual value of
such a smearing parameter can strongly affect the amplitude
of the MCA oscillations or even prevent their occurrence if it
is large enough, which is presumably the case for its default
value 0.2 eV assumed in VASP.

The free energy F can be also calculated with the perturba-
tion theory (PT) by using, in Eq. (7), the expansion of the state
energies εm = ε

per
nσ = εnσ + ε (1)

nσ + ε (2)
nσ up to the second order

in Hso where εnσ = εnσ (k) is the energy of the unperturbed
state |nσk〉 with spin σ (↑ or ↓), band index n and the wave
vector k. As shown in Appendix, the first-order correction
F (1) to the free energy vanishes due to cancellation of the
k and −k contributions to this term, while its second-order
term F (2) is equal to the second-order correction �(2) to the
grand potential calculated with the Fermi energy εF = εF0 of
the unperturbed system. This corresponds to an alternative de-
scription of the system, within the grand canonical ensemble
with the fixed Fermi energy and using the grand potential �

instead of the free energy to define the MCA energy with the
FT (cf. Ref. [2]),

EMCA = ẼFT
MCA = �(M̂⊥) − �(M̂||), (9)

and later find its approximate form EPT
MCA with the PT. Since

the first-order correction �(1) (equal to F (1)) in the perturbed
grand potential � = �0 + �(1) + �(2) vanishes the dominant
term in the PT expansion of the MCA energy

EMCA = EPT
MCA = �(2)(M̂⊥) − �(2)(M̂||) (10)

for thin films comes from the second-order correction [2,46]

�(2)(M̂) = 1

2

1

N2D

∑
k∈BZ

∑
σ,σ ′

∑
n,n′

f0(εnσ (k)) − f0(εn′σ ′ (k))

εnσ (k) − εn′σ ′ (k)

× |〈n′kσ ′|Hso|nkσ 〉|2, (11)

where the occupation factor f0(ε) = f (ε; εF = εF0) corre-
sponds to the unperturbed system with the Fermi energy εF0.
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The detailed derivation of the expression for �(2), with
suitable consideration of degenerate states, given in Ap-
pendix, shows that the second-order term �(2) includes not
only the contributions from the second-order corrections
ε (2)

nσ to state energies, but also contributions from the first-
order corrections ε (1)

nσ . In particular, it is shown that while
the diagonal (intraband) terms, nσ = n′σ ′, are absent in
the second-order correction E (2) to the band energy in the
usual PT approach to the MCA energy at zero temperature
[8,25,26], such terms are present in the MCA calculations
with Eq. (11) at finite T since the second-order correction
�(2) includes terms proportional to f ′

0(εnσ )(ε (1)
nσ )2. The ra-

tio [ f0(εnσ ) − f0(εn′σ )]/(εnσ − εn′σ ) is also replaced with the
derivative f ′

0(εnσ ) for nondiagonal terms with equal energies
εnσ = εn′σ ′ . With such a replacement, the PT formula (11) is
valid even for degenerate states, present at the high-symmetry
points and lines in the BZ. In particular, diagonalization of
the perturbation Hso in each degenerate subspace of states,
required by the usual recipe of the PT, is not needed prior to
application of this formula provided that all terms nσ and n′σ
are included in the summation. The same expression for �(2),
with the diagonal terms and degenerate states included, is
obtained by expanding � = �0 + �(1) + �(2) in orders of Hso

using the Dyson expansion for the perturbed Green function
[2], and noting that the linear term �(1) vanishes.

Thus the expression (11) with all terms included gives
the second-order term �(2) of the grand potential �(M̂) =
�0 + �(2)(M̂) and consequently defines the PT formula (10)
for the MCA energy at finite temperature. The inclusion of
diagonal terms in Eq. (11) is necessary for the Co/NM bi-
layers since for systems without the inversion symmetry the
elements 〈nkσ |Hso|nkσ 〉 can be finite, as confirmed by the
results shown in Sec. III B. In the absence of the inversion
symmetry, the summation over the wave vectors k in Eq. (11),
as well as in Eqs. (7) and (8) used in the MCA calculations
with the FT, must be done over the whole BZ since respective
terms with −k and k are not equal. For homogenous ferro-
magnetic films and symmetric magnetic trilayers, like Co and
Pd/Co/Pd slabs investigated in the author’s previous studies
[2,31–33], the diagonal elements of Hso vanish due to the
inversion symmetry so that inclusion of the diagonal terms in
the PT formula for the MCA energy is irrelevant in such cases.
The formula without such terms, in an equivalent form valid
for T = 0, was also used to analyze the results obtained with
the FT in the ab initio calculations [21,39,41,42] for various
FM/NM and FM1/FM2 superlattices, FM=Fe, Ni and Co, all
with the inversion symmetry.

In the limit T → 0, the MCA energy includes diagonal
terms proportional to |〈nkσ |Hso|nkσ 〉|2 and the Dirac delta
function f ′

0(εnσ ) = δ(εnσ (k) − εF0)) which defines sheets of
the Fermi surface as lines in the two-dimensional BZ. Al-
though the integral of such terms over k is finite for systems
without the inversion symmetry, the diagonal terms are not
included in the usual PT formula [8,25] for the MCA energy
at T = 0, which implicitly assumes that only those perturbed
states are occupied that originate from the occupied unper-
turbed states. While such an assumption helps to achieve
convergence [47] it fails for some states with energies very
close to the Fermi energy and it is not made in the present

derivation of �(2) at finite T . Thus the PT expression for
the MCA energy at T = 0 needs to be reconsidered if the
inversion symmetry is absent so that it agrees with the T → 0
limit of EMCA found with Eqs. (10) and (11).

The dependence of �(2) on the magnetization orientation
M̂ arises due to the fact that the spin states |σ 〉 and |σ ′〉 refer
to the spin quantization axis ζ along the vector M. Indeed,
the spin operator represented as S = (Sξ , Sη, Sζ ) in the rotated
frame of reference Oξηζ , is given by the Pauli matrices σ1,
σ2, σ3 while the corresponding components Lξ , Lη, Lζ of the
orbital angular momentum L are expressed in terms of Lx, Ly,
Lz and the angles θM and φM (polar and azimuthal) that define
the direction of M with respect to the film surface in the fixed
frame of reference Oxyz. Thus, although the SOC operator

L · S = LxSx + LySy + LzSz = Lξ Sξ + LηSη + Lζ Sζ

= Lζ Sζ + 1
2 (L′

+S′
− + L′

−S′
+) (12)

(where L′
± = Lξ ± iLη and S′

± = Sξ ± iSη) is invariant under
simultaneous rotation of orbital and spin momenta, its mixed
representation in the two different frames of reference: Oξηζ

for spin and Oxyz for electron position r and other spatial
operators like L, includes the sine and cosine functions of θM

and φM [48]. As a result, the matrix elements of L · S between
atomic spin-orbitals |μσ 〉 with spatial parts represented in the
Oxyz frame of reference depend on the angles θM and φM [49];
the same applies to the matrix elements of Hso between the
wave functions ψσ

nk(r) = ψσ
nk(x, y, z) in Eq. (11). Then, the

PT expression (11) leads, for films with cubic structure (fcc,
bcc) and the (001) or (111) surfaces, to the simple dependence
K1 cos2 θM of the dominant term of the free energy (or �) on
the magnetization orientation M̂, with the anisotropy constant
K1 equal to the MCA energy defined above. Further terms,
of the fourth order in the SOC, are dependent also on the
azimuthal angle φM and give rise to the bulklike contributions
to the MCA anisotropy.

The MCA energy of a layered system, given by Eqs. (10)
and (11), can be decomposed into contributions

E (ll ′ )
MCA = ξlξl ′

[
ω

(2)
ll ′ (M̂⊥) − ω

(2)
ll ′ (M̂||)

]
(13)

coming from the SOC in pairs of layers l and l ′ so that each
E (ll ′ )

MCA is the part of the MCA energy that results from the SOC
in layer l when the electron states are modified by the SOC in
layer l ′. The terms

ω
(2)
ll ′ (M̂) = 1

2

1

N2D

∑
k∈BZ

∑
σ,σ ′

∑
n,n′

f0(εnσ (k)) − f0(εn′σ ′ (k))

εnσ (k) − εn′σ ′ (k)

×〈n′kσ ′|Ol |nkσ 〉〈nkσ |Ol ′ |n′kσ ′〉 (14)

are defined with the operators Ol = ∑
j L(r − Rl j ) · S. The

matrix element 〈n′kσ ′|Ol |nkσ 〉 is equal to N2D〈n′kσ ′|L(r −
Rl0) · S|nkσ 〉 (calculated for any chosen atom j = 0 in the
lth atomic plane) since each of its terms 〈n′kσ ′|L(r − Rl j ) ·
S|nkσ 〉 is the same due to the Bloch form of the electron
wave functions with the same prefactor exp(ikr) multiplied
by periodic functions of r. The elements 〈n′kσ ′|Ol |nkσ 〉 are
independent of N2D since the wave functions, defined over
whole atomic planes, have the normalization factor 1/

√
N2D.
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Let us note that ω
(2)
ll ′ , and hence also the MCA layer-pair

contribution E (ll ′ )
MCA, are symmetric in the layer indices l and l ′,

since the expression for ω
(2)
ll ′ becomes equal to ω

(2)
l ′l once the

pairs of electron state indices nσ are renamed as n′σ ′ and vice
versa.

The layer-pair terms E (ll ′ )
MCA for a Co/Pd bilayer are pre-

sented in Sec. III D and compared with the results of the
recent ab initio calculations where such contributions are also
determined, for the 5 ML Co film with hcp-like stacking and
a Co/Ni multilayer [50]. Note that the intersite MCA terms
with l < l ′ are only considered in Ref. [50] so that they are
defined as E (ll ′ )

MCA + E (l ′l )
MCA = 2E (ll ′ )

MCA. The layer-pair contribu-

tions E (ll ′ )
MCA could be formally mapped onto a spin Hamiltonian

including the on-site (l = l ′) and two-site (l �= l ′) anisotropy
terms [51] with respective magnetic anisotropy constants Kll ′

proportional to E (ll ′ )
MCA. However, it requires a further investi-

gation whether such a rather arbitrary association is valid for
metallic layered systems, e.g., by simulating of the tempera-
ture dependence of the effective anisotropy constant like it is
done in Ref. [52].

For the Co/NM bilayers, the MCA energy expressed as the
sum of the layer-pair contributions E (ll ′ )

MCA can be represented
as the sum of four terms

EMCA = ECoCo
MCA + ECoNM

MCA + ENMCo
MCA + ENM NM

MCA , (15)

where the XY pair term

EXY
MCA =

∑
l∈X

∑
l ′∈Y

E (ll ′ )
MCA

= ξX ξY

∑
l∈X

∑
l ′∈Y

[
ω

(2)
ll ′ (M̂⊥) − ω

(2)
ll ′ (M̂||)

]
(16)

is the combined contribution of the SOC in the X and Y parts
of the bilayer. The mixed terms are equal, ECoNM

MCA = ENMCo
MCA ,

since E (ll ′ )
MCA is symmetric in l , l ′. Furthermore, the total MCA

energy and each of its XY components can be decomposed
into the spin-pair contributions

EMCA = E↓↓
MCA + E↓↑

MCA + E↑↓
MCA + E↑↑

MCA, (17)

EXY
MCA = EXY ,↓↓

MCA + EXY ,↓↑
MCA + EXY ,↑↓

MCA + EXY ,↑↑
MCA . (18)

The decomposition of the MCA energy into contributions
from individual layers is also possible and two different meth-
ods to achieve this goal are presented in Sec. III D, alongside
exemplary results for the Co/Pd bilayer.

B. Orbital moments

In the absence of the SOC, the orbital angular momentum
of an extended system is fully quenched since for each oc-
cupied eigenstate |nkσ 〉 with the wave function ψσ

nk(r) there
is another state |n,−k, σ 〉 with the wave function ψσ

n,−k(r) =
[ψσ

nk(r)]∗ which is also occupied but has the opposite expec-
tation value of L (this value can be nonvanishing in systems
without the inversion symmetry) see, e.g., Ref. [2]. Once the
electronic states are perturbed by Hso their overall contribution
to the orbital angular momentum becomes finite. For the sake
of simplicity, we refer to the orbital angular momentum also

as the orbital moment which, when multiplied by the gyro-
magnetic ratio g = −μB/h̄ (where μB is the Bohr magneton),
gives the orbital magnetic moment.

The orbital moment at atomic site j in layer l

〈L〉l j =
∑
k∈BZ

∑
m

f (εm(k)) 〈mk|L(r − Rl j )|mk〉MT (19)

is defined as the sum of the expectation values of L(r − Rl j )
in the occupied states |mk〉 of the perturbed Hamiltonian H +
Hso. The calculations of the orbital moments with Eq. (19) will
be referred to as the FT approach, in a similar way as for the
MCA energy found with Eq. (5) which is also based on the
direct diagonalization of H + Hso.

Using the PT expansions for the perturbed eigenstates

|mk〉 = |nkσ 〉per = |nkσ 〉

+
∑
k∈BZ

∑
n′σ ′

(n′σ ′ ) �= (nσ )

〈n′kσ ′|Hso|nkσ 〉
εnσ (k) − εn′σ ′ (k)

|n′kσ ′〉, (20)

and their energies εm = ε
per
nσ = εnσ + ε (1)

nσ , both including the
first-order corrections, the orbital angular momentum at an
atomic site (l j) can be expressed as follows:

〈L〉l j =
∑
k∈BZ

∑
nσ

f (εnσ (k)) per〈nkσ |L(r − Rl j )|nkσ 〉per
MT

= 1

2

∑
k∈BZ

∑
σ

∑
nn′

f0(εnσ (k)) − f0(εn′σ (k))

εnσ (k) − εn′σ (k)

× [〈n′kσ |Hso|nkσ 〉〈nkσ |L(r−Rl j )|n′kσ 〉MT+c.c.],

(21)

where the terms n = n′ are included since they come from the
expansion

f (εm) = f
(
εnσ + ε (1)

nσ

) = f0
(
εnσ + ε (1)

nσ − δεF
)

= f0(εnσ ) + f ′
0(εnσ )

(
ε (1)

nσ − δεF
)

= f0(εnσ ) + f ′
0(εnσ )ε (1)

nσ , (22)

where ε (1)
nσ = 〈nkσ |Hso|nkσ 〉 and the shift δεF = εF − εF0 of

the Fermi energy is neglected as it is of the second-order
in the SOC; see Appendix. Thus the orbital moment is of
the first-order in Hso since the zero-order term (i.e., the mo-
ment at zero SOC) vanishes, as explained above. Note that
the spin moment 〈Sζ 〉 = ∑

mk f (εm(k))〈mk|Sζ |mk〉 along the
magnetization direction is not changed by the SOC in the first-
order of Hso since we find 〈mk|Sζ |mk〉 = 〈nσk|Sζ |nσk〉 =
1/2 from Eq. (20) (note that Sζ is diagonal in the |nσk〉
basis) and the second term in 〈Sζ 〉 = (1/2)

∑
nkσ f0(εnσ ) +

(1/2)
∑

nkσ f ′
0(εnσ )ε (1)

nσ = (1/2)
∑

nkσ f0(εnσ ) vanishes as the
contributions from k and −k cancel out in this term.

In the above expressions (19) and (21) for the orbital mo-
ment at atomic site (l j), the spatial integration in the matrix
elements of L(r − Rl j ) is limited to the MT sphere centered
on site (l j) and, accordingly, the integrals involve different
angular components of the Bloch wave functions inside this
sphere. In fact, the integration can also be limited to the MT
spheres for the matrix elements of Hso in Eqs. (11) and (21)
since the SOC is strongly localized around each nucleus (as
|r − Rl j |−3) and its approximated form given by Eq. (1) is
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not valid in the interstitial region where the potential seizes
to be spherically symmetric. Limiting the integration region
to the MT sphere of the radius rMT

l j around each site Rl j

can be introduced formally by incorporating the step function
θ (rMT

l j − r′) (where r′ = |r − Rl j |) into the operators of the
orbital angular momentum L(r − Rl j ) at this site and the site
contribution to the SOC in Eqs. (1) and (3), like it is recently
done in Ref. [53]. While this approach is strictly applicable in
the DFT calculations, its goal can be also achieved by keeping
only on-site elements of L(r − Rl j ) for each site (l j) if the
electron states are represented in a local orbital basis as it is
done in the tight-binding (TB) model used in this work (see
Sec. II D).

The so-defined atomic orbital moments well approximate
the local orbital magnetic moment determined for each atom
with the Wannier functions within the exact approach of the
modern theory of orbital magnetization [54–56]. This theory
also recognizes the second, itinerant, term of the orbital mo-
ment which comes from the interstitial region but it is usually
significantly smaller than its local term [55,56]. However, in
fact, it is the local (atomic-like) orbital moment, alongside the
spin moment, that is determined experimentally since these
moments are obtained from the XMCD spectra with the sum
rules which are derived by considering light absorption of
isolated atoms [3,4].

In layered systems, the atomic orbital moments depend
only on the layer index, 〈L〉l j = 〈L〉l0 = 〈L〉l . The sum of
local moments 〈L〉l from all atomic layers l yields the total
orbital moment (its local part) of the film. In the case of a
Co/NM bilayer including NCo monolayers (ML) of Co and
NNM ML of NM, its total moment

〈L〉tot =
∑

l

〈L〉l =
∑
l∈Co

〈L〉l +
∑

l∈NM

〈L〉l

= 〈L〉tot,Co + 〈L〉tot,NM = NCoLCo + NNMLNM (23)

is the sum of the total orbital moments 〈L〉tot,Co and 〈L〉tot,NM

of the Co and NM layers and can be further expressed with the
average atomic moments 〈L〉Co = 〈L〉tot,Co/NCo and 〈L〉NM =
〈L〉tot,NM/NNM in the respective parts of the bilayer. Such
average element-specific moments 〈Lζ 〉X are detected in the
XMCD experiments.

Since most of unperturbed electron states have extended
wave functions with finite values in both Co and NM parts of
the bilayer the SOC in NM modifies each of such wave func-
tions not only in NM but also in Co, through the first-order
corrections in Eq. (20) which span over the whole bilayer.
Physically, if an electron is in a state which has finite prob-
ability amplitudes in both Co and NM, this state changes in
the whole bilayer once the electron is subject to the spin-orbit
interaction in the NM part. In a similar way, the electron wave
functions change throughout the whole bilayer due to the SOC
in Co. Thus a finite orbital moment in each layer l arises as a
result of the changes of the wave function in this layer due
to the SOC present in the same layer l as well as all other
layers l ′, also in the nonmagnetic part of the Co/NM bilayer.
Accordingly, the atomic orbital moment in layer l ,

〈L〉l =
∑

l ′
〈L〉l ′

l , (24)

has contributions which are induced by the SOC in all layers
l ′, in both Co and NM. These terms are given by

〈L〉l ′
l = 1

2
N2Dξl ′

∑
k∈BZ

∑
σ

∑
nn′

f (εnσ (k)) − f (εn′σ (k))

εnσ (k) − εn′σ (k)

× [〈n′kσ |Lζ (r − Rl ′0)Sζ |nkσ 〉MT

×〈nkσ |L(r − Rl0)|n′kσ 〉MT + c.c.] (25)

where each of the two matrix elements is proportional to
1/N2D so that effectively Eq. (25) includes the factor 1/N2D

which combined with the sum over N2D wave vectors k leads
to 〈L〉l ′

l independent of N2D in the limit of large N2D; see also
Eq. (44) below. Note that the SOC operator L · S, defined in
Eq. (12), is replaced by Lζ Sζ in Eq. (25) because the matrix
element of this operator is calculated for pair of states with the
same spin σ .

The total orbital moments 〈L〉tot,X in the X = Co and X =
NM parts of the bilayer can then be decomposed into the terms
〈L〉Y

tot,X coming from the SOC in Y = Co and Y = NM,

〈L〉tot, Co = 〈L〉Co
tot,Co + 〈L〉NM

tot,Co, (26)

〈L〉tot,NM = 〈L〉Co
tot,NM + 〈L〉NM

tot,NM, (27)

where 〈L〉Y
tot,X = ∑

l∈X

∑
l ′∈Y 〈L〉l ′

l . Accordingly, the average
atomic moment 〈L〉X = 〈L〉tot,X /NX in the X part can be ex-
pressed as the sum of the two terms 〈L〉Y

X = 〈L〉Y
tot,X /NX , with

Y = Co and Y = NM.
The layer orbital moments 〈L〉l , the total orbital moments

in Co and NM, as well as their different parts 〈L〉Y
tot,X are par-

allel to the magnetization M, if it is oriented in-plane (ζ = x
and y) or out-of-plane (ζ = z), for the considered layered sys-
tems with the cubic structure and the (001) surface. This can
be shown if one applies the system symmetries, x → −x or
y → −y, in Eq. (25). Such a symmetry operation Q transforms
each eigenstate |nkσ 〉 to another eigenstate |nk′σ 〉 with the
k′ = Q−1k = Qk point which is also present in the summa-
tion over the BZ. The components Lα (α = x, y, z) of the
operator L are either unchanged by the symmetries x → −x
and y → −y or changed to −Lα . In particular, if α �= ζ at
least one these symmetries gives QLα = −Lα and QLζ = Lζ

or QLα = Lα and QLζ = −Lζ . Thus each term in Eq. (25) is
equal to the opposite of the respective term for k′ so that the
two terms cancel out and, as a result, the α components of the
orbital moment perpendicular to the magnetization direction
ζ vanish. The terms in Eq. (25) do not change sign for α = ζ

upon these symmetry operations so that the component of the
orbital moment along the magnetization direction is finite.
Note that for an oblique magnetization, with the orientation
ζ neither parallel nor perpendicular to the film surface, the
orbital moment is no longer collinear with M [9].

C. Relations between magnetocrystalline anisotropy energy
and orbital moments

In each layer, the atomic orbital moment has two terms,
〈L〉↑l and 〈L〉↓l , which come from the majority (spin-up) and
minority (spin-down) energy bands, respectively. The second-
order correction �(2) and the resulting MCA energy EMCA

are expressed as sums of the spin-pair contributions: �
(2)
σσ ′
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and Eσσ ′
MCA, respectively. From Eqs. (11), (12), and (21), it

follows that the spin-diagonal part of �(2) can be expressed
with the contributions of the spin-up and spin-down bands to
the orbital moment component 〈Lζ 〉l along the magnetization
direction, namely,

�
(2)
↑↑ + �

(2)
↓↓ = −1

4

∑
l

ξl [〈Lζ 〉↓l − 〈Lζ 〉↑l ]. (28)

Accordingly, the relation between the sum of the spin-
diagonal terms Eσσ ′

MCA in the MCA energy and the difference of
the respective contributions to the AOM �〈Lζ 〉l = �〈Lζ 〉↑l +
�〈Lζ 〉↓l is obtained

E↑↑
MCA + E↓↓

MCA = −1

4

∑
l

ξl [�〈Lζ 〉↓l − �〈Lζ 〉↑l ], (29)

where �〈Lζ 〉σl = 〈Lz〉σl |M||z − 〈Lx〉σl |M||x Let us note that the
� symbol is placed outside the brackets to mark that it refers
not only to two different components of the orbital moment
but also to the system’s two states of different total spin
directions, i.e., magnetization orientations.

For the Co/NM bilayers, the relations (28) and (29) take
the following form:

�
(2)
↑↑ + �

(2)
↓↓ = − 1

4ξCo(〈Lζ 〉↓tot,Co − 〈Lζ 〉↑tot,Co)

− 1
4ξNM(〈Lζ 〉↓tot,NM − 〈Lζ 〉↑tot,NM), (30)

E↑↑
MCA + E↓↓

MCA = − 1
4ξCo(�〈Lζ 〉↓tot,Co − �〈Lζ 〉↑tot,Co)

− 1
4ξNM(�〈Lζ 〉↓tot,NM − �〈Lζ 〉↑tot,NM), (31)

where

�〈Lζ 〉σtot,X = 〈Lz〉σtot,X

∣∣
M||z − 〈Lx〉σtot,X

∣∣
M||x (32)

is the anisotropy of the total orbital moment (the spin-σ term
of its ζ component) 〈Lζ 〉σtot,X = ∑

l∈X 〈Lζ 〉σl in the X part of the
bilayer. Thus the spin-diagonal terms of �(2) and the MCA
energy are decomposed into the contributions from the spin-
up and spin-down subbands to the total orbital moments (their
ζ components along M) in Co and NM,

〈Lζ 〉tot,Co = 〈Lζ 〉↑tot,Co + 〈Lζ 〉↓tot,Co, (33)

〈Lζ 〉tot,NM = 〈Lζ 〉↑tot,NM + 〈Lζ 〉↓tot,NM. (34)

The terms − 1
4ξX �〈Lζ 〉↓tot,X and 1

4ξX �〈Lζ 〉↑tot,X (X = Co, NM)
in Eq. (31) are equal, respectively, to the ↓↓ and ↑↑ con-
tributions to EXX

MCA + EXY
MCA [Eq. (18)] which thus define the

spin components of the AOM in the X layer. Accordingly,
the spin-components of the total orbital moment 〈Lζ 〉tot,X in
the X part of the bilayer can be expressed with the diagonal
spin-pair contributions to the XX and XY components of
�(2) = �(2)(M̂), namely,

〈Lζ 〉↓tot,X = − 4

ξX

[
�

(2)
XX ,↓↓ + �

(2)
XY ,↓↓

]
(35)

〈Lζ 〉↑tot,X = 4

ξX

[
�

(2)
XX ,↑↑ + �

(2)
XY ,↑↑

]
. (36)

where X = Co, Y = NM, or vice versa and the magnetization
M is along the ζ axis.

Equations (28), (29), and their bilayer versions, Eqs. (30)
and (31), are exact relations between the spin-diagonal terms
of the MCA and the spin terms of the AOM, found with
the PT. They are an extension of the exact relation given
by van der Laan [9] which includes only one SOC constant
and is strictly valid for homogenous ferromagnetic films. The
presence of layer- or element-specific SOC constants makes
the extended relations (28) and (29) valid for magnetic multi-
layers, comprising layers of two or more different elements.

If the spin-flip (↓↑ and ↑↓) terms of the MCA energy are
neglected, as originally done by Bruno and van der Laan [8,9],

EMCA ≈ E↓↓
MCA + E↑↑

MCA, (37)

the relation (31) can be used to approximate the MCA energy
as follows:

EMCA ≈ − 1
4ξCo(�〈Lζ 〉↓tot,Co − �〈Lζ 〉↑tot,Co)

− 1
4ξNM(�〈Lζ 〉↓tot,NM − �〈Lζ 〉↑tot,NM). (38)

This extended approximate van der Laan relation reduces to
its original form [9]

EMCA ≈ − 1
4ξCo(�〈Lζ 〉↓tot,Co − �〈Lζ 〉↑tot,Co) (39)

once the contributions from the SOC of NM are completely
neglected. It is further simplified to the original Bruno formula
[8]

EMCA ≈ − 1
4ξCo�〈Lζ 〉tot,Co (40)

when the difference of the AOM spin terms is replaced with
the full AOM of Co by assuming that its spin-up term is
negligible. Alternatively, the Bruno approach could be liter-
ally followed for both parts of the bilayer, by replacing, in
Eq. (38), the differences �〈Lζ 〉↓tot,X − �〈Lζ 〉↑tot,X with the full
AOM �〈Lζ 〉tot,X for both X = Co and X = NM. As a result,
the extended, partly phenomenological, Bruno relation

EMCA ≈ − 1
4ξCo�〈Lζ 〉tot,Co − 1

4ξNM�〈Lζ 〉tot,NM (41)

is obtained. However, this approach is rather arbitrary since,
while the minority-spin term �〈Lζ 〉↓tot,Co is expected to be the
main term in the AOM �〈Lζ 〉tot,Co for a hard FM like Co, it
is not clear whether one of the spin components �〈Lζ 〉σtot,NM
dominates in the orbital moment of NM so that one could
replace such a leading term with the full AOM �〈Lζ 〉tot,NM

and neglect the term from the other spin subband.
The original Bruno relation, given by Eq. (40) for Co, has

been found to be rather inaccurate for Fe films [15], however
it has been shown [16] that the oscillations of the AOM
�〈Lζ 〉tot,X with increasing the thickness N of a homogenous
ferromagnetic Fe film well match the suitably scaled oscilla-
tory term of the MCA energy EMCA(N ). The extended van
der Laan relation (38) has been found to give a plausible
approximation for the MCA energy of the Co/Ni bilayer
[23] though this may be partly due to the similar SOC of
Co and Ni. For films of ferromagnetic 3d metals (here Co),
the minority-spin band is expected to give the dominating
contribution to the orbital moment, like it does for the Fe
film [16]. However, the MCA energy of the Co film also
includes large spin-flip terms [33] while for Co/NM layered
systems including a nonmagnetic part with a strong SOC, like
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the Pd/Co/Pd trilayer [31,32], there are large contributions
Eσσ ′

MCA from all four spin pairs (σ, σ ′) =↓↓, ↓↑, ↑↓, ↑↑. Thus
the neglect of the spin-flip MCA terms can lead to largely
incorrect values of the MCA energy so that the validity of
the above approximate relations between the MCA and AOM
is questionable for multilayer systems. These specific points
and different forms of the approximate relation between the
MCA and AOM are investigated for the Co/NM bilayers in
Sec. III where the results of the calculations are presented
and discussed. In particular, it is investigated how well the
considered relations reproduce the oscillations of the MCA
energy in terms of the oscillations of the AOM.

In Ref. [9], van der Laan has proposed a more accurate ex-
pression for the MCA energy of a homogenous ferromagnetic
system by approximating the spin-flip contributions. This has
been done by assuming a constant exchange splitting between
the spin-down and spin-up energy bands and expressing the
matrix element of L · S between the states of opposite spins
with the matrix element of the so-called magnetic dipole term,
which, for small SOC, can be represented with the quadrupole
moment of the charge distribution. However, such a assump-
tion of the rigid exchange splitting though being roughly valid
for d states in the ferromagnetic 3d metals of Fe, Co, and Ni,
is rather poor approximation for the Co/NM bilayers where
the exchange splitting of particular states largely depends on
whether they are localized mainly in Co or NM parts of the
bilayer or span across the whole film. Therefore the spin-flip
terms of MCA energy cannot be accounted for, even in an
approximate manner, along similar lines in the investigated
relation between the MCA and the AOM, though they are
obviously included in the numerical calculations of the MCA
energy with Eqs. (10) and (11).

D. Tight-binding model of electronic structure

In the present work, the local orbital moments and the
MCA energy are determined within in the tight-binding (TB)
framework. For a layered system built of transition metals,
the wave functions of the electron states |nkσ 〉 with the wave
vector k and spin σ are expressed as combinations of the
Bloch basis functions ϕσ

klμ(r) built of atomic orbitals ϕσ
lμ,

proportional to the cubic harmonics Y c
μ (θ, φ) with s, p and

d symmetry and localized on all N2D atoms j in each atomic
plane l ,

ψσ
nk(r) =

∑
lμ

aσ
nlμ(k)ϕσ

klμ(r)

=
∑
lμ

aσ
nlμ(k)

[
1√
N2D

∑
j

eik·Rl j ϕσ
lμ(r − Rl j )

]
. (42)

The matrix elements of the SOC operator Hso between such
states (with spatial integration limited to the MT spheres) are
then well approximated with the site-diagonal terms found
with the orbitals centered on each atom l j. Thus we obtain

〈n′kσ ′|Hso|nkσ 〉MT

=
∑

l

∑
μν

ξl
[
aσ ′

n′lν (k)
]∗

aσ
nlμ(k) 〈νσ ′|L · S|μσ 〉, (43)

where the state |μσ 〉 = |μ〉⊗ |σ 〉 denotes the angular part of
the atomic orbital, with spatial subpart |μ〉 given by a cubic
harmonic Y c

μ in the Oxyz frame of reference and the spin
subpart |σ 〉 defined in the rotated frame of reference Oξηζ .
A similar expression holds for the elements of the orbital
moment at site (l j)

〈n′kσ |L(r − Rl j )|nkσ 〉MT

= 1

N2D

∑
μν

[
aσ ′

n′lν (k)
]∗

aσ
nlμ(k) 〈ν|L|μ〉. (44)

The expressions for the matrix elements 〈νσ ′|L · S|μσ 〉 of the
SOC for an arbitrary magnetization orientation defined with
angles θM and φM are given in Ref. [49] while the matrix
elements 〈ν|Lζ |μ〉 of the orbital angular momentum along
the magnetization direction are equal to 2〈νσ |L · S|μσ 〉 with
σ =↑.

The amplitudes aσ
nlμ(k) that determine the electron states

in Eq. (42) and their energies εnσ (k) for a film with N atomic
layers are found for each spin σ by diagonalizing the 9N ×
9N matrix Hσ

lμ,l ′ν (k) = 〈klμσ |H |kl ′νσ 〉 of the unperturbed
Hamiltonian H in the Bloch basis built of nine s, p, d orbitals
on each site. The Hamiltonian does not include the SOC but
depends on electron spin σ for a system including layers of
a ferromagnetic metal. Its spin-dependence is accounted for
by the exchange splitting between on-site energies ε

↓
lμ and

ε
↑
lμ defined as εσ

lμ = εσ
l jμ = 〈l jμσ |H |l jμσ 〉 (independent of

j) for σ =↓,↑; these energies also determine the diagonal
elements of the Hamiltonian matrix Hσ

lμ,lμ(k) = εσ
lμ in the

Bloch representation. The off-diagonal part of the Hamilto-
nian matrix is found within the Slater-Koster approach using
the two-center hopping integrals between the first and second
nearest neighbors, which have been obtained by accurate fit-
ting ab initio energy bands of bulk metals [57]. The two-center
TB hopping parameters for a pair of atoms of different type
at the Co/NM interface are found as the geometric mean of
the corresponding hopping parameters of Co and NM, or their
arithmetic mean if the two parameters are of the opposite
signs [58]. Since the TB fit for ferromagnetic fcc bulk Co is
not available in Ref. [57] the two-center parameters found for
paramagnetic fcc Co given therein are used instead.

The orbital energies εμ obtained from these fits for the
paramagnetic Co and NM bulk metals are used in determin-
ing the on-site energies ε

↑
lμ = εμ + δεlμ − �(l )

ex /2 and ε
↓
lμ =

εμ + δεlμ + �(l )
ex /2 [33] where the nonzero layer-dependent

exchange splitting �(l )
ex is present in the Co atomic layers. This

splitting is assumed to be proportional to the layer magnetic
moment M (l ) and set to 1.8 eV [59] with the moment of
1.57 μB [33] in bulk Co. The on-site energies are adjusted
with layer-dependent shifts δεlμ to provide charge neutrality
in each atomic layer. These shifts also include an additional
crystal splitting �cr between d orbitals oriented out-of-plane
(yz, zx, 3z2 − r2) and in-plane (xy, x2 − y2) for atoms at the Co
and NM surfaces to account for the weaker average potential
experienced by the orbitals with lobes pointing towards the
vacuum; such a crystal splitting is also considered to be an
important factor for the MCA at transition metal/oxide inter-
faces [11]. In the present case, the value of this splitting is
approximated as 0.05Wd [26] with the d bandwidth Wd, equal
to Wd(Co) = 4.32 eV, Wd(Pd) = 5.50 eV, Wd(Pt) = 7.10 eV,
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FIG. 1. MCA energy EMCA calculated with the FT [Eq. (5)] and
the PT [Eq. (10)] for the (001) fcc slabs: (a) Co(NCo ML) film,
(b) Co(NCo ML)/Pd(8 ML) bilayer, and (c) Co(NCo ML)/Pt(8 ML)
bilayer. The dashed lines in (c) show the MCA energies obtained
with the FT and PT for the Co/Pt bilayer with the decreased SOC
constant of Pt, ξPt = ξPd.

as found from the TB energy bands reported for various el-
ements in Ref. [57]. A similar splitting is set at the Co/NM
interface, as the difference between the crystal splittings at
the Co and NM surfaces (Co/vaccum and NM/vaccum). Ac-
cordingly, this splitting is set to 0.05[Wd(Co) − Wd(NM)] in
the Co interface atomic layer and 0.05[Wd(NM) − Wd(Co)]
in the NM interface atomic layer [2]. Further details of the
applied TB model can be found in Refs. [33,58]. The SOC
constants assumed for the d bands of Co, Pd, and Pt metals
are ξCo = 0.085 eV, ξPd = 0.23 eV, and ξPt = 0.65 eV, respec-
tively [2,32,58].

III. RESULTS

The calculations of the MCA energy and the orbital mo-
ments are performed for the (001) fcc Co film and the (001)
fcc Co/NM bilayers with the nommagnetic layers of the Pd
and Pt metals which both have d states at the Fermi level. The
investigated systems have the Co layer with the thickness NCo

from 2 to 22 ML and the Pd and Pt overlayers which are 8
ML thick. The converged results are obtained by summing, in
Eqs. (7), (8), (11), (19), and (21) over the 60 × 60 (100 × 100

FIG. 2. AOM (per surface atom) and its terms coming from
the spin-down and spin-up energy bands obtained for the (001)
fcc Co(NCo ML) film with the PT and the difference of the AOM
obtained with the FT and the PT.

for the Co/Pt bilayers) k points in the full two-dimensional
BZ for the finite temperature of T = 300 K. The BZ is of the
square shape and corresponds to the unit cell of the square
lattice formed by first nearest neighbours in the (001) atomic
planes. Its lattice constant is a2d = a/

√
2, expressed with the

fcc lattice constant a, and the primitive vectors that define
the unit cell are (a/2,−a/2, 0) and (a/2, a/2, 0). The MCA
energies obtained for these systems with the FT [Eq. (5)] and
the PT [Eq. (10)] are shown in Fig. 1.

The spin magnetic moment is also determined in the cal-
culations and it is found to be enhanced to 1.80 μB at the Co
surface layer and nearly equal to the bulk moment (1.57 μB)
in the interior Co layers. This result is in very good agreement
with the ab initio calculations which also predict the enhanced
Co moments at the (001) surface of the fcc Co, e.g., the
moment of 1.84 μB is reported in Ref. [60]. In addition, small
moments of 0.22 μB and 0.06 μB, induced by the proximity
effect, are presently obtained in the first and second Pd layers
closest to the Co/Pd interface, and slightly smaller moments
of 0.20 μB and 0.03 μB are in the first two Pt layers at the
Co/Pt interface. Similar spin moments in the first interface
Pd layer, 0.25 μB and 0.3 μB, are found for (111) fcc Co/Pd
multilayers in the XMCD experiment and with the DFT cal-
culations, respectively [21]. Also, the Pt moment of 0.3 μB

at the Fe/Pt(001) interface has been obtained in the ab initio
calculations reported in Ref. [42].

A. Oscillations of MCA energy and orbital moment in Co film

The MCA energy and the AOM obtained with the FT
[Eqs. (5) and (19)] for the Co films follow very closely the
respective quantities found with the PT approach [Eqs. (10)
and (21)]; see Figs. 1 and 2. Thus the PT formulation is
valid for these films and it will be used in the following
discussion. The mean value of the MCA energy obtained for
the Co film, around 0.2 meV (per surface atom) or 0.1 meV
for each Co surface, well agrees with the mean contribution
of around 0.17 meV from the Co surface (the Co/vaccum
interface) which can be derived from the results of the ab
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FIG. 3. MCA energy EMCA and its spin-pair contributions E↓↓
MCA,

E↑↑
MCA, E↓↑

MCA + E↑↓
MCA = 2E↓↑

MCA obtained for the (001) fcc Co(NCo

ML) film with the PT.

initio calculations for the MCA energies of the Co/Cu(001)
and Cu/Co/Cu(001) fcc systems [30]. A very similar ab initio
result, with the mean MCA energy of 0.35 meV for the (001)
fcc Co slab, was obtained in another DFT calculation [61],
while a slightly higher mean value of 0.5 meV is reported in

Ref. [13] (note the opposite sign convention for the MCA en-
ergy used in Refs. [30,61]). The results found for the Co(NCo

ML) film (Figs. 2 and 3) show that the MCA energy and
the AOM oscillate with increasing the Co thickness NCo in
similar way, with the dominant oscillation period close to
2 ML. The magnetic anisotropy oscillations with the 2 ML
period have been predicted theoretically in the previous TB
[33] and ab initio calculations [13,30,61], and later confirmed
experimentally for Co films on vicinal Cu substrate [28].

The oscillations of the MCA energy of the (001) fcc Co
film have been analyzed in detail in Ref. [33] and have been
shown to come mainly from the pairs of QW states which
have wave vectors in the vicinity of the � point [k = (0, 0)]
in the two-dimensional BZ and are degenerate at this point.
Their energies move with increasing the Co thickness and,
according to Eq. (11), a pair of such states gives a large
contribution to EMCA when one of them is above and the
other below the Fermi energy εF for k close to �. These
states originate from the minority-spin bulk d band of the �5

symmetry and are composed of the yz and xz orbitals mainly.
The periods of MCA energy oscillations are determined by the
extremal dimensions kz0 of the three-dimensional Fermi sur-
face [31–33], in particular, at the high-symmetry k = (kx, ky )
points, in a similar way as the oscillation periods of in-
terlayer exchange coupling in FM/NM/FM structures [34].

FIG. 4. Energy bands εb
n↓(k, kz ) along the [(a)–(c)] �X and [(d)–(f)] XW lines in the three-dimensional BZ for bulk fcc [(a), (b), (d), and

(e)] Co and [(c) and (f)] Pd. The extremal dimensions kz = kz0 of the Co Fermi surface that correspond to the 2.12 ML, 4.12 ML, and 5.15 ML
periods are marked.
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FIG. 5. MCA energy (squares) for the (001) fcc Co(NCo ML)
film, calculated with the PT, and its approximations (circles) obtained
with the original Bruno and van der Laan relations, Eqs. (40) and
(39), respectively.

These specific values of kz = kz0 correspond to the locations
where the energy bands εb

nσ (k, kz ) of bulk Co cross the Fermi
energy as marked in Fig. 4. Since the applied TB model
reproduces the bulk band structure very accurately the same
applies to the oscillation periods determined with the extremal
dimensions of the respective Fermi surface. In the present
case, the extremal dimension for the relevant sheet of the
three-dimensional Fermi surface at k = � is kz0 = 0.528 2π

a
which gives the exact oscillation period of 2.12 ML [33].
The variation of the MCA energy also includes the second
minor oscillatory term with the oscillation period of 5.15 ML
which comes the minority-spin QW states that originate from
the Co bulk band with the zx symmetry on the XW line in
the three-dimensional BZ [Fig. 4(d)]. These QW states are
close to the M point at k = (k′

x, k′
y) = (1, 1)(π/a2d) as well

as three other equivalent points at the corners of the square
two-dimensional BZ. Here, the wave vectors are expressed in
the rotated frame of reference with the x′ and y′ axes along the
(110) and (110) directions, respectively, while the original x
and y axes are oriented along the (001) and (010) directions.

The MCA oscillations come almost entirely from the
minority-spin diagonal contribution E↓↓

MCA (Fig. 3) which
also determines the minority-spin term of the anisotropy
�〈Lζ 〉↓tot,Co = −(4/ξCo)E↓↓

MCA of the total Co orbital moment

while its majority-spin term �〈 Lζ 〉↑tot,Co = (4/ξCo)E↑↑
MCA [see

Eqs. (35), (36) for the pure Co film] is virtually independent
of the Co thickness; Fig. 2. As a result, the oscillatory part
of the MCA energy is accurately reproduced by both the sum
of the two terms �〈Lζ 〉↓tot,Co + �〈Lζ 〉↑tot,Co = �〈Lζ 〉tot,Co, i.e.,

the AOM of Co, and their difference �〈Lζ 〉↓tot,Co − �〈Lζ 〉↑tot,Co,
with the scaling factor of 4/ξCo. Thus the Bruno relation (40)
and the van der Laan relation (39) are very well satisfied up
to a constant shift for the pure Co film if the variations of the
MCA energy, the AOM and its spin terms with increasing the
Co thickness are concerned; see Fig. 5. The small difference
between the predictions of the two relations reflects the almost
negligible contribution of the majority-spin band to the orbital
moment.

FIG. 6. Oscillatory term (including the constant part) of the to-
tal orbital moment (per surface atom) along the magnetization M,
calculated with the PT, and the respective terms of the spin-up
and spin-down band contributions to this moment for the (001)
fcc Co(NCoML) film with M||z (open symbols) and M||x (closed
symbols). The plots are obtained by subtracting the linear term bNCo

with b = 0.1030 h̄ from the moment 〈Lζ 〉tot,Co and the terms bσ NCo

with b↓ = 0.1122 h̄ and b↑ = −0.0092 h̄ from its spin components
〈Lζ 〉σ

tot,Co.

The finite orbital moments due to the SOC are present in
all Co atomic layers and differ significantly from their bulk
value only very close to the Co film surfaces (cf. Sec. III D).
Thus the spatial distribution of the AOM is strongly localized
at the surfaces, in a similar way, as reported for Fe films
[16]. Since the total orbital moment 〈Lζ 〉tot,Co of the Co film
grows almost linearly with increasing the film thickness, a
linear term bNCo, with parameter b representing the atomic
orbital moment in bulk fcc Co (independent of the magneti-
zation direction ζ in the leading order of the SOC), can be
subtracted from 〈Lζ 〉tot,Co to investigate the oscillations of this
moment separately for specific orientations ζ of magnetiza-
tion. The remaining part cζ + 〈Lζ 〉osc

tot,Co of the total orbital
moment (Fig. 6) has two terms. The constant term cζ is larger
for the in-plane direction of the magnetization than for its
out-of-plane direction, thus leading to the negative AOM, as
seen in Fig. 2. The other term 〈Lζ 〉osc

tot,Co oscillates with the 2
ML period for the out-plane orientation of magnetization (the
z direction) and has smaller oscillations with period of around
5 ML for its in-plane direction (along the x axis) while the
difference between the oscillatory terms 〈Lζ 〉osc

tot,Co for the two
magnetization directions gives the oscillatory part of the full
AOM �〈L〉tot,Co.

This interesting finding is the result of the symmetry of the
QW states which lead to the oscillations of the MCA energy
and the AOM. In particular, the pairs of the minority-spin
states close to the � point that are responsible for the dominat-
ing 2 ML oscillatory term are built of the yz and zx orbitals.
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As a result, they contribute to the MCA energy and the orbital
moment only for the out-of-plane magnetization direction
(ζ = z) since the respective matrix elements 〈μ↓|L · S|ν↓〉 =
〈μ↓|Lζ Sζ |ν↓〉 = − 1

2 〈μ|Lζ |ν〉 and 〈μ|Lζ |ν〉 vanish for the in-
plane direction (ζ = x, and also for ζ = y). Indeed, the two
orbitals can be represented as |yz〉 = i√

2
(|2,−1〉 + |2, 1〉) and

|zx〉 = 1√
2
(|2,−1〉 − |2, 1〉) by the eigenstates |L, mL〉 of L2

and Lz with the orbital number L and the magnetic number
mL. Accordingly, the matrix elements 〈μ|Lζ |ν〉 are finite for
Lζ = Lz with μ = yz, ν = zx and μ = zx, ν = yz, and van-
ish for Lζ = Lx = (L+ + L−)/2 (or Lζ = Ly) since the states
L+|L, mL〉 ∼ |L, mL + 1〉 and L−|L, mL〉 ∼ |L, mL − 1〉 with
mL = ±1 have even magnetic numbers (−2, 0, or 2) so that
L+|ν〉 is orthogonal to |μ〉 for any combination of μ, ν =
yz, zx.

On the other hand, the minority-spin QW states |nk ↓〉 with
k close to the M point that cross the Fermi energy at regularly
spaced Co thicknesses with the period of 5.15 ML [33] are
built mainly of the zx orbital, for the M points at kx = ±2π/a,
ky = 0, or the yz orbital for the equivalent points at kx = 0,
ky = ±2π/a (i.e., the corners of the two-dimensional BZ at
k′

x = ±π/a2d, k′
y = ±π/a2d). According to the band structure

of bulk Co shown in Fig. 4(d), a QW state |nk ↓〉 derived from
the minority-spin bulk band with the zx symmetry (mL = ±1)
close to the Fermi level can couple to other QW minority-spin
states |n′k ↓〉 built of either the 3z2 − r2 orbital (with small
addition of s and z components) with mL = 0 or the xy orbital
with mL = ±2. However, such a coupling is finite only for
the operator Lx = (L+ + L−)/2 which changes the magnetic
number mL by ±1 while the matrix elements of Lz vanish
for both pairs of the QW states. Thus the matrix elements
of the operators L · S (reducing to − 1

2 Lζ for states with the
minority spin) and Lζ between such QW states |nk ↓〉 and
|n′k ↓〉 with k close to M are finite for the in-plane direction of
magnetization (ζ = x) but vanish for its out-of-plane direction
(ζ = z) which explains why the 5.15 ML period oscillations
of the orbital moment, calculated with Eq. (21), are present
only for the in-plane magnetization direction.

In this way, the AOM oscillations due to the QW states
which come from the vicinities of the � and M points, can be
separated in the orbital moment of the Co film since only one
type of the QW states manifests itself for specific orientation
ζ of magnetization, as an oscillatory variation of the orbital
moment 〈Lζ 〉tot,Co with the respective oscillation period, 2 ML
for ζ = z and 5 ML ζ = x; see Fig. 6.

Let us also note that the oscillation amplitudes of the MCA
energy and the total orbital moment in the Co film, both
calculated per surface atom, decay slowly with increasing
the film thickness. If the average atomic moment 〈Lζ 〉Co =
〈L〉tot,Co/NCo (per atom in the film volume) is considered, its
oscillations are additionally damped by 1/NCo factor.

B. Co/Pd bilayers

1. Magnetic anisotropy: surface, interface, and volume terms.
Comparison with experiment

The MCA energy of the Co(NCo ML)/Pd(8 ML) bilayer
is negative (Fig. 1) and thus promotes the out-of-plane ori-
entation of magnetization. It counteracts the shape anisotropy

which favours the in-plane magnetization direction and pre-
vails for thicker Co layers as the magnetic dipole-dipole
energy (per surface atom) grows linearly with increasing NCo.

Apart from the shape anisotropy, the total anisotropy en-
ergy in Co/Pd layered systems can include another positive
volume term which is the part of the MCA energy due to
the tetragonal distortion of the Co fcc lattice resulting from
the lattice mismatch between Co and Pd [62]. Such a volume
MCA term, linear in the Co thickness, is found, e.g., in the
ab initio calculations for a (111) fcc Co/Pd superlattice [21]
(note the MCA energy is defined with the opposite sign in
Refs. [21,39,41,42]). For the Co/Pd bilayer, the strain due to
the lattice distortion can gradually relax with increasing the
Co thickness [62] which would make the description of the
MCA even more complex. Thus, for the sake of simplicity,
the effect of the lattice mismatch is not taken into account in
the present calculations so that this investigation is focused,
in fact, on the parts of the MCA energy, the orbital moments
and the AOM that come from the Co surface and the Co/Pd
interface (the same applies to the Co/Pt bilayer discussed in
Sec. III C).

The MCA contribution from the Co/Pd interface can be
estimated by subtracting, from the MCA energy of the Co/Pd
bilayer, the Co surface contribution, calculated as half the
MCA energy of the Co film. Thus we obtain the mean value of
the Co/Pd interface contribution equal to around −0.25 meV
(per surface atom) which can also be expressed as −0.64
erg/cm2 (using the experimental value of a = 3.55 Å for fcc
Co [63]). In experiment, it has been observed [64] that while
the volume term of Co/Pd multilayers strongly depends in
their surface orientation, the Co/Pd interface term is very
similar for different orientations and equal to −0.65 erg/cm2,
very close to the theoretical value presently obtained.

2. Intraband contribution to MCA energy

The MCA energies obtained with the FT and PT formula-
tions [Eqs. (5) and (10), respectively] are very close to each
other also for the Co/Pd(8 ML) bilayers (Fig. 1) so the results
of the PT approach can be used to analyze the MCA energy of
this system. The intraband part of this energy, given the sum of
the diagonal terms, with (nσ ) = (n′σ ′), in the PT expression
(11), is finite for the Co/Pd bilayers due to the absence of the
inversion symmetry, as argued in Sec. II A. The inclusion of
the diagonal terms is, in fact, vital to obtain the correct value
of the MCA energy. Indeed, the intraband part of this energy,
coming from the contribution from the first-order corrections
ε (1)

nσ of the state energies to the second-order correction �(2),
largely cancels the interband (off-diagonal) term of the MCA
energy, coming directly from the second-order corrections
ε (2)

nσ , so that the resultant MCA energy has much smaller
magnitude than each of the two contributions; see Fig. 7.
However, it is the interband term that it is mainly responsible
for the oscillations of the MCA energy, which confirms the
role of the pairs of states in leading to the MCA oscillations,
as previously identified in Refs. [31–33] for the Co films and
the symmetric Co/Pd/Co trilayers, i.e., the systems with the
inversion symmetry where the intraband term of the MCA
energy is absent. A more detailed analysis also shows that
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FIG. 7. Intraband and interband parts of the MCA energy which
come, respectively, from the diagonal and off-diagonal terms in
Eq. (11) for the (001) fcc Co(NCo ML)/Pd(8 ML) bilayer within the
PT.

the contribution from degenerate states [which formally con-
tribute to both the diagonal and off-diagonal terms of �(2)

in Eq. (11)] is negligible for the applied number N2D of k
points and is expected to vanish in the limit N2D → ∞ since
the degenerate states present on the high-symmetry lines of
the BZ cross the Fermi level at discrete number of k points.
Thus the intraband part of the MCA energy for the Co/Pd
bilayers comes from nondegenerate states with energies very
close to εF and wave vectors at or very close to the Fermi
surface (forming lines in the two-dimensional BZ) due to the
presence of the factor f ′

0(εnσ (k)) in the diagonal terms of �(2).
It is also seen in Fig. 7 that while the MCA energy tends to a
constant value with increasing the Co thickness, its intraband
and interband terms are not exactly constant since both parts
have contributions which are roughly linear in the investigated
range of the Co thickness but fully cancel out.

3. Spin-pair and element-pair terms of MCA energy

It is found within the PT that unlike for the Co film the
MCA energy of the Co/Pd bilayer has large contributions
Eσσ ′

MCA from pairs of states |nkσ 〉 and |n′kσ ′〉 with all four
combinations of spins σ and σ ′ (Fig. 8). Also, all the spin-
pair contributions to the MCA energy oscillate strongly with
increasing the thickness of the Co layer but the oscillations
cancel out largely once these contributions are summed up
so that the resulting total MCA energy oscillates with a
much smaller amplitude. The variations of Eσσ ′

MCA(NCo) in-
clude oscillations with different periods which correspond to
the extremal dimensions kz0 of the three-dimensional Fermi
surface at the k = � and M points of the two-dimensional
BZ; the identified exact periods are 2.12 ML (at �) and 5.15
ML (at M) for minority spin [33] as well as 4.12 ML (at �)
for majority spin [65]; see Fig. 4. The oscillations with the
respective periods not only are present in the diagonal (↓↓ and
↑↑) spin-pair contributions to the MCA energy, but also occur

FIG. 8. MCA energy EMCA and the spin-pair contributions Eσσ ′
MCA

for the (001) fcc Co(NCo ML)/Pd(8 ML) bilayer, obtained with the
PT. The periods of the QW states contributing to the oscillations are
marked.

in the spin-flip (↓↑ and ↑↓) contributions (Fig. 8) since the
relevant states spanning over the whole bilayer are built of the
QW states in Co hybridized with d states in Pd and, as a result,
they can strongly couple, via the SOC of Pd, to other states of
both spins, with large d component in Pd and energies close
to the Fermi level (a similar mechanism was previously found
[29] for Co/Cu bilayers where d states in Co, hybridized
with sp QW states in Cu, mediate in the emergence of MCA
oscillations versus the Cu thickness). However, the oscillatory
MCA terms with periods other than the shortest one cancel
out largely in the sum of the spin-pair contributions so that
the resulting energy EMCA(NCo) has oscillations with a clear
period close to 2 ML similar to the MCA energy of the pure
Co film.

To understand why such a cancellation takes place we
first decompose the MCA energy into the XY parts EXY

MCA

and examine their spin-pair terms EXY ,σσ ′
MCA ; Figs. 9 and 10.

It is found that while the 2 ML oscillations come from both
the XY = CoCo and CoPd (PdCo) parts of the MCA energy
they are nearly absent in the XY = PdPd part, and all its
spin-pair terms EPdPd,σσ ′

MCA , which means that the contribution
from the states in Pd that hybridize with the 2 ML period
QW states in Co is small. The oscillations of the spin-pair
terms Eσσ ′

MCA with the two longer periods, 4.12 and 5.15 ML,
come mainly from the Pd part of the Co/Pd bilayer, since
they are present only in the variations of EXY ,σσ ′

MCA (NCo) for
XY = PdPd. Since d states of both spins are present in Pd
near the Fermi level, a minority-spin state |nk ↓〉 composed
of the 5.15 ML period QW state in Co hybridized with a
state in Pd can lead to similar contributions when it couples
to other minority- and majority-spin states |n′kσ ′〉 with large
amplitude in Pd. However, these contributions to the MCA
energy are of the opposite signs for σ ′ =↓ and σ ′ =↑ so
they oscillate in antiphase. Indeed, the minority-spin state of
the 5.15 ML period is built of zx orbitals, with mL = ±1,
so when the SOC couples this state to another state with the
same mL = ±1 the SOC operator L · S is effectively reduced
to LzSz as the matrix elements of L+ and L− vanish. Thus,
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FIG. 9. The XY contributions to the MCA energy from the SOC
in the X and Y parts of the (001) fcc Co(NCo ML)/Pd(8 ML) bilayer,
obtained with the PT.

if the two states have the same, minority, spin, the coupling
(matrix element of Hso) is finite only for ζ = z magnetization
direction (in this case LzSz = LzSζ ), while if their spins are
different the coupling is finite for only ζ = x since then we
have LzSz ∼ Lz(S′

+ − S′
−). As a result, such two pairs of states,

one with σ = σ ′ =↓ and the other with σ =↓, σ ′ =↑, lead to
the contributions of opposite signs in the MCA energy defined
as the difference of �(2)(M̂) for the two magnetization direc-
tions, ζ = z and ζ = x, in Eq. (10). The situation is reversed,
if the minority-spin state |nk ↓〉 of the zx symmetry is coupled
to a state |n′kσ ′〉 built of the orbitals with mL = 0 or mL = ±2,
since in this case the finite contribution to �(2) comes from the
pair of states with the same spins for ζ = x only and the pair
with the opposite spins only for ζ = z. However, this again
leads to respective contributions with opposite signs for σ ′ =↓
and σ ′ =↑ in the MCA energy. Similar conclusions can also
be drawn for the contributions from the 4.12 ML period QW
state in Co with majority-spin which can couple to states of
minority and majority spins with large amplitude in Pd. As a
result, the oscillations of the different spin-pair contributions
in EPdPd

MCA largely cancel out so that this term varies only slightly
with increasing the Co thickness (Fig. 10).

Thus it is the contribution ECoCo
MCA to the MCA from the

SOC in Co and, for NCo < 10 ML, also the mixed contri-
bution ECoPd

MCA + EPdCo
MCA = 2ECoPd

MCA , due to the SOC in Co and
Pd, that are almost entirely responsible for the 2 ML period
oscillations of the total MCA energy with increasing NCo.
The analysis done in Fig. 10 reveals that it is mainly the
↓↓ contributions to the terms ECoCo

MCA and ECoPd
MCA + EPdCo

MCA from
the pairs of minority-spin states, and, to a lesser extent, the
↓↑ and ↑↓ contributions to these terms from pairs of states
with opposite spins, that give rise to the obtained variation
of EMCA(NCo) while the ↑↑ contributions from the pairs of
majority-spin states are small and almost independent of NCo.

FIG. 10. Spin-pair terms (circles) of the XY contributions
(squares) to the MCA energy from the SOC in the X and Y parts
of the (001) fcc Co(NCo ML)/Pd(8 ML) bilayer; (a) XY =CoCo,
(b) XY = CoPd, PdCo, and (c) XY = PdPd. The results are obtained
with the PT.

Although the oscillations of EPdPd
MCA are almost canceled out,

the XY = PdPd part of the MCA energy, which originates
from the large SOC of the Pd layer, is still the largest, and
clearly negative, contribution to this energy. This term is finite,
since the electrons with majority and minority spins have dif-
ferent wave functions in the Pd part of the bilayer. The reason
for this difference is that they are subject to different boundary
conditions at the Co/Pd interface due to the different effective
potentials in the ferromagnetic Co part [32] (in the absence
of the adjacent Co layer, the MCA energy of a paramagnetic
Pd slab, with identical spin-down and spin-up energy bands,
vanishes since its spin-pair terms contributions, though finite,
cancel completely).

104403-14



MAGNETIC ANISOTROPY AND ORBITAL MAGNETIC … PHYSICAL REVIEW B 105, 104403 (2022)

FIG. 11. AOM (per surface atom) in (a) Co and [(b) and (c)]
Pd parts of the (001) fcc Co(NCo ML)/Pd(8 ML) bilayer obtained
with [(a) and (b)] the FT approach and [(a) and (c)] the PT and the
contributions to this AOM from the minority-spin and majority-spin
energy bands.

For the same reason, the total orbital moment in Pd and,
consequently, the AOM in Pd are finite (Fig. 11) since the
moment 〈Lζ 〉tot,Pd = 〈Lζ 〉↓tot,Pd + 〈Lζ 〉↑tot,Pd calculated with the

PT is proportional to the difference of the ↑↑ and ↓↓ con-
tributions to the sum of the PdPd and PdCo components of
�(2) [Eqs. (35) and (36)]; for a freestanding Pd slab its orbital
moment is proportional to �

(2)
↑↑ − �

(2)
↓↓ and vanishes. Another

consequence of the spin-dependent boundary conditions due
to the presence of the ferromagnetic Co layer is the small spin
magnetic moments induced in the Pd atomic layers closest to
the Co/Pd interface, 0.22 μB in the first Pd layer and 0.06 μB

in the second layer, as presently found.

4. Validity of Bruno and van der Laan relations, and their
extensions. Anisotropy of orbital moments

Equation (31) is the relation, derived with the PT, be-
tween the sum of diagonal spin-pair (↑↑ and ↓↓) parts of
the MCA energy and the spin components of the AOM in Co
and Pd. The two terms in this relation, − 1

4ξCo[�〈Lζ 〉↓tot,Co −
�〈Lζ 〉↑tot,Co] and − 1

4ξPd[�〈Lζ 〉↓tot,Pd − �〈Lζ 〉↑tot,Pd], represent
the sums of the ↓↓ and ↑↑ contributions to the ECoCo

MCA +
ECoPd

MCA and EPdPd
MCA + EPdCo

MCA components of the MCA energy,
respectively. In the first term, the difference of the two spin
components of the AOM in Co can be replaced, to a good
approximation, by the full AOM in Co (i.e., the sum of these
AOM components) since the majority-spin term of the AOM
in Co is much smaller than the minority-spin one and almost
independent of the Co thickness (Fig. 11).

In an attempt to establish an approximate relation between
the full MCA energy and the AOM we first need to add
the spin-flip (↓↑ and ↑↓) parts of this energy to both sides
of Eq. (31) so that its left-hand side becomes EMCA. The
CoCo and CoPd components of these spin-flip MCA terms,
or in other words, the spin-flip contributions to the CoCo and
CoPd components of EMCA, vary much weaker with increas-
ing the Co thickness than the corresponding ↓↓ contributions
while the ↑↑ contributions are nearly thickness-independent
(Fig. 10). Thus adding the ↓↑ and ↑↓ terms of ECoCo

MCA + ECoPd
MCA

to the first term on the right-hand side of Eq. (31) does not
change significantly its oscillatory pattern and results mainly
in a constant shift of this term. The spin-pair contributions
to the EPdPd

MCA + EPdCo
MCA part of the MCA energy, both diagonal

(↓↓, ↑↑) and spin-flip (↓↑, ↑↓) terms, have oscillations of
a large amplitude. However, when all these spin-pair terms
are summed up, the resulting component EPdPd

MCA + EPdCo
MCA of the

MCA energy has much weaker dependence on the Co thick-
ness, with small oscillations coming from its PdCo part and
even weaker variation of the PdPd part since the oscillations
of its spin-pair contributions almost cancel out as explained
above. Thus the sum EPdPd

MCA + EPdCo
MCA is effectively replaced

by a constant in the constructed relation between the full
MCA and the AOM. In this way, we finally conclude that the
oscillations of the MCA energy versus the Co thickness are
well approximated by the AOM in the Co part of the Co/Pd
bilayer:

EMCA(NCo) ≈ −w 1
4ξCo�〈Lζ 〉tot,Co + c (45)

where c is a constant shift. The phenomenological factor w,
presumably larger than 1, is introduced here to account for the
neglected terms of the MCA energy oscillations coming fom
EPdCo

MCA as well as the spin-flip terms of ECoCo
MCA and ECoPd

MCA .
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FIG. 12. Exact MCA energy (squares) for the (001) fcc Co(NCo

ML)/Pd(8 ML) bilayer and its approximations (circles, triangles)
obtained with the original, modified and extended Bruno relations,
Eqs. (40) and (45) (with w = 1.3, c = −0.5 meV) and (41), as well
as the original and extended van der Laan relations, Eqs. (39) and
(38). Based on the results obtained with the FT.

This Bruno-like relation, which involves the AOM in Co
only, yields a very similar oscillation pattern to the full MCA
energy with dominating oscillations of 2 ML period and the
oscillation amplitude is well reproduced with the scaling fac-
tor w = 1.3; see Fig. 12. However, a large constant shift of
around c = −0.6 meV is also needed to get good agreement
with EMCA which means that the AOM in Co, though well
represents the oscillatory variation of EMCA with the Co thick-
ness, does not well reproduce the mean value of the MCA
energy. In particular, the original Bruno relation (40), with no
shift (c = 0), gives the incorrect prediction of a positive MCA
energy, and, consequently, predicts in-plane magnetization for
any Co thickness. The same holds for the original van der
Laan relation [Eq. (39)] which gives a similar prediction as
the Bruno relation (40), in particular for the MCA oscillations,
since the majority-spin term of the AOM in Co is a few
times smaller than the minority one [Fig. 11(a)] and is almost
constant.

The approximate relation Eq. (45) does not include the Pd
orbital moment though the spin components of this moment
are present in the starting exact relation (31). According to
the above discussion, the AOM in Co well represents the
oscillatory term of ECoCo

MCA + ECoPd
MCA , while the remaining part

of the MCA energy, i.e., the sum EPdPd
MCA + EPdCo

MCA , has smaller
oscillations, especially for NCo � 10 ML. These oscillations
cannot be expressed with the AOM in Pd found with the PT as
it strongly varies with increasing the Co thickness and follows
a different oscillation pattern; see Fig. 11. However, while the
AOM in Pd obtained with the PT has large oscillations, the
exact AOM calculated with the FT oscillates weakly. Thus the

oscillation pattern of the approximated MCA energy remains
almost unaffected if the term with the AOM in Pd is added,
rather arbitrarily, in Eq. (45), with the parameters w and c
skipped, which leads to the extended Bruno formula given
by Eq. (41) with NM = Pd. This formula correctly predicts
the negative sign of the exact MCA energy for the Co/Pd
bilayers, unlike the original Bruno relation. Surprisingly, it
reproduces not only the oscillations of the MCA energy but
also its mean value with very good accuracy. However, such
an excellent agreement is specific to the Co/Pd bilayer in the
present calculation as the results the Co/Pt bilayer discussed
below show.

The extended van der Laan formula, Eq. (38), which in-
cludes, instead of the AOMs in Co and Pd, the differences of
the minority- and majority-spin terms of these AOMs, gives
prediction that differ most from the exact MCA energy, with
the incorrect positive sign, like the original Bruno and van
der Laan relations. The oscillations of the MCA energy for
the Co/Pd(8 ML) bilayer are also poorly represented by the
extended van der Laan relation, with the dominating oscil-
latory term of around 5 ML period; see Fig. 12. The reason
for this particular failure is that the spin-down and spin-up
components of the AOM in Pd, found with the FT, oscillate,
with the dominant periods of 5 and 4 ML, respectively, and
mostly in antiphase (due to opposite spins). Thus these oscil-
lations are amplified in the difference �〈Lζ 〉↓tot,Pd − �〈Lζ 〉↑tot,Pd
of these components while they largely cancel out in their
sum which defines the full AOM in Pd, used in the extended
Bruno relation. Note that the spin terms �〈Lζ 〉σtot,X of the
AOM �〈Lζ 〉tot,X calculated with the FT [Eq. (32)] are found
by decomposing the exact layer orbital moments, defined with
Eq. (19), into the spin parts. This is done by representing
each state |mk〉 (the eigenstate of H + HSO) as the sum of its
projections on the two spin subspaces and taking into account
that the operator of the orbital momentum Lζ is diagonal in
spin.

5. Oscillations of orbital moments

The oscillation periods of the AOM and their association
with electron states of a particular spin and specific wave
vectors can be identified clearly if one considers the Co and Pd
orbital moments, found with the FT, for each magnetization
direction ζ (x and z) and plots the contributions from the
regions around the three high-symmetry points, �, M, and
X [k = (k′

x, k′
y) = (1, 0)(π/a2d)], in the two-dimensional BZ;

see Figs. 13 and 14. It is found that, once the bulk-like term,
linear in the Co thickness, is subtracted from the total orbital
moment in the Co part of the bilayer, the remaining oscillatory
term varies with increasing NCo in a similar manner as for
the unsupported Co film (Fig. 6). Indeed, the orbital mo-
ment 〈Lζ 〉tot,Co along the out-of-plane magnetization direction
(ζ = z) oscillates with the period of around 2 ML while the
oscillations with a smaller amplitude and the period of around
5 ML are found for the in-plane direction (ζ = x). The 2 ML
period is present in the contribution from the region around
the � point while contribution from the vicinity of the M point
oscillates with the period of 5 ML. Further decomposition of
these contributions into the spin terms (not shown) confirms
that both periods come from the QW states of the minority
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FIG. 13. Oscillatory part of the total orbital moment (per surface atom) along the [(a) and (b)] ζ = x and [(c) and (d)] ζ = z directions
in the Co part of the (001) fcc Co(NCo ML)/Pd(8 ML) bilayer and [(a) and (c)] the contributions to this moment from the square regions
|k − ks| � 1

4 π/a2d around the high-symmetry points ks = �, M, and X in the two-dimensional BZ, and [(b) and (d)] the sum of these three
contributions (the plots are labeled respectively), all results obtained with Eq. (19) (the FT approach) The oscillation periods and the spin of
the relevant QW states are marked.

spin, as marked in Figs. 13(a) and 13(c). The minority-spin
QW states around the M point which lead to 5 ML period
oscillations of 〈Lζ 〉tot,Co for ζ = x do not contribute to the
Co orbital moment for the out-of-plane magnetization (ζ = z)
for a similar reason why they do not contribute to the orbital
moment in the Co film, as explained in Sec. III A.

The 2 ML and 5 ML periods due to minority-spin electrons
are also present in the variations of the Pd orbital moment
shown in Fig. 14. However, the variation of the orbital mo-
ment in Pd along the ζ = z magnetization direction is not
dominated by the 2 ML period oscillations as for the Co
moment though they are clearly present for the Co thick-
ness less than 10 ML. The oscillation patterns of the orbital

moment in Pd found within the FT approach [Eq. (19)] are
similar for the ζ = x and ζ = z directions, with the 5 ML
period oscillations that prevail for NCo > 10 ML (Fig. 15) and
come from electron states around the M point. It is accom-
panied by the terms, with the period of around 2 ML that
comes from the respective minority-spin QW states with k
close to �. There is also a very small contribution from the
majority-spin QW states with the 4.12 ML period close to
the � point. However, this contribution is clearly revealed
only in the spin-up term of the AOM in Pd, especially af-
ter it is compared with the respective term obtained with
the PT, oscillating very strongly with the period of 4 ML
(Fig. 11).

FIG. 14. Total orbital moment (per surface atom) along t[(a) and (b)] ζ = x and [(c) and (d)] ζ = z direction in the Pd part of the (001)
fcc Co(NCo ML)/Pd(8 ML) bilayer and [(a) and (c)] the oscillatory contributions to this moment from the square regions |k − ks| � 1

4 π/a2d

around the high-symmetry points ks = �, M, and X in the two-dimensional BZ, and (b,d) the sum of these three contributions (shifted by
constant), all results obtained with Eq. (19) (the FT approach). The oscillation periods and the spin of the relevant QW states are marked.
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FIG. 15. Total Pd orbital moment obtained with the PT [Eq. (21)]
and from Eq. (19) (the FT approach) for the (001) fcc Co(NCo

ML)/Pd(8 ML) bilayer.

Only tiny oscillatory contributions to the Co and Pd orbital
moments along the x and z directions of magnetization come
from the vicinity of the X point while virtually no oscillations
arise in the Co moment along the ζ = z direction due to the
states with k close to the M point (Figs. 13 and 14).

Although the exact orbital moment 〈Lz〉tot,Pd in Pd obtained
with Eq. (19) has oscillations of much smaller amplitude than
the Pd moment found with the PT [Eq. (21)] their oscillations
patterns are roughly similar for the both directions, ζ = x and
ζ = z (Fig. 15). Thus the origin of these oscillations can still
be investigated within the PT formulation. In particular, the
presence of the 5 ML period oscillations in the Pd moment
along ζ = x and ζ = z directions can be explained if one notes
that the operator L · S reduces to Lζ Sζ in the matrix elements
between states of the same spin which are used to express the
orbital moment in Eq. (21) within the PT. Thus the minority-
spin QW states with zx symmetry (mL = ±1), corresponding
to the 5.15 ML period, can be coupled by the SOC to other
minority-spin states with the same symmetry for the ζ = z
direction and to minority-spin states with mL = 0,±2 for the
ζ = x direction. In fact, d states with mL = 0,±1,±2 are
present in the Pd layer, close to the Fermi energy in the region
around the M point where the QW states of the 5.15 ML
period occur since there are states of such symmetries close
to εF along the XW line in bulk Pd as marked with a red oval
in Fig. 4.

The present finding that the oscillations of the Pd moment
calculated with the exact perturbed states |mk〉 (i.e., as in the
FT approach) are smaller than the ones found with the PT, can
be attributed to the fact that the pairs of unperturbed states
|nkσ 〉, |n′kσ ′〉, with closely lying energies are split by the
SOC, with minimum splitting given by the matrix element
(its absolute value) of Hso between these states. This stems
from the simple model of two-state system [66] and implies
that the exact energies of the two perturbed states are not well
described in the 2nd order of the PT if the matrix element
of Hso is larger than the difference εnσ − εn′σ ′ between the
unperturbed energies. Thus the contribution to the MCA and
orbital moments from such pairs of states is expected to be not

well approximated by the PT, especially if both states have
large amplitude in Pd so that the strong SOC in Pd leads to
large values of 〈nkσ |Hso|n′kσ ′〉. In particular, this applies to
the 5.15 ML period minority-spin QW states in Co around
the M point, which are hybridized with d states in Pd and
thus couple, within the PT, to other d states with energies also
close to εF and large amplitude in Pd. Again, this scenario
is possible as there are nearly degenerate (due to accidental
degeneracy) states, of zx and 3z2 − r2 symmetries, near the
Fermi level in bulk Pd, for the three-dimensional wave vectors
(k, kz ) with k ≈ M; see Fig. 4.

Although, for the Co/Pd bilayer, the described deficiency
of the PT description for some contributing pairs of states has
a significant effect on the oscillations of the orbital moment
in Pd both the mean MCA energy and its oscillations found
with the FT are reproduced with good accuracy by the PT.
The reason for this is that the dominating 2 ML period os-
cillations of the MCA energy calculated with the PT come
from its XY = CoCo and XY = CoPd, PdCo parts while the
XY = PdPd part of this energy oscillates much weaker (Fig.
9) and thus does not significantly affect the oscillatory pattern
of EMCA(NCo).

C. Co/Pt bilayers

The mean values of the MCA energies obtained with the
FT and PT are also quite close for the (001) fcc Co/Pt(8
ML) bilayer, being shifted by around 0.2 meV with respect
to each other; see Fig. 1. However, while the PT predicts
large oscillations of the MCA energy with increasing the Co
thickness the oscillations of EMCA(NCo) found with the FT
are much smaller and have a similar pattern, with the 2 ML
period, and a similar amplitude as for the Co film and the
Co/Pd bilayer. The fact that the MCA energy of the Co/Pt
bilayer obtained with the FT formula does not oscillate in
the way predicted by the PT, with the oscillation amplitude
strongly quenched, can be attributed to the large SOC of Pt.
Indeed, if the original SOC constant of Pt, ξPt = 0.65 eV,
is decreased threefold by taking ξPd = 0.23 eV instead, the
MCA energies obtained with the FT and PT are found to have
very similar oscillation patterns and amplitudes, being only
slightly shifted with respect to each other (Fig. 1). The MCA
energy for such modified Co/Pt bilayers, with ξPt = ξPd, is
close to the MCA energy of the Co/Pd bilayers due to the
similar electronic structure Pd and Pt metals [57].

As for the Co/Pd system, the MCA energy found for
the Co/Pt bilayer with the PT has large contributions Eσσ ′

MCA
from all four spin pairs (Fig. 16) due to the presence of d
states of both spins in the Pt part of the bilayer. The strong
SOC in Pt, compared to Co, with ξPt/ξCo ≈ 7.65, makes the
XY = PtPt part of the MCA energy its most significant term
while the XY = CoPt, PtCo parts are several times smaller
and the XY = CoCo part is negligible (Fig. 17). As a result,
the XY = PtPt part of the MCA energy not only determines
its mean value but also provides the main oscillatory term of
EMCA(NCo) found with the PT, unlike for the Co/Pd bilayer
where the respective XY = PdPd part of the MCA energy
has the oscillation amplitude smaller by around (ξPd/ξPt)2 ≈
0.125 times and thus does not dominate the oscillatory terms
coming from the XY = CoCo and XY = CoPd, PdCo parts
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FIG. 16. MCA energy EMCA and the spin-pair contributions
Eσσ ′

MCA obtained in the PT approach for the (001) fcc Co(NCo ML)/Pt(8
ML) bilayer.

of the MCA energy; cf. Fig. 9. Thus, if the MCA oscillations
coming from the XY = PdPd and XY = PtPt parts within the
PT approach are both largely quenched once the exact form
of the MCA energy is calculated with the FT, the result of
this is much more evident in the oscillatory pattern of the
MCA energy for the Co/Pt bilayer than the Co/Pd one, just
as it is found in Fig. 1. The proposed explanation of such
quenching for the Co/Pt bilayer is that the PT description
becomes inaccurate, due to the large SOC of Pt, for the MCA
contributions from pairs of closely lying states, for similar
reasons as discussed for the oscillations of the Pd orbital
moment in the Co/Pd bilayer in Sec. III B 5.

FIG. 17. The XY contributions to the MCA energy EMCA ob-
tained with the PT approach from the SOC in the X and Y parts of
the (001) fcc Co(NCo ML)/Pt(8 ML) bilayer.

FIG. 18. Total orbital moments (per surface atom) in Co and Pt
parts for the (001) fcc Co(NCo ML)/Pt(8 ML) bilayer, calculated with
Eq. (19) (the FT approach). The oscillatory term of the Co orbital
moment is shown.

These conclusions are in agreement with the results ob-
tained with the FT for the orbital moments in Co and Pt and
the respective AOM; see Figs. 18 and 19. It is found the
AOM in Co oscillates with increasing the Co thickness with
the dominating 2 ML period, in a similar way as for the Co
film and the Co/Pd bilayer; cf. Fig. 11. The 2 ML oscilla-
tions are found for the Co orbital moment along the ζ = z
direction, i.e., for the out-of-plane magnetization, while, only
faint oscillations of the moment 〈 Lζ 〉tot,Co, with the around 5
ML period, are found for the in-plane magnetization (ζ = x).
The variation of the orbital moments of Pt is quite similar for
the two magnetization directions which results in the AOM in
Pt which varies only slightly with the Co thickness, like the
AOM in Pd for the Co/Pd bilayers (Figs. 11(b) and 14), The
similar variations of 〈 Lζ 〉tot,Pt for the ζ = x and ζ = z can be
explained in the same way as for the Pd orbital moment in
Sec. III B 5.

Finally, a possible relation between the MCA energy and
the AOM is investigated for the Co/Pt bilayer. It is found
(Fig. 20) that, like for the Co/Pd bilayer, the original Bruno
and van der Laan relations quite well reproduce the dominant,
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FIG. 19. AOM �〈 Lζ 〉tot,X (per surface atom) and its spin terms
in (a) Co and (b) Pt parts for the (001) fcc Co(NCo ML)/Pt(8 ML)
bilayer, calculated with the FT [Eqs. (32) and (19)].

2 ML period, term in the oscillation pattern of the MCA
energy, provided the scaling factor of around 2 is applied.
However, the mean value of EMCA(NCo) is not well predicted
by neither of these relations unless sizable shifts are intro-
duced, in particular, the shift of −1.2 meV is needed in the
modified Bruno relation, Eq. (45). The values of EMCA ap-
proximated by the original Bruno and van der Laan relations
are too small since these relations, given by Eqs. (40) and
(39), result from considering the XY = CoCo and CoPt parts
of the MCA energy only [see Eqs. (35) and (36)], and do not
take into account the dominating XY = PtPt part of the MCA
energy.

The extension of the Bruno relation, where the AOM in Pt
is included alongside the AOM in Co, leads to the correct sign
of the approximated MCA energy which is clearly negative
however its magnitude is too large, by roughly a factor of 2,
compared to the exact MCA energy found with the FT. The
oscillation pattern of the MCA energy is not well reproduced

FIG. 20. Exact MCA energy (squares) for the (001) fcc Co(NCo

ML)/Pt(8 ML) bilayer and its approximations (circles, triangles)
obtained with the original, modified and extended Bruno relations,
Eqs. (40) and (45) (with w = 2, c = −1 meV) and (41), as well as
the original and extended van der Laan relations, Eqs. (39) and (38).
Based on the results obtained with the FT.

the extended Bruno relation (41) though oscillation amplitude
is of a similar order.

The reason why the inclusion of the AOM in Pt has a mod-
erate effect on the oscillation amplitude of the approximated
MCA energy, despite the large SOC of Pt, is that the spin-up
and spin-down terms of this AOM oscillate roughly in the
same way but in antiphase (Fig. 19) so that their oscillations
largely cancel out when the two terms are added. At the same
time, the mean value of the AOM in Pt is big enough to
produce large shift, of more than -2 meV, in the approximated
MCA energy if the term − 1

4ξPt�〈Lζ 〉tot,Pt is included in the
extended Bruno relation.

The extended van der Laan relation (38), including the
differences of the spin-down and spin-up terms in AOMs of
both Co and Pt, incorrectly predicts the mean value of EMCA,
with the positive sign and magnitude several times larger
than the exact MCA energy. The reason for this failure is
that this relation, though reproduces the spin-diagonal (↓↓
and ↑↑) terms of the MCA energy, lacks the spin-flip MCA
terms which are vital to obtain the negative value of the mean
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MCA energy; see Fig. 16. Nevertheless, the oscillations of
EMCA(NCo) with the 2 ML period are roughly reproduced by
this relation but far less accurately than by the original Bruno
and van der Laan relations, and only for NCo < 15 ML while
the predicted oscillation amplitude is too large by a factor of 2.

D. Layer contributions to MCA energy and layer
orbital moments

While the PT expression for the MCA energy determines
the contributions that come from the SOC in pairs of layers
[Eq. (13)], the MCA contributions from individual layers can-
not be uniquely defined. One possible method is summing the
layer pair contributions E (ll ′ )

MCA (which are symmetric in l , l ′)
over one of layer indices, e.g., l ′,

E (l )
MCA =

∑
l ′

E (ll ′ )
MCA. (46)

These layer MCA contributions, defined within the PT, are
real since the same is true for each term E (ll ′ )

MCA (this can
be proved by taking a complex conjugate of Eq. (14) and
exchanging the index pairs nσ and n′σ ′). An equivalent defi-
nition of the MCA layer contributions has been proposed and
applied in Refs. [21,39,41,42].

Alternatively, the MCA energy can decomposed using the
layer-projected density of states (DOS) and this method has
been used, e.g., in Refs. [2,12,13,32] as well as presumably
also in Refs. [1,30] where layer-resolved band-energy contri-
butions to the MCA energy are reported. The layer-projected
density of states (DOS)

nl (ε) =
∑
mk

pml (k)δ(ε − εm(k)) (47)

includes, for each perturbed state |mk〉 = |nσk〉per, the sum
pml (k) = ∑

μσ ′ |〈klμσ ′|mk〉|2 of its projections onto Bloch
basis states |klμσ ′〉 in layer l , which is the probability that
the electron occupying this state is in layer l . Integrating
nl (ε) with the function g0(ε) = g(ε; εF = εF0) gives the layer
contribution to the perturbed grand potential

�l =
∑
mk

pml (k)g0(εm(k)), (48)

which can be further used to define the layer contribution to
the MCA energy within the FT approach as follows

Ẽ (l )
MCA = �l (M̂⊥) − �l (M̂||). (49)

The sum of Ẽ (l )
MCA over l yields the full MCA energy EMCA

since the sum of pml is equal to 1. This specific decomposition
refers to the FT definition (9) of the MCA energy with the
grand potential at εF = εF0, which leads the PT formula (10)
for the MCA energy. The latter formula is also used to define
the MCA layer contributions E (l )

MCA in the first method so
that the direct comparison of the results found with the two
methods that lead the same total MCA energy can be done
once Ẽ (l )

MCA are represented within the PT.
The PT expression for the layer contribution �l can be

conveniently found [2] using the Dyson expansion of the per-
turbed Green function G = G0 + G0HsoG0 + G0HsoG0HsoG0

which includes the unperturbed Green function G0 and leads

to the corresponding expansion for �l = �
(0)
l + �

(1)
l + �

(2)
l .

As shown in Ref. [2], the first-order layer-projected term �
(1)
l

vanishes, like the total first-order term �(1), while the second-
order layer-projected term has the following form:

�
(2)
l = 1

N2D

∑
k∈BZ

∑
σ,σ ′

∑
n1,n2,n3

∑
μ

(aσ
n1lμ)∗aσ

n3lμ

× J (εn1σ , εn2σ ′ , εn3σ )

×〈n1kσ |Hso|n2kσ ′〉 〈n2kσ ′|Hso|n3kσ 〉, (50)

where the dependence on k is partly skipped for sake of
clarity. The function

J (ε1, ε2, ε3) = 1

ε2 − ε1

[
g0(ε2)−g0(ε3)

ε2 − ε3
− g0(ε1) − g0(ε3)

ε1 − ε3

]
.

(51)

is fully symmetric under any permutation of its three argu-
ments which can be clearly seen after rewriting the above
definition as the sum of three terms, with the prefactors g0(εi),
i = 1, 2, 3. The form of J (ε1, ε2, ε3) given in Eq. (51) is,
however, more suitable in computations as it readily allows
for deriving the power expansions if two or three arguments
of this function are close to each other. The formula for �

(2)
l

is presently written in a simpler form which is more compact
than the original expression given in Ref. [2]. This form also
allows for its straightforward application in ab initio calcu-
lations using a localized orbital basis, with aσ

nlμ(k) being the
projections of the electron states |nkσ 〉 onto the basis states μ

in layer l . With the second-order terms �
(2)
l found, the MCA

contribution from the lth layer can determined within the PT
approach as follows:

Ẽ (l )
MCA = �

(2)
l (M̂⊥) − �

(2)
l (M̂||). (52)

While both methods of decomposing the MCA energy
within the PT theory provide the layer contributions [Eqs. (46)
and (52)] that, when summed up, give the same total value of
EMCA their predictions can be significantly different. In par-
ticular, the results obtained for the (001) fcc Co(8 ML)/Pd(8
ML) bilayer (Fig. 21) show that although each method pre-
dicts that most significant MCA contributions to the MCA
energy come from the immediate vicinities of the Co surface
and Co/Pd interface, the specific patterns of these contri-
butions are different. Among the MCA layer contributions
E (l )

MCA, found with Eq. (46), the largest one comes from the
Pd interface layer. It is negative and its magnitude is at least
three times larger than contributions from any other layer, both
in Pd and Co parts of the bilayer. A similar pattern with the
largest and dominant MCA contribution from the Pd interface
layer, though of the opposite sign, has been found for (001)
fcc Fe/Pd multilayers in the ab initio calculations [42], while
for the (111) fcc Co/Pd multilayers [21], a large and negative
layer MCA contribution comes from the Co interface layer
while the contribution from Pd interface layer is much smaller.

The spatial distribution of the MCA energy is different
from E (l )

MCA if its decomposition is based on resolving the
DOS into the layer-projected terms. In particular, the resulting
contributions Ẽ (l )

MCA from the neighboring Co and Pd layers
at the Co/Pd interface are also negative, but their values are
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FIG. 21. Layer contributions to the MCA energy for the (001)
fcc Co(8 ML)/Pd(8 ML) bilayer obtained in the PT as (a) E (l )

MCA with
Eq. (46) and (b) Ẽ (l )

MCA with Eq. (52).

almost equal to each other and around 2.5 times smaller than
the Pd interface contribution E (l )

MCA obtained with the first
method. The two methods also give different predictions close
to the Co surface. The significant contributions E (l )

MCA come
from the first three Co layers, with similar positive values for
l = 1, 2 and a negative value for l = 3. The layer contribu-
tions Ẽ (l )

MCA obtained with the second method are much larger
and form a characteristic pattern close to the Co surface, with
a positive contribution from the very surface layer (l = 1) and
a negative one from the second Co layer (l = 2) while the
rapidly decaying oscillations of Ẽ (l )

MCA with 2 ML period are
also present inside the Co part of the bilayer. A similar pattern
of the layer-projected MCA contributions close to the Co
surface, oscillating with the same period, has also been found
for the Co films in the DFT calculations in Refs. [13,30]. In
particular, the presently obtained contribution of 0.22 meV
from the surface Co layer in the Co(8 ML)/Pd(8 ML) bilayer
is very close to the Co surface layer term of 0.18 meV reported
for a Co film on the (001) fcc Cu substrate in Ref. [30] (Fig. 4
therein).

It is also found that, for atomic layers l in Co and the Pd
interface layer, the main contributions to E (l )

MCA defined with

Eq. (46) come from the on-site term E (ll ′ )
MCA from the same

layer, l ′ = l , and the two layer-pair terms E (ll ′ )
MCA, of the sign

opposite to the on-site term, from the nearest-neighboring

layers l ′ = l − 1 and l ′ = l + 1; see Fig. 22(a). An exception
is the surface Co layer l = 1 for which largest layer-pair
terms come from layers l ′ = 2 and 3, while the on-site term
(l ′ = l = 1) is negligible. A similar pattern of the E (ll ′ )

MCA terms
at the Co surface layer l has been recently found for a Co(5
ML) film with hcp-like stacking in ab initio calculations [50].
The layer-pair contributions E (ll ′ )

MCA do not vanish for interior
Co layers l , though they almost fully cancel out for such layers
once they are summed up over l ′ to obtain E (l )

MCA with Eq. (46).
An important conclusion is that the main contribution to the
XY = CoPd, PdCo parts of the MCA energy come from the
pair of the Co and Pd atomic layers at the very interface
[l = 8, l ′ = 9 or l = 9, l ′ = 8 in Fig. 22(a)] though this con-
tribution does not account for the whole term ECoPd

MCA = EPdCo
MCA

and minor contributions from other pairs of layers l , l ′, one
in Co and the other in Pd, have to be included to accurately
reproduce ECoPd

MCA shown in Fig. 9.
The decompositions of the MCA energy into layer con-

tributions can be compared with the distribution of orbital
moments 〈Lζ 〉l at different layers l for ζ = x and ζ = z direc-
tions of magnetization. These layer moments as well as their
difference �〈Lζ 〉l = 〈Lz〉l − 〈Lx〉l defining the layer terms of
the AOM are shown for the Co(8 ML)/Pd(8 ML) bilayer in
Fig. 23. The moments are found be significantly different
from the bulk values (0.10h̄ for Co and 0 for Pd) only at
the very surface Co layer where the orbital moment is largely
enhanced for both magnetization orientations (to 0.17h̄ and
0.14h̄ for the x and z directions, respectively) as well as at the
Pd layer at the Co/Pd interface where the orbital moment of
0.025h̄ is induced. The AOM in the Co part of the bilayer has
significant layer terms �〈Lζ 〉l only in two atomic layers, one
at the Co surface and the other at the Co/Pd interface, while
the distribution of the AOM in the Pd part is less localized,
with the largest term coming, a bit surprisingly, from not the
first but from the second Pd layer near the Co/Pd interface.

The obtained spatial distribution of the AOM, with largest
and positive layer contribution �〈Lζ 〉l at the Co interface
layer, is similar as for the (111) fcc Co/Pd multilayer [21]
though for the latter system no sizable contributions are found
from the Pd layers, unlike in the present case. Obviously, such
differences, also present for the MCA, can be expected due to
different geometry of the two Co/Pd systems and the absence
of strain in the presently investigated bilayers.

Another interesting finding is that the layer orbital moment
in each layer, be it in Co or Pd, arises almost entirely due
to the SOC in the same layer, as the decomposition of 〈Lζ 〉l

into terms 〈Lζ 〉l ′
l [Eqs. (24) and (25], coming from the SOC in

different layers l ′ shows; see Fig. 22(b). As a result, the part
〈Lζ 〉Pd

tot,Co of the total orbital moment 〈Lζ 〉tot,Co = ∑
l∈Co〈Lζ 〉l

in Co is almost negligible and the same is true for the 〈Lζ 〉Co
tot,Pd

part of the total orbital moment 〈Lζ 〉tot,Pd = ∑
l∈Pd〈Lζ 〉l in Pd

see Eqs. (26) and (27). The contributions from various layers
l ′ to the layer term �〈Lζ 〉l of the AOM are also localized
around l ′ = l , though significant contributions also come from
the nearest-neighboring layers, l ′ = l ± 1, for the Co and Pd
layers l at the Co/Pd interface. In particular, around half of
the AOM layer term at the Co interface layer comes from the
SOC of Pd so that also the total AOM in Co, �〈Lζ 〉tot,Co =∑

l∈Co �〈Lζ 〉l , includes a substantial component due to the
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FIG. 22. (a) Layer-pair contributions E (ll ′ )
MCA to the MCA energy, (b) the contributions 〈Lζ 〉l ′

l from different layers l ′ to the layer orbital
moment 〈Lζ 〉l along the ζ = x magnetization direction and the contributions �〈Lζ 〉l ′

l = 〈Lz〉l ′
l − 〈Lx〉l ′

l to the layer terms �〈Lζ 〉l of the AOM
for the (001) fcc Co(8 ML)/Pd(8 ML) bilayer, obtained with the PT.

SOC in Pd. The largest AOM contribution comes from the
on-site term �〈Lζ 〉l ′

l at the Co surface (l = l ′ = 1) while the
contributions �〈Lζ 〉l ′

l are negligible for the interior Co layers
l , unlike for the MCA layer-pair terms E (ll ′ )

MCA; Fig. 22(a).
The analysis of the results plotted in Figs. 21 and 23

shows that the layer contributions to the MCA energy, E (l )
MCA

or Ẽ (l )
MCA, obtained for the Co/Pd bilayer with either of the

two discussed methods [Eqs. (46) and (52)] are not closely
correlated with the respective distribution of the layer terms
�〈Lζ 〉l of the AOM. Nevertheless, some general relations are
still found. Both the MCA and AOM layer terms are localized
around the Co surface and the Co/Pd interface, with small
contributions from the interior of the Co film and the rest of
Pd part. Also, the overall contribution from the Co surface
(obtained by partial summation of a few layer terms) is posi-
tive for the MCA energy and negative for the AOM, while the
reverse is true for the summed contribution from layers around
the Co/NM interface which is negative for the MCA and pos-
itive for the AOM. However, the detailed profiles of �〈Lζ 〉l

and E (l )
MCA or �〈Lζ 〉l and Ẽ (l )

MCA do not follow this general rule
of opposite signs which would be valid if the Bruno relation
held locally between the MCA and AOM terms in individual
atomic layers. This relation is also not satisfied by the layer-
pair contributions to the MCA and AOM shown in Fig. 22.

IV. CONCLUSIONS

The presented calculations of the MCA energy and the
orbital moments for the Co film and the Co/NM bilayers,
confirm that the investigated Bruno [8] and van der Laan [9]
relations between the MCA energy and the orbital moments
are largely inaccurate. Their incorrect predictions concern
the sign of the predicted energy (and thus the easy direction
of the magnetization), as for the Co/Pd bilayer, as well as
its magnitude which is several times larger than the exact
MCA energy for the Co film and a several times smaller
for the Co/Pt bilayer. However, it is found, similarly as for
the Fe film [16], that the Bruno and van der Laan rela-
tions very accurately reproduce the oscillatory pattern of the
MCA energy variation with increasing the Co thickness for
the Co film. They also give a very good prediction of this
pattern for the Co/Pd bilayer and less accurate one for the
Co/Pt bilayer. However, the oscillation amplitude predicted
by these relations for the Co/NM bilayers is too small and
the scaling factor is needed, different for each type of the
bilayers, to get the agreement with the oscillations of the
exact MCA energy. These theoretical predictions agree with
the experimental results for the Fe/Ag epitaxial films where
correlation between the MCA energy and the AOM of Fe is
found [17].
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FIG. 23. (a) Layer orbital moments 〈Lζ 〉l along the magneti-
zation directions ζ = x and ζ = z, (b) their difference �〈Lζ 〉l =
〈Lz〉l − 〈Lx〉l in the (001) fcc Co(8 ML)/Pd(8 ML) bilayer.

The failure to reproduce the mean value of the MCA energy
by the Bruno and van der Laan relations results from the fact
that neither the AOM of Co nor the difference its spin terms,
used in these relations, represent, even roughly, the whole
MCA energy. For the Co film, the important neglected part of
this energy is the spin-flip terms while for the Co/NM bilayers
it is mainly the neglected XY element-pair contribution from
the SOC of NM alone (X = Y = NM), In particular, with the
SOC of Pt several times larger than the SOC of Co, the MCA
energy of the Co/Pt bilayer includes the large XY = PtPt
contribution which is, in fact, dominant, while the AOM of Co
is related to much smaller MCA contributions from the XY =
CoCo and XY = CoPt SOC pairs, only. Thus it can be ex-
pected that the original Bruno and van der Laan relations also
fail to reproduce the mean value of the MCA energy for other
FM/NM systems where the NM is a heavy metal with a strong
SOC and a large density of states (DOS) at the Fermi level,
while they are likely to give correct predictions for FM films
on NM substrates with a weaker SOC or a low DOS at εF.

The original Bruno and van der Laan relations have been
presently extended by including the orbital moments of non-
magnetic (Pd, Pt) layers, in addition to the moment of the
ferromagnetic (Co) layer. Similar extended relations can also
be formulated for more complex magnetic multilayers with
layer-dependent SOC constants, and, in fact, for any mul-
ticomponent magnetic system with collinear magnetization.
The extension of the Bruno relation with the AOM of NM
leads to the correct sign of the MCA energy and provides
a better approximation of its mean value, especially for the
Co/Pd bilayer, and, in this case, the MCA oscillations are
also reproduced with good accuracy. Including the AOM of
Pd or Pt as a difference of its spin terms in the extended
van der Laan relation has the opposite effect as it leads to
the approximate MCA energy very different from the exact
one, with the wrong sign, the mean value distant from the

exact MCA energy much more than for the original relation,
and a different oscillation pattern. The extended van der Laan
relation exactly reproduces the diagonal spin-pair terms of
the MCA energy (unlike the Bruno relation), however, the
absence of the neglected spin-flip terms prevents this relation
from providing an even qualitatively correct approximation of
the MCA energy. Thus, though constructed in a more arbi-
trary way, the extended Bruno relation presents a substantial
improvement over its original version while the extension of
the van der Laan relation leads to worse predictions. The large
negative spin-flip terms of the MCA energy, missing in the
latter relation and having the crucial role in emerging the
negative sign of this energy for the (001) fcc Co/Pd bilayer,
arise due to hybridization of the minority-spin d states at the
Co/Pd interface and the presence d states of the majority-spin
in Pd; similar origin of the perpendicular magnetocrystalline
anisotropy was previously established for the (111) fcc Co/Pd
superlattices [21].

The calculations of the orbital moments also resulted in
interesting findings about their variation with the thickness of
the Co layer. In particular, for the Co film as well as the Co/Pd
and Co/Pt bilayers, the orbital moment of Co is found to have
different oscillatory patterns for out-of-plane and in-plane
magnetization directions, with the clear oscillation periods
of 2 and 5 ML, respectively, which is related to different
symmetries of the involved QW states from the vicinity of the
high-symmetry k points in the two-dimensional BZ. However,
the AOM in Co reflects mainly the 2 ML period oscillations
of the orbital moment in Co 〈Lζ 〉tot,Co for the out-of-plane
direction (ζ = z) since its oscillations of the 5 ML period for
the in-plane direction (ζ = x) have much a smaller amplitude.
The orbital moment in Pd (or Pt) oscillates in a similar way
for both magnetization directions, and includes oscillatory
terms with both the short and long periods. These findings
can be of practical importance for other magnetic layered
systems as they not only predict possible occurrence of differ-
ent oscillatory patterns in the orbital moments measured for
different directions of magnetization but also provide a sound
explanation for such a result and, thus, show the possibility
of drawing conclusions about the symmetry of the QW states
that lead to the observed oscillations of the orbital moments
and the MCA energy.

It is also shown that layer contributions to the MCA energy
are not uniquely determined and the two methods used for
their calculation lead to significantly different breakdowns of
this energy. It is found for the Co/Pd bilayer that neither
of these decompositions gives the spatial MCA profile well
correlated with the profile of the AOM whose layer terms are
defined with layer orbital moments. Thus the extended Bruno
relation, though quite accurate for this specific bilayer, is not
well satisfied locally, in individual atomic layers. In addition,
it is found that the orbital moment in each Co layer as well as
the moment in the Pd interface layer originate almost entirely
from the SOC in the same atomic layer, while each layer term
of the MCA energy has also contributions from the SOC of a
few neighboring layers.

Other important findings of the present investigation con-
cern the theoretical methods used for calculating the MCA
energies, orbital moments and the AOM. It is shown that the
PT expression for the MCA energy also includes intraband
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terms which are usually neglected but they are finite for the
systems without the inversion symmetry and, in fact, are
necessary to obtain the correct results for the Co/Pd bilayer.
Note that similar intraband terms, alongside interband ones,
are also present in the Kamberský formula [58,67,68] for the
Gilbert damping which describes the effect of the SOC on the
magnetization dynamics. It is found that while, for the Co film
and the Co/Pd bilayer, the MCA energy calculated with the
PT is very close to the exact MCA energy determined with
the FT, the two energies differ considerably from each other
for the Co/Pt bilayer. As the mean values of these energies
are quite close to each other also for this bilayer, the main
difference between them concerns their oscillations versus
the Co thickness, with large amplitude predicted by the PT
compared to much smaller amplitude found with the FT. This
discrepancy is shown to be related to the large strength of
the SOC in Pt so that the contributions from the QW states
responsible for the MCA oscillations are not accurately de-
scribed by the PT. Thus, while the PT formalism gives good
predictions for the mean value of the MCA energy, the present
results show that the oscillations of this energy as well as the
oscillations of the orbital moments, especially in NM, should
be investigated with the FT approach for the magnetic systems
including elements with large SOC.
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APPENDIX: SECOND-ORDER PERTURBATION
EXPANSION OF FREE ENERGY AND GRAND

POTENTIAL. INTRABAND TERMS AND DEGENERATE
STATES IN THE EXPRESSION FOR MCA ENERGY AT

FINITE TEMPERATURE

The free energy F = � + εFN of the perturbed system
with N electrons at finite temperature T ,

F = F0 + δ� + NδεF (A1)

can be represented with the free energy F0 = �0 + εF0N of
the unperturbed system, the change δ� of the grand potential
due to the SOC and the respective the shift δεF = εF − εF0 of
the Fermi energy (chemical potential). Upon the PT expansion
of the state energies εm = ε

per
nσ = εnσ + ε (1)

nσ + ε (2)
nσ up to the

second-order in Hso, the following expression

δ� = �(εF) − �0(εF0) = �(1) + �(2) − NδεF (A2)

can be obtained with the Taylor series expansion of the func-
tion used to define the grand potential in Eq. (7),

g(εm) = g0(εnσ + δεnσ − δεF) = g0(εnσ )

+ f0(εnσ )(δεnσ − δεF) + 1
2 f ′

0(εnσ )(δεnσ − δεF)2,

(A3)

where δεnσ = ε (1)
nσ + ε (2)

nσ , while the functions g0(ε) =
g(ε; εF = εF0) and the occupation factors f0(ε) = dg0/dε =
f (ε;εF = εF0) are calculated for the electron energies ε =
εnσ (k) in the unperturbed system with the respective Fermi

energy εF0. Accordingly, the unperturbed grand potential and
its corrections are expressed as follows:

�0 = 1

N2D

∑
nσk

g0(εnσ ), (A4)

�(1) = 1

N2D

∑
nσk

f0(εnσ )ε (1)
nσ , (A5)

�(2) = 1

N2D

[ ∑
nσk

f0(εnσ )ε (2)
nσ + 1

2

∑
nσk

f ′
0(εnσ )(ε (1)

nσ )2

]
. (A6)

Since the first-order energy correction ε (1)
nσ = 〈nkσ |Hso|nkσ 〉

either vanishes for systems with the inversion symmetry or
has opposite values at k and −k for systems without this
symmetry, like the Co/NM bilayers, the first-order term �(1)

vanishes, as it is proved in detail in the Appendix A of Ref. [2].
Thus the difference between the free energies of the perturbed
and unperturbed systems is given by the second-order correc-
tion to the free energy

F − F0 = F (2) = �(2) (A7)

equal to the second-order correction to the grand potential
calculated at εF = εF0 (this result, in a similar form, has
been derived for the interacting homogeneous electron gas
in Ref. [69]). In consequence, the PT approximation to the
MCA energy, defined with the FT in Eq. (5), is given by
Eq. (10). This expression can also be obtained by starting with
the FT formula (9) where the MCA energy is expressed as the
difference of the grand potentials for the two magnetization
directions calculated with the Fermi energy of the unperturbed
system εF0.

To amend the argument that leads to Eq. (A7) it remains
to show that the shift δεF of the Fermi energy due to the SOC
is also of the second-order in the SOC so that it enters only
in the linear term in the expansion of g(εm) in Eq. (A3) and,
thus, leads to the term −NδεF in Eq. (A2). With the number of
electrons N fixed in the canonical ensemble, the Taylor series
expansion of f (εm) = f0(εnσ + δεnσ − δεF) applied in Eq. (8)
leads to

1

N2D

[ ∑
nσk

f0(εnσ ) +
∑
nσk

f ′
0(εnσ )(δεnσ − δεF)

+ 1

2

∑
nσk

f ′′
0 (εnσ )(δεnσ − δεF)2

]
= N. (A8)

The first sum gives number of electrons in the unperturbed
system, also equal to N , while the sums

∑
nσk f ′

0(εnσ )ε (1)
nσ and∑

nσk f ′′
0 (εnσ )δεnσ δεF = ∑

nσk f ′′
0 (εnσ )ε (1)

nσ δεF vanish as their
k and −k terms cancel out. Thus we conclude that the Fermi
energy shift is equal to

δεF =
[ ∑

nσk

f ′
0(εnσ )ε (2)

nσ + 1

2

∑
nσk

f ′′
0 (εnσ )(ε (1)

nσ )2

]/∑
nσk

f ′
0(εnσ )

(A9)

and, indeed, it is of the second order in the SOC.
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The first sum in the Eq. (A6) includes the second-order
corrections

ε (2)
nσ =

∑
k

∑
n′σ ′ �=nσ

|〈n′kσ ′|Hso|nkσ 〉|2
εnσ (k) − εn′σ ′ (k)

(A10)

and gives the formula (11) with the (n′σ ′) = (nσ ) terms ex-
cluded (such a form of the considered sum is achieved by
dividing it into two halves and exchanging the indices (n′σ ′),
(nσ ) in one of them). However, the first-order correction
ε (1)

nσ , which can be finite for bilayers, also contributes to the
second-order term �(2) via the second sum in Eq. (A6). This
contribution is equal to the sum of the omitted (n′σ ′) = (nσ )
terms in the formula (11) if each such term is defined by ap-
plying the limit εnσ → εn′σ ′ to the ratio [ f0(εnσ ) − f0(εn′σ ′ )]/
(εnσ − εn′σ ′ ), which yields the derivative f ′

0(εnσ ). Thus the
second-order term �(2) = �(2)(M̂) of the grand potential is
given by Eq. (11) with all (n′σ ′) (nσ ) terms included and
defines the MCA energy at finite temperature within the PT
approach.

In case there are degenerate states, the usual recipe
given by the PT is to first diagonalize the matrix Ai j =
〈nikσ |Hso|n jkσ 〉 of the perturbation in each subspace of M
states |nikσ 〉 which have same energies εniσ (k) = εn jσ (k)
(i, j = 1, . . . , M ). The calculations of the energy corrections
are then done using the equivalent set of the degenerate states
|nikσ 〉d which are eigenstates of the matrix A so that the
diagonal matrix elements d〈nikσ ′|Hso|nikσ 〉d are equal to the
eigenvalues λi of the matrix A while the off-diagonal elements
of Hso vanish. Thus the values λi define the first-order correc-
tions to the energies of these transformed degenerate states
while the second-order corrections for each n = ni are given
by Eq. (A10) with all n′ = n j excluded for σ ′ = σ . Accord-
ingly, the overall contribution of the second-order corrections
ε (2)

nσ to �(2) defined with Eq. (A6) is given by the formula
(11) excluding (nn) terms from nondegenerate states as well
as all M2 terms (nn′) = (nin j ) for each degenerate subspace.
The contribution from the first-order corrections ε (1)

nσ to �(2) is
given by the sum

∑M
i=1 λ2

i [i.e., the second sum in Eq. (A6)]
for every nondegenerate state (M = 1) and each degenerate
subspace with the common factor f ′(εnσ ) (where n = ni).

However, one readily avoids the need for diagonalization
of degenerate states since the sum of the contributions to �(2)

from the first- and second-order corrections to state energies
leads to the same results as the formula (11) calculated with
the original states and all terms included. Indeed, the part of
sum in Eq. (11) that comes from the original set of degenerate
states is given by the sum

∑M
i, j=1 Ai jA ji = Tr(AA) multiplied

by the common prefactor f ′(εnσ ) (n = ni). Since the trace
Tr(AA) is invariant upon the transformation PAP−1 = D of
matrix A to the diagonal form D = (λiδi j ) with the transfor-
mation matrix P, this trace is equal to

∑M
i=1 λ2

i which is the
contribution from the first-order corrections ε (1)

nσ obtained after
diagonalization.

It remains to show that the subsum of terms coming from
a subspace of orthonormal degenerate states |nσk〉 (n = nj ,
j = 1, . . . , M) coupled to another state |n′σ ′k〉 with energy
εn′σ ′ �= εnσ does also not depend on the particular choice of the
degenerate states. Indeed, if the degenerate states are repre-
sented as |niσk〉 = ∑M

j=1 Pi j |n jσk〉d, the considered subsum
is given by the sum

M∑
i=1

|〈n′kσ ′|Hso|nikσ 〉|2

=
M∑

i=1

M∑
j=1

M∑
j′=1

Pi jP
∗
i j′ d〈n j′kσ |Hso|n′kσ ′〉

× 〈n′kσ ′|Hso|n jkσ 〉d (A11)

multiplied by the common prefactor [ f (εnσ ) −
f (εn′σ ′ )]/(εnσ − εn′σ ′ ). However, since transformation matrix
P is unitary (P+ = P−1) the sum

∑M
i=1 Pi jP∗

i j′ is equal to δ j j′

and the contribution given by Eq. (A11) reduces to the same
form

M∑
j=1

|〈n′kσ ′|Hso|n jkσ 〉d|2 (A12)

as for the initial set of the degenerate states. This property,
alongside the argument presented in the previous paragraph,
finally proves that �(2) is expressed with Eq. (11) including
all terms and does not depend on the particular choice of
degenerate states at the k points where some of the eigenstates
of the unperturbed Hamiltonian are degenerate.
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[17] M. Dąbrowski, T. R. F. Peixoto, M. Pazgan, A. Winkelmann,

M. Cinal, T. Nakagawa, Y. Takagi, T. Yokoyama, F. Bisio, U.
Bauer, F. Yildiz, M. Przybylski, and J. Kirschner, Phys. Rev.
Lett. 113, 067203 (2014).

[18] A. Manchon, C. Ducruet, L. Lombard S. Auffret, B. Rodmacq,
B. Dieny, S. Pizzini, J. Vogel, V. Uhlîr, M. Hochstrasser, and G.
Panaccione, J. Appl. Phys. 104, 043914 (2008).

[19] M. Kotsugi, M. Mizuguchi, S. Sekiya, M. Mizumaki, T. Kojima,
T. Nakamura, H. Osawa, K. Kodama, T. Ohtsuki, T. Ohkochi,
K. Takanashi, and Y. Watanabe, J. Magn. Magn. Mater. 326,
235 (2013).

[20] K. Ikeda, T. Seki, G. Shibata, T. Kadono, K. Ishigami, Y.
Takahashi, M. Horio, S. Sakamoto, Y. Nonaka, M. Sakamaki,
K. Amemiya, N. Kawamura, M. Suzuki, K. Takanashi, and A.
Fujimori, Appl. Phys. Lett. 111, 142402 (2017).

[21] J. Okabayashi, Y. Miura, and H. Munekata, Sci. Rep. 8, 8303
(2018).

[22] R. Miyakaze, S. Sakamoto, T. Kawabe, T. Tsukahara, Y. Kotani,
K. Toyoki, T. Nakamura, M. Goto, Y. Suzuki, and S. Miwa,
Phys. Rev. B 102, 014419 (2020).

[23] F. Gimbert and L. Calmels, Phys. Rev. B 86, 184407 (2012).
[24] M. Weinert, R. E. Watson, and J. W. Davenport, Phys. Rev. B

32, 2115 (1985).
[25] D.-S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932

(1993).
[26] M. Cinal, D. M. Edwards, and J. Mathon, Phys. Rev. B 50, 3754

(1994).
[27] J. Li, M. Przybylski, F. Yildiz, X. D. Ma, and Y. Z. Wu, Phys.

Rev. Lett. 102, 207206 (2009).
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