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Dynamical tuning of the thermal conductivity via magnetophononic effects
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Strategies for tuning the thermal conductivity of crystals by means of external fields are rare. Here, we
predict the existence of large magnetophononic effects in materials that undergo antiferromagnetic (AFM) ↔
ferromagnetic (FM) phase transitions, which allow for the modulation of the lattice heat conductivity, κL , via the
application of magnetic fields. Specifically, by using first-principles methods we predict a large and anomalous
κL increase of ≈40% for the metamagnetic phase transition occurring in bulk FeRh near room temperature. The
disclosed magnetophononic effects are caused by large anharmonic spin-phonon couplings, namely, significant
differences in the phase space of allowed phonon-phonon collision processes taking place in the respective AFM
and FM phases.
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I. INTRODUCTION

Phonons, or quanta of lattice vibrations, are quasiparticles
that carry heat in crystals. Efficient manipulation of phonons
by external fields, therefore, should allow for dynamical con-
trol of the lattice thermal conductivity of solids, κL. Yet, to
a large extent, dynamical tuning of κL remains to this day a
fundamental and technical challenge. It is sometimes argued
that the main hurdle in this endeavor is the absence of a
net phonon mass or charge [1]. However, this type of rea-
soning can be easily challenged by phase-change arguments:
whenever the application of an external field produces crys-
tal structure variations, the accompanying lattice vibrations
should also change, thus inducing potential κL modifications.
In fact, recently it has been shown that it is possible to act
upon the κL of ferroelectric perovskites via the application
of electric fields that either write/erase domain walls [2–6]
or produce symmetry-breaking cationic displacements [7–11].
Likewise, the charge density of a silicene single-layer can be
redistributed via electric fields in such a way that the phonon-
phonon interactions are significantly affected [12].

In this context, a stimulating question naturally arises: is it
possible to achieve similar dynamical control of κL in other
predominant families of functional materials like magnetic
crystals? For the magnetophononic response of a magnetic
crystal to be sizable, we envisage that the following general
conditions need to be met: (i) the switching between two
(or more) magnetic states driven by a magnetic field should
be possible (i.e., experimentally demonstrated and/or pre-
dicted by advanced theories); (ii) the competing magnetic
phases should exhibit distinct crystal structures (e.g., sym-
metry and/or volume) and spin-phonon couplings in order
to maximize their lattice vibrational differences [13–15]; and
(iii) although not compulsory from a fundamental point of
view, it is desirable that the involved magnetic transforma-
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tion occurs near room temperature (i.e., to envisage possible
technological applications).

In this paper, we predict the existence of novel and sizable
magnetophononic effects in bulk FeRh (i.e., a κL variation of
∼40% upon switching of magnetic states), a well-known mag-
netocaloric and mechanocaloric [16–19] material that fulfills
conditions (i)–(iii) above. Bulk FeRh exhibits a cubic CsCl
crystal structure (space group Pm3m, Fig. 1) and at a tem-
perature of TM ∼ 350 K it undergoes a magnetoisostructural
transition from a low-T antiferromagnetic (AFM) phase to
a high-T ferromagnetic (FM) phase [20]. In the AFM (FM)
phase, the Rh magnetic moments are null (1.0μB) and the
Fe magnetic moments remain large (i.e., ∼3.0μB [21,22];
see Table I). The magnetoisostructural phase transition is ac-
companied by a large volume increase (�V/V ∼ 1% [20];
Table I). Despite the fact that the crystal symmetry of FeRh
is preserved during the AFM ↔ FM transformation, the
phonon spectra of the two magnetic competing states are quite
different [23,24], thus indicating that the two phases are con-
siderably different already at the harmonic vibrational level.
Furthermore, (i) FeRh is an archetypal multicaloric compound
with a large vibrational entropy change associated with its
metamagnetic phase transition (i.e., |�SL| ≈ 30 J K−1 kg−1

[25]), and (ii) the AFM → FM transformation can be triggered
near room temperature via the application of small magnetic
fields (∼1 T [16,20]), thus validating our materials choice.
It is worth mentioning that similar AFM ↔ FM phase tran-
sitions exist also in a wide variety of other materials such
as multiferroic SrMnO3 [26] and (Zn,Sn,Mn)As2 thin films
[27], bulk LaCrGe3 [28] and USb2 [29], and the solid solu-
tions Ce(Fe1−xAlx )2 [30] and Mn2Sb1−xBix [31]. Thus, the
magnetophononic effects disclosed here are of broad physical
interest.

II. COMPUTATIONAL METHODS

We performed density-functional theory (DFT) calcula-
tions using the VASP code [32] and projector augmented waves
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FIG. 1. Sketch of the AFM (left) and FM (right) phases of bulk
FeRh. Fe and Rh ions are represented with blue and orange spheres,
respectively. The arrows represent the Fe and Rh magnetic moments.
The unit cell of the AFM phase is 2 × 2 × 2 times larger than
that of the FM phase due to accommodation of the corresponding
antiferromagnetic type-G ordering.

[33,34] with an energy cutoff of 450 eV. The generalized-
gradient approximation to the exchange-correlation func-
tional along with the revised Perdew, Burke, and Ernzerhof
parametrization (revPBE) [35] were used. The first Brillouin
zone (IBZ) of the FM two-atom unit cell was sampled with a
Monkhorst-Pack [36] grid of 26 × 26 × 26 k-points centered
at �. AFM type-G ordering requires a 16-atom unit cell to
be reproduced (Fig. 1), thus in this case a k-point grid of
13 × 13 × 13 was consistently employed. Table I encloses
some computed physical parameters like the lattice parameter
and ionic magnetic moments, which in general are in very
good agreement with the available experimental data. The
adopted computational approach is also able to provide a
reasonable estimate of TM and the T -H phase diagram of bulk
FeRh within the quasiharmonic approximation [37] (see the
discussion in Sec. III). It is worth mentioning that a mono-
clinic P2/m structure has been recently predicted by Wolloch
et al. to be competitive at low temperatures [23]; however,
this FeRh phase has eluded experimental confirmation thus
far and hence we have not considered it in our analysis. It
has also been theoretically suggested that a small tetragonal
distortion could play a role in determining the ground state of
FeRh, which might be AFM type-A′ [38]. These conclusions
are valuable because under certain experimental conditions
the tetragonal symmetry could be favored. However, there is

TABLE I. Unit-cell lattice parameter, volume, and ionic mag-
netic moments estimated for FeRh in the FM and AFM phases at
zero temperature. The volume change �V/V computed for the FM
phase is relative to that of the AFM ground state. “DFT” stands for
the present computational work, and “expt” for experimental data
reported in the literature.

FMDFT FMexpt AFMDFT AFMexpt

a (Å) 3.025 6.018 6.000 [22]
V (Å3/f.u.) 27.68 27.24 27.00 [22]
�V/V (%) 1.6 ∼1 [20]
mFe (μB) 3.1 ∼3.0 [21] 3.1 3.3 [21]
mRh (μB) 1.0 ∼0.6 [21] 0.0 0.0 [21]

wide consensus (including Ref. [38]) in that only the mag-
netic states AFM type-G and FM magnetic are stable (or
metastable) in cubic FeRh, which is the crystal symmetry
observed under normal conditions. Notice also that FeRh has
been reported to become paramagnetic at 670 K [39], that is,
roughly 300 K above the temperature of the metamagnetic
transition discussed here. Therefore, T -induced spin-disorder
effects have been safely neglected in our first-principles cal-
culations.

The second- and third-order interatomic force constants
(IFCs) were calculated by finite differences [40,41] in a 4 ×
4 × 4 supercell for the FM phase and in a 2 × 2 × 2 supercell
for the AFM phase. We considered interactions up to sixth
nearest neighbors in three-phonon scattering processes (see
Sec. V for details on how the symmetry breaking introduced
by AFM spin ordering was treated in our calculations and its
consequences). The IFCs were then used as inputs to solve
the phonon Boltzmann transport equation (BTE) beyond the
relaxation time approximation (RTA), using the iterative algo-
rithm implemented in the ShengBTE code [41]. The BTE was
solved on a q-point grid of 16 × 16 × 16 for FM FeRh and
of 8 × 8 × 8 for AFM FeRh, after conducting careful conver-
gence studies. The lattice thermal conductivity was calculated
as

κL,i j = 1

kBT 2�N

∑
λ

f 0
λ

(
f 0
λ + 1

)
(h̄ωλ)2vi,λFj,λ

= 1

N

∑
λ

Cλvi,λFj,λ, (1)

where indexes i and j run over the three Cartesian directions,
kB, T , �, and N are the Boltzmann constant, temperature,
volume of the unit cell, and number of q-points, respectively,
and Cλ is the volumetric heat capacity of the phonon mode
λ [42] (i.e., the volumetric heat capacity of the crystal is
CP = 1/N

∑
λ Cλ). The sum runs over all the phonon modes,

and λ comprises both the wave vector q and the branch index
p. f 0

λ is the equilibrium Bose-Einstein distribution function,
h̄ is the reduced Planck constant, and ωλ and vi,λ are the
phonon frequency and phonon group velocity, respectively.
Fj,λ takes the general form τλ(v j,λ + � j,λ), where τλ is the
relaxation time and �λ is the correction over the RTA. It is
worth stressing that since our main goal here is to compare
the lattice thermal conductivity of FM and AFM FeRh, both
magnetic phases were computationally treated on exactly the
same footing (i.e., the same supercell size, nearest-neighbor
cutoff for anharmonic phonon-phonon processes, and k-point
grid for IBZ sampling).

III. QUASIHARMONIC FREE-ENERGY CALCULATIONS:
ESTIMATION OF THE AFM ↔ FM PHASE TRANSITION

TEMPERATURE AND T -H PHASE DIAGRAM
OF BULK FeRh

First-principles Gibbs free-energy calculations were con-
ducted within the quasiharmonic approximation (QHA) for
bulk FeRh in the described cubic AFM and FM phases
to theoretically determine the value of some fundamen-
tal T -dependent quantities, thus assessing the reliability of
the employed density functional theory (DFT) approach via
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comparison with the available experimental data. The fun-
damentals of the DFT-QHA method can be found in many
previous works (e.g., Refs. [19,37]) and are briefly summa-
rized next.

The Gibbs free energy of a given solid phase, Gharm, can be
expressed as

Gharm(P, T ) = E (P) + PV (P, T ) + Fharm(P, T ), (2)

where E is the static energy of the system (i.e., as directly
obtained from zero-temperature DFT calculations), P is the
pressure, V is the volume, and Fharm is the lattice Helmholtz
free energy. (The dependence of the different energy terms on
P and T has been explicitly noted.) Within the QHA, for a
given V and T the value of Fharm is determined by using the
formula

Fharm(V, T ) = 1

Nq
kBT

∑
qs

ln

[
2 sinh

(
h̄ωqs(V )

2kBT

)]
, (3)

where ωqs are the phonon frequencies obtained at the recipro-
cal lattice vector q and phonon branch s, and Nq is the total
number of wave vectors used for integration in the Brillouin
zone. At the same time, the hydrostatic pressure P is calcu-
lated via the expression

P(V, T ) = −∂[E (V ) + Fharm(V, T )]

∂V
, (4)

which numerically allows for determining V (P, T ). Thus, by
performing E and ωqs DFT calculations for a set of V points
(over which interpolation is applied to continuously describe
the selected interval) and using Eqs. (2)–(4), it is possible to
estimate Gharm(P, T ). Finally, to determine the temperature
at which the AFM ↔ FM phase transition occurs at a given
P, TM , we use the condition �Gharm(P, TM ) ≡ GAFM

harm (P, TM ) −
GFM

harm(P, TM ) = 0. [Note that the QHA formalism described
in Sec. III neglects magnetic entropy contributions stemming
from spin fluctuations and also possible spin-phonon coupling
effects [37]. Nonetheless, such approximations are expected
to have a very minor impact on our TM predictions since FeRh
is observed to become paramagnetic at very high temperatures
(i.e., 670 K [39] whereas TM ∼ 350 K [20]).] It is worth noting
that the present DFT-QHA formalism allows for consideration
of volumetric thermal expansion effects in the calculation of
Gibbs free energies, which represents a physical improvement
with respect to purely harmonic models. In what follows, we
restrict our analysis to the zero-pressure case.

On the technical side, we computed the value of the en-
ergies E and Fharm for the FeRh AFM and FM phases under
0%, 1%, 2%, and 3% homogeneous expansive strains. The
static DFT energies were interpolated for an arbitrary volume
by using a Birch-Murnaghan equation of state [37], while the
vibrational free energies were interpolated by using second-
order polynomials of the volume at each temperature (at the
same time, the temperature was scanned at a frequency of 1 K
within the interval 200 � T � 500 K). Importantly, custom-
ary DFT energy functionals are known to provide excessively
large static energy differences among the AFM and FM phases
of FeRh (i.e., �EDFT = 43.2 meV/f.u. in the present case) as
compared to the experimental evaluation of the same quantity
(i.e., �E expt = 5.38 meV/f.u. [23]). Such a �E overestima-
tion leads to unrealistically high TM values predicted within
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FIG. 2. First-principles quasiharmonic free-energy calculations
of FeRh in the AFM and FM bulk cubic phases at zero pres-
sure. (a) DFT estimation of Gibbs free energies obtained by
neglecting/considering thermal expansion effects and adopting the
experimental zero-temperature energy difference among the two
phases. The resulting AFM ↔ FM transition temperatures are
highlighted with black arrows. (b) DFT estimation of the T -H
phase diagram of bulk FeRh (in a single-crystal and single-domain
configuration) obtained by considering thermal expansion effects
and adopting the experimental zero-temperature energy difference
among the two phases. Solid dots represent the actual DFT results,
whereas the solid line is a linear fit to them.

the described DFT-QHA scheme (i.e., TM > 1000 K). To over-
come such a computational limitation in practice, Wolloch
et al. proposed to use the experimental �E expt value in com-
bination with the computed �Fharm energies [i.e., to employ
the condition �G∗(TM ) ≡ �E expt + �Fharm(TM ) = 0 at null
pressure] [23], and in the present work we have followed that
same recipe.

Figure 2(a) shows the results of our zero-pressure DFT-
QHA �G∗ calculations for bulk FeRh by considering and
neglecting volumetric thermal expansion effects. When the
volume of the AFM and FM phases estimated at zero tem-
perature is constrained in the calculations, rather than the
pressure, we obtain a TM value of 390 (10) K, which is in
good agreement with previous analogous DFT calculations
by Wolloch et al. [23]. Meanwhile, when volumetric thermal
expansion effects are adequately taken into consideration, our
estimation of TM amounts to 345 (10) K, which is in very close
agreement with the experimental value T expt

M ∼ 350 K [20,23].
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These results, therefore, lead to the expected conclusion that
considering T -induced V variations may improve the predic-
tion of phase-transition temperatures.

The DFT-QHA free-energy approach described here also
allows for an approximate estimation of the T -H phase dia-
gram of bulk FeRh, where H represents the external magnetic
field that is necessary to trigger the AFM → FM phase tran-
sition at temperatures T � TM . In particular, since the net
magnetization of the AFM phase is zero, to a first approxi-
mation one can assume that the minimum H that is required
to stabilize the FM phase over the AFM amounts to

H (T ) = −�G∗(T )

M(T )
= G∗

FM(T ) − G∗
AFM(T )

M(T )
, (5)

where M(T ) represents the net magnetization of the FM
phase. In the particular case of bulk FeRh, since TM is much
lower than the temperature at which the crystal becomes
paramagnetic [39], one can reasonably simplify the involved
calculations by assuming that M(T ) ≈ M(0), which accord-
ing to our DFT estimations is equal to M = 4.1μB (see
Table I).

Figure 2(b) shows the first-principles T -H phase dia-
gram deduced for bulk FeRh considering a single-crystal and
single-domain configuration (e.g., effects derived from the
presence and coexistence of interacting magnetic domains
are totally disregarded) by using the formulas and method
described above. It is found that the rate of TM variation as
induced by the presence of modest magnetic fields is quite
constant and approximately equal to dT/dH = −13 K/T.
The closest physical system for which an analogous experi-
mental T -H phase diagram has been reported is, to the best
of our knowledge, epitaxial FeRh films (see, for instance,
Ref. [43]). Despite the obvious physical differences among
the simulated bulk single-crystal single-domain system and
epitaxial FeRh films (e.g., in the latter system the lattice
parameters are slightly strained in comparison to those of
bulk, and many interacting magnetic domains and boundaries
exist), the agreement between the corresponding T -H phase
diagrams can be regarded as reasonably good. In particular,
the experimental H-induced TM variation reported in Ref. [43]
exhibits also a clear linear behavior and the boundary slope
amounts to dT/dH expt = −8 K/T.

In view of the bulk TM and T -H phase diagram results
presented in this section, it can be concluded that the first-
principles computational method adopted in the present study,
although not without some limitations, can provide a reason-
ably accurate description of the metamagnetic AFM ↔ FM
phase transition occurring in FeRh near room temperature.

IV. THERMAL CONDUCTIVITY OF FeRh IN THE AFM
AND FM MAGNETIC PHASES

The phonon dispersion and vibrational density of states of
cubic AFM and FM FeRh are shown in Fig. 3. It is clear that
already at the harmonic level, the AFM and FM phases are
very different. In the AFM phase, the symmetry reduction
originated by antiparallel magnetic moments results in the
lifting of several phonon degeneracies and widening of the
corresponding phase space (potentially leading to enhanced
phonon scattering). The volumetric expansion occurring from

R Γ X M
0
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H
z)

R Γ X M
0
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H
z)
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AFMFM

FIG. 3. Phonon dispersion and vibrational density of states
(VDOS) calculated for FM and AFM FeRh. The doubling of the
AFM unit cell results in a larger number of phonon modes and
the lifting of several phonon degeneracies as compared to those of
the FM phase. The high-symmetry reciprocal-space points are R
( 1

2 , 1
2 , 1

2 ), � (0,0,0), M ( 1
2 ,0,0), and X ( 1

2 , 1
2 ,0) in units of π/a, where

aFM = 3.025 Å and aAFM = 6.018 Å and thus q�→R,X
FM ≈ 2q�→R,X

AFM .

the AFM → FM phase transition, on the other hand, leads
to an overall softening of the FM phonon modes throughout
the Brillouin zone. We will come back to this point later,
but for now it is instructive to compare the group velocities,
δωk/δq, calculated for the acoustic modes of the two magnetic
phases near �: along the R → � direction va

AFM = 2670 and
5898 m/s and va

FM = 2320 and 5549 m/s, and along the � →
X direction va

AFM = 3600 and 4950 m/s and va
FM = 3390 and

4988 m/s, hence in general va
AFM > va

FM.
In Fig. 4 we report the projection on Fe and Rh atoms of

the vibrational density of states (VDOS) for the two analyzed
magnetic phases. The Fe-projected VDOS can be compared
with the experimental inelastic x-ray scattering (NRIXS) re-
sults of Ref. [23].

The overall softening of phonon modes and the reduction
of the vibrational phase space occurring during the AFM →
FM phase transition are likely to have a sizable effect on κL.
These two effects, however, are in competition: while lower
group velocities would tend to produce a smaller κL for the
FM phase, narrower phonon phase space leading to depleted
anharmonic scattering would tend to produce a larger κL for
the same phase. To quantify the κL change associated with
the FeRh metamagnetic transition and determine which of
the two described effects is dominant (i.e., either volumet-
ric expansion or phonon-phonon scattering enhancement), we
performed DFT-based BTE calculations.

The thermal conductivity of FM and AFM FeRh ex-
pressed as a function of temperature is shown in Fig. 5(a).
As it can be appreciated therein, the FM phase is more
conductive than the AFM phase over the whole interval of
investigated temperatures. Near the experimental metamag-
netic transition temperature, TM = 350 K, κL increases from
4.1 W m−1 K−1 in the AFM phase to 5.7 W m−1 K−1 in
the FM phase, rendering a relative κL increase of ≈40%.
At such temperatures—and, as a matter fact, for most mate-
rials at T � 20 K—the dominant phonon-phonon scattering
mechanism is umklapp-like, thus κL should decrease under
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increasing T . However, for FeRh we predict an anomalous
thermal conductivity increase close to TM due to the AFM →
FM phase transition [see the inset of Fig. 5(a)]. The κL cumu-
lative estimated near TM as a function of the phonon mean free
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FIG. 5. (a) Estimated thermal conductivity expressed as a func-
tion of temperature and magnetic ordering. Inset: sketch of the κL

change near TM (the temperature range in which the transition occurs
has been selected for visualization purposes only, thus in practice it
may be narrower). (b) Cumulative thermal conductivity estimated at
T = 350 K as a function of the phonon mean free path. (c) Rela-
tive deviation of the full iterative BTE solution from the RTA BTE
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FIG. 6. (a) Module of the phonon velocities of FM and AFM
FeRh expressed as a function of frequency. (b) Difference be-
tween the harmonic heat capacities estimated for FM and AFM
FeRh, �CP = CFM

P − CAFM
P , expressed as a function of temperature.

(c) Scattering rate expressed as a function of phonon frequency and
computed as the inverse of the RTA phonon relaxation times [51].
(d) Frequency-resolved difference between the thermal conductivi-
ties of the FM and the AFM phases, �κL,ν = κFM

L,ν − κAFM
L,ν .

path (mfp) is shown in Fig. 5(b). It is observed that, while in
the AFM phase κL is determined by phonons with a mfp of
at most 20 nm, in the FM phase κL saturates at l’s as long as
∼80 nm, which is consistent with the larger thermal conduc-
tivity estimated for the FM phase.

These results have been obtained from the iterative solution
of the BTE. The reason for going beyond the RTA is that
it erroneously considers momentum-conserving normal (N)
processes to be resistive. Deviations from the RTA solution,
therefore, can be interpreted as a measure of the importance
of N-processes, which are core to non-Fourier-transport phe-
nomena such as viscous heat flow and second sound [44–46].
This comparison is shown in Fig. 5(c). Interestingly, we found
that N-processes depend strongly on magnetic ordering and
are most critical for the AFM phase (i.e., deviations from the
RTA solution are considerably larger for the AFM phase).

Our previous considerations on the FeRh phonon disper-
sions and κL’s are fully ascertained by the results presented
in Fig. 6. As was already anticipated, the phonon velocities
of the AFM phase in general are larger than those of the
FM phase [Fig. 6(a)]. A couple of exceptions appear in the
low phonon frequency regions ν � 2 THz (i.e., for some
phonon modes vAFM < vFM) and 5.2 � ν � 5.5 THz (where
vAFM = 0 	= vFM). Also, in the low phonon frequency region
ν � 2 THz, the normalized density of phonon states is slightly
larger for the AFM phase than for the FM phase, hence at
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low temperatures (T � 150 K) the harmonic volumetric heat
capacity, CP, of the FM phase is larger [Fig. 6(b)]. Conversely,
within the phonon frequency region 2 � ν � 7.4 THz, the
normalized density of phonon states of the FM phase tends
to be larger and hence its CP becomes smaller at moderate
and high temperatures. The estimated v and CP values indicate
that, at the harmonic level, the κL of the AFM phase should be
larger than that of the FM phase [Eq. (1)], which contradicts
the all-inclusive κL results shown in Fig. 5(a).

On the other hand, the phonon scattering rates enclosed in
Fig. 6(c) clearly show that the phase space of phonon-phonon
processes is larger for the AFM phase at most frequen-
cies (with the exception of the narrow interval 5.2 � ν �
5.5 THz), a trait that goes in the direction of decreasing its
κL as compared to that of the FM phase. Thus, among vol-
umetric and phonon-phonon scattering effects, the latter are
found to be the main responsible for the κL increase of ≈40%
estimated from the AFM → FM phase transition [Fig. 5(a)].
The frequency-resolved thermal conductivity results shown in
Fig. 6(d) are reassuring: the FM phase is most conductive for
most frequencies with some exceptions appearing at the low-ν
region of the spectrum.

Based on all these results, it can be concluded that the
large κL change found for the metamagnetic transition of
FeRh is driven by anharmonic spin-phonon couplings (i.e.,
large differences in the phonon-phonon scattering phase space
between the AFM and FM phases). The main effect of switch-
ing to a different spin ordering is not simply to modify the
phonon frequencies, but rather to increase the anharmonic
phonon scattering by increasing the number of allowed colli-
sion processes. As a matter of fact, the conventional harmonic
spin-phonon coupling leads to a softening of the phonon
modes of the FM phase, thus reducing the overall κL increase
from the AFM → FM transition. This is an important obser-
vation because it suggests that even larger magnetophononic
effects than reported here could be observed in magnetic crys-
tal where harmonic and anharmonic spin-phonon κL effects
were not in competition (e.g., common T -induced FM—or
AFM—to paramagnetic phase transitions [37]).

Finally, we mention that FeRh is a metallic alloy [47–49]
and thus in practice electronic contributions to the total heat
conductivity, κe, should be not negligible. In fact, by em-
ploying the Wiedemann-Franz law κe = L0T σ , where L0 =
(πkB)2/3e2 and σ is the electrical conductivity, and the
experimental σ data reported for AFM and FM FeRh in
Ref. [20], we estimate an electrical heat conductivity of
6.1 W m−1 K−1 for the AFM phase and of 10.7 W m−1

K−1 for the FM phase at temperatures close to TM . Since the
electrical conductivity of FM FeRh is larger than that of AFM
FeRh [20], the change in κe upon the AFM → FM phase tran-
sition is also positive and equal to ≈75%. Thus, for the total
heat conductivity, κ = κL + κe, we predict a change of ≈60%
for the FeRh metamagnetic phase transformation, and about
25% of such a variation stems from lattice contributions. Ex-
perimentally, therefore, in FeRh the magnetophononic effects
reported in this work should not be counteracted by the also
present electronic contributions to κ . At the same time, we
note that in experiments where electronic thermal conduction
could be considerably suppressed via nanostructuring (e.g.,
in metal-semiconductor interfaces like FeRh/BaTiO3 [50]),

the importance of the magnetophononic effects described here
would be dominant.

V. MAGNETIC SYMMETRY BREAKING EFFECTS IN THE
ESTIMATION OF THE THERMAL CONDUCTIVITY

OF FeRh IN THE AFM PHASE

The calculation of the harmonic and anharmonic inter-
atomic force constants (IFCs) within a real-space supercell
approach is based on the finite-difference evaluation of force
derivatives. To this end, once a conveniently large supercell
is created, selected atoms are displaced. The total number of
required displacements is of the order of 6N , where N is the
number of atoms in the unit cell. However, this large number
of intensive DFT calculations can be reduced by taking advan-
tage of the symmetry of the crystal lattice. This is what both
PHONOPY [40] and THIRDORDER.PY [41], the codes that we
use for the harmonic and anharmonic IFCs calculations, do.
For instance, only one displacement is necessary to compute
the phonon dispersion of FM FeRh, which has two atoms in
the primitive cell.

This approach, however, faces a certain problem when
dealing with AFM phases since the detection of symmetry
performed by the mentioned codes is exclusively based on the
position of the ions, and thus the further symmetry reduction
caused by the presence of spin-up and spin-down ions gen-
erally is not accounted for. To bypass this problem, for the
detection of symmetry and calculation of the inequivalent dis-
placements, we have introduced a fictitious chemical species
to force PHONOPY and THIRDORDER.PY to distinguish spin-up
Fe atoms from spin-down Fe atoms. Such a numerical trick is
not required for systems in which AFM spin ordering already
introduces significant structural changes as compared to the
FM spin ordered phase; however, in the particular case of
bulk FeRh, only the volume changes appreciably in moving
from the AFM to the FM phase, hence it is not possible
to distinguish them by relying exclusively on their atomic
positions.

To assess the importance of this technical detail and pro-
cedure, we have recalculated the thermal conductivity of the
cubic AFM phase without employing the stratagem described
above. In doing this, all Fe atoms look equivalent, like in
the FM phase, and fewer calculations are needed due to the
artificial higher symmetry of the system (i.e., two displace-
ments instead of three for harmonic IFC calculations, and
304 instead of 464 for anharmonic IFC calculations). Our
results, displayed in Fig. 7, show that by wrongly assuming a
higher symmetry for the AFM phase, its thermal conductivity
turns out to be largely overestimated. As a matter of fact,
the flawed AFM κL turns out to be even larger than the κL

estimated for the FM phase, which is at odds with the full
discussion presented in Sec. IV. This finding is not surprising,
though: by ignoring the symmetry reduction brought about by
AFM spin ordering, the increase in phase space leading to the
proliferation of phonon-phonon collisions is totally neglected.
Therefore, to a first approximation, within such an incorrect
scheme the AFM phase is merely a disguised FM phase (i.e.,
all Fe atoms are equivalent) with a smaller volume (hence the
larger and wrongly estimated κL value).
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FIG. 7. Thermal conductivity of the AFM phase expressed as
a function of temperature. The calculations have been performed
by explicitly distinguishing spin-up from spin-down Fe atoms (red
symbols) and by considering that all Fe atoms are equivalent (black
symbols).

VI. EFFECT OF VOLUMETRIC EXPANSION ON THE
ESTIMATION OF FeRh THERMAL CONDUCTIVITIES

The standard procedure for ab initio calculation of thermal
conductivities, which is the one followed in the present work,
involves the computation of zero-temperature phonon disper-
sions and scattering rates; subsequently, the obtained phonon
states are populated according to the Bose-Einstein statistics.
Thus, the effects of temperature are only explicitly accounted
for in the filling up of vibrational excitation levels.

In Sec. III, we explained how for a given crystal the T -
induced variation of volume at fixed P can be estimated with
the DFT-QHA method. For bulk FeRh, we have found that
the volumetric thermal expansion of the FM phase is slightly
larger than that of the AFM phase, thus at the experimental
transition temperature the equilibrium volume difference be-
tween the two phases is also somewhat larger (i.e., 1.78%
at 350 K versus 1.64% at zero temperature). As discussed
in Sec. IV, larger volumes tend to yield lower thermal con-
ductivities, hence the κL of the FM phase may experience a
certain reduction with respect to that of the AFM phase when
volumetric thermal expansion effects are somehow taken into
consideration.

To approximately quantify the possible impact of thermal
expansion effects in the computation of κL, we calculated the
harmonic IFCs of each FeRh phase at the equilibrium volumes
estimated at the phase-transition temperature TM = 350 K.
Then, by using the previously obtained zero-temperature scat-
tering rates, we recalculated the two thermal conductivities. In
fact, our results presented in Fig. 8 evidence that the decrease
in heat conductivity estimated for the FM phase at V (TM ),
as compared to the reference V (0) case, is larger than that
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FIG. 8. Thermal conductivity of bulk FM and AFM FeRh ex-
pressed as a function of temperature. The thermal volumetric
expansion estimated at 350 K is somehow taken into consideration
in the κL calculations (filled symbols). Analogous results obtained
for constrained zero-temperature volumes are shown for comparison
(empty symbols).

estimated for the AFM phase. For instance, at TM the quantity
δκFM ≡ κFM

350K − κFM amounts to −0.98 W m−1 K−1, whereas
δκAFM amounts to −0.40 W m−1 K−1. As a consequence
of such distinct behaviors, the κL increase predicted for the
metamagnetic FeRh phase transition, although still sizable,
turns out to be slightly smaller than that reported in Sec. IV,
namely, �κL ∼ 30% (to be compared with ∼40%).

It is worth noting that the T -renormalized �κL value re-
ported in this section, however, should be considered just
as orientative since many uncontrolled approximations (e.g.,
what is the impact of the neglected volume expansion on
the phonon scattering rates?) are involved in the calcula-
tions. A fully rigorous �κL calculation accounting for all
possible sorts of temperature effects (e.g., T -renormalized
lattice parameters and T -renormalized phonon frequencies
and scattering rates) appears to be prohibitively difficult and
time-consuming for us at the moment, thus we leave it for
future work.

VII. CONCLUSIONS

In summary, based on first-principles DFT calculations,
we report the likely existence of magnetophononic effects
in bulk FeRh, a prototypical multicaloric material. We pre-
dict a significant increase in the lattice thermal conductivity
of FeRh (≈40%) upon the near room-temperature AFM →
FM metamagnetic phase transition that also can be driven
by external magnetic fields. The disclosed magnetophononic
effects and anomalous FeRh κL behavior originate from a
large variation of the phase space of phonon-phonon processes
that are dominant over conventional harmonic spin-phonon
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couplings, which alone would induce a κL reduction. Since the
main physical mechanism underlying the magnetophononic
effects disclosed here is the modulation of the phase space
for phonon-phonon collisions triggered by magnetic order-
ing changes, we expect that similar magnetophononic effects
will exist also in other families of materials in which akin
AFM ↔ FM phase transitions are known to occur [26–31].
The present study, therefore, opens up new avenues for
the dynamical control of heat transport in functional mate-
rials, thus besides of its fundamental interest it may also
provide useful guides for the design of emerging phonon
devices.
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