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Spectral and temporal correlations determine the majority of pulse properties, and a high degree of coherence
is needed for minimizing the pulse length. However, there is no simple way to quantify these correlations exper-
imentally, and nonlinear methods are often required. In this paper, we confirm an earlier proposed experiment
[Koivurova et al., Opt. Lett. 44, 522 (2019)] that can accurately estimate the spectral degree of coherence of
arbitrary nonstationary fields. The method is entirely linear and can retrieve the quasicoherent contribution
of the spectral correlation function. In particular, the method can be used to measure the overall degree of
spectral coherence in a single-shot manner. We first establish the theoretical framework behind the method and
experimentally test it for a bulk-generated supercontinuum. Our experimental results are in good agreement with
the theory and confirm our earlier numerical findings [Halder et al., Photon. Res. 7, 1345 (2019)]. Moreover, the
results yield insight into supercontinuum generation in bulk material.
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I. INTRODUCTION

A complete characterization of temporal and spectral
coherence properties of nonstationary light fields, such as
supercontinuum pulses, requires knowledge of the two-time
mutual coherence function (MCF) and the two-frequency
cross-spectral density function (CSD), respectively [1–8]. To
date, there is no measurement technique by which one could
measure the MCF and CSD directly. In practice, one can mea-
sure individual pulses, utilizing nonlinear pulse measurement
techniques such as frequency-resolved optical gating (FROG)
[9] or spectral phase interferometry for direct electric-field
reconstruction (SPIDER) [10,11], and then construct the
two-point correlation functions numerically [12]. This is a
time-consuming process, although it yields a large amount
of correlation information. However, one is often concerned
with only the overall degree of spectral coherence of the field,
because a completely coherent field produces the shortest
possible pulse [11,13–15] and the most stable optical fre-
quency combs [16–20]. The overall degree of coherence can
be found as a root-mean-square average of the absolute value
of either the CSD or MCF. In other words, the extremely time-
consuming process of finding the data for a large correlation
function is used to generate a single number that evaluates the
overall coherence of the field.

In Ref. [21] a cross-correlation-type experiment was pro-
posed to find quantitative information about the coherence
properties of such pulsed fields. The method was applied
to numerically generated supercontinuum realizations, and it
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was proposed that it is possible to reconstruct the quasicoher-
ent part of the CSD in this manner. Additionally, in Ref. [22]
the coherence properties of bulk-generated supercontinuum
pulses were investigated numerically, where it was shown that
their dynamics are more involved than in the case of a fiber-
generated supercontinuum. In particular, it was shown that the
temporal and spectral coherence properties of bulk-generated
supercontinuum pulses were high even if the pumping was
much higher than the threshold of supercontinuum generation,
in contrast to the fiber case.

Most of current supercontinuum research has focused on
fiber-generated supercontinua, due to the simplification of the
physical picture when the spatial degree of freedom is re-
moved. The spatial confinement also leads to lower threshold
energies, and supercontinuum generation has been observed
even with high-power continuous wave pumps [23]. However,
the dynamics of a fiber supercontinuum lead to a chaotic
time evolution when the pump power is increased above a
certain threshold, leading to low temporal coherence [2,3,12].
Moreover, fibers may be susceptible to optical damage, and
therefore it is difficult to reach large supercontinuum energies.
On the other hand, the dynamics in the bulk case are entirely
different, and the power can be scaled by increasing the spatial
width of the pump pulse. Therefore there can be instances
where bulk media are preferred over fiber.

In the present study, we have experimentally verified some
of the results presented in Ref. [22], by employing the tech-
nique suggested in Ref. [21]. Moreover, we have gained
insight into the dynamics of the bulk-generated supercontin-
uum. We first theoretically show that the cross correlation
can in fact retrieve the overall degree of spectral coherence
in a single measurement, requiring only minimal numeri-
cal processing. We then move on to experimentally test the
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method with bulk-generated supercontinuum pulses that fea-
ture a spectral width of up to ∼300 nm. The overall degree
of spectral coherence was extracted with a single measure-
ment, and it was even possible to approximately reconstruct
the quasicoherent contribution to the CSD from measured
temporal data. Our results show evidence that in the case
of a bulk-generated supercontinuum, the different nonlinear
processes have entirely different coherence properties when
compared with the fiber case.

II. THEORY OF MEASUREMENT

Considering pulses propagating towards the positive half-
space z > 0, we denote a collimated scalar field at the
transverse position ρ = (x, y) by the complex analytic signal
E (ρ; t ), where t is the time in the moving reference frame
of the pulse, such that t = 0 is at the center of the pulse.
The spectral domain field, E (ρ; ω), is attained via Fourier
transform,

E (ρ; t ) = F{E (ρ; ω)} = 1

2π

∫ ∞

0
E (ρ; ω) exp (−iωt )dω,

(1)

where the lower limit is zero due to analyticity. Let us take
two different time domain pulses from the same pulse train,
Ei(ρ; t ) and Ej (ρ; t ), where i �= j, and correlate them. Such
a situation may be experimentally encountered, for example,
when the repetition rate of a pulsed laser is high enough for
one to employ an unbalanced Michelson interferometer, such
as in Ref. [12].

In this case, the temporal field exiting the interferometer is
given by

E (ρ; t,�t ) = Ei(ρ; t ) + Ej (ρ; t + �t ), (2)

where the time delay, �t , can be chosen such that the overlap
between the pulses varies. If we place a detector at the exit
port of the interferometer, it will measure the time-integrated
intensity pattern, i.e., I (ρ; �t ) = ∫ 〈|E (ρ; t,�t )|2〉dt , which
takes on the form

I (ρ; �t ) = Ii(ρ) + I j (ρ)

+ 2 Re

{∫
〈E∗

i (ρ; t )Ej (ρ; t + �t )〉dt

}
, (3)

where Ii and I j stand for the individual time-integrated pulse
intensities, Re is the real part, and angle brackets denote
ensemble averaging over a large number of pulses. The last
part of this relation is the cross-correlation term, 〈X (ρ; �t )〉 =∫ 〈E∗

i (ρ; t )Ej (ρ; t + �t )〉dt , and therefore we can write

I (ρ; �t ) = Ii(ρ) + I j (ρ) + 2|〈X (ρ; �t )〉| cos[�(ρ; �t )],
(4)

where �(ρ; �t ) is the phase of the cross correlation, which
can be found from the positions of the interference fringes.
The absolute value of the cross-correlation term is encoded
into the visibility of interference fringes.

In Ref. [21], it was shown that the cross correlation is
related to the quasicoherent part of the power spectrum, as
in

〈X (ρ; �t )〉 ≈ F{Sqc(ρ; ω)}, (5)

with Sqc(ρ; ω) = |〈E (ρ; ω)〉|2 being the quasicoherent part of
the spectrum [2,3,12], evaluated at the spatial position ρ. The
approximation becomes better the more pulse pairs the mea-
surement includes. Hence we can extract the quasicoherent
part of the spectrum with

Sqc(ρ; ω) = F−1{|〈X (ρ; �t )〉| cos[�(ρ; �t )]}
= F−1{[I (ρ; �t ) − Ii(ρ) − I j (ρ)]/2}, (6)

and F−1 denotes the inverse Fourier transform. Since the
inverse Fourier transform is over a real function, the result
will contain duplicate information at negative and positive
frequencies.

The CSD—which contains all spectral correlation proper-
ties of the field—can be divided into two contributions; that
is,

W (ρ, ρ; ω1, ω2) = Wqc(ρ, ρ; ω1, ω2) + Wqs(ρ, ρ; ω1, ω2),
(7)

where the subscripts “qc” and “qs” stand for quasicoherent
and quasistationary, respectively. The special characteristic of
these two contributions is that they are separable in different
coordinate systems; the quasicoherent part separates in the
absolute coordinates (ω1, ω2), whereas the quasistationary
part can be separated in average and difference coordinates
(ω̄,�ω), where ω̄ = (ω1 + ω2)/2 and �ω = ω2 − ω1. Natu-
rally, the higher the degree of coherence is, the more weight
the quasicoherent part has, and we will thus be focusing on
this contribution.

We can use the quasicoherent part of the power spectrum
to estimate the coherent contribution of the CSD, as in

|Wqc(ρ, ρ; ω1, ω2)| ≈ √
Sqc(ρ; ω1)

√
Sqc(ρ; ω2), (8)

as well as the normalized spectral degree of coherence

|μqc(ρ, ρ; ω1, ω2)| ≈
√

Sqc(ρ; ω1)√
S(ρ; ω1)

√
Sqc(ρ; ω2)√
S(ρ; ω2)

, (9)

where the overall spectral density, S(ρ; ω), can be found with
some other method, such as autocorrelation or a spectrome-
ter. Unfortunately, as these quantities do not carry any phase
information, the MCF cannot be constructed from these data.

Usually, one wishes to quantify the overall degree of co-
herence with some single numerical value. In the case of
bulk-generated supercontinuum light, this value may depend
on the spatial position, since the pump power varies across the
beam. Therefore we can define a position-dependent overall
degree of spectral coherence as

μ̄(ρ)2 =
∫∫ |W (ρ, ρ; ω1, ω2)|2 dω1dω2∫∫

S(ρ; ω1)S(ρ; ω2) dω1dω2
, (10)

which is constrained between 0 and 1, signifying complete
spectral incoherence and coherence, respectively. This can be
simplified by substituting from Eq. (8) and noting that the
integrals are separable, thus yielding

μ̄(ρ) ≈
∫ ∞

0 Sqc(ρ; ω) dω∫ ∞
0 S(ρ; ω) dω

. (11)

In practical terms, Eq. (11) is simply the ratio between the
coherent power and the overall power.
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Furthermore, if we replace Sqc(ρ; ω) with its inverse
Fourier transform and note that

∫
S(ρ; ω)dω = √

Ii(ρ)I j (ρ),
we get the expression

μ̄(ρ) ≈
∫ ∞

0

∫ ∞
−∞〈X (ρ; �t )〉 exp (iω�t )d�t dω√

Ii(ρ)I j (ρ)
. (12)

We can now change the order of integration and compute the
ω integral first, yielding

μ̄(ρ) ≈
∫ ∞
−∞〈X (ρ; �t )〉δ(�t )d�t√

Ii(ρ)I j (ρ)
, (13)

where δ(x) is the Dirac delta function. Performing the last
integral gives the straightforward result

μ̄(ρ) ≈ 〈X (ρ; 0)〉√
Ii(ρ)I j (ρ)

. (14)

Applying this to the measured intensity pattern of Eq. (4), we
obtain

I (ρ; 0) ≈ Ii(ρ) + I j (ρ) + 2
√

Ii(ρ)I j (ρ)|μ̄(ρ)| cos[�(ρ, 0)].
(15)

Therefore the overall spectral degree of coherence can be
evaluated with only one temporal measurement point, which
happens to be at zero time delay. Moreover, the approximation
becomes better the more coherent the measured field is.

III. EXPERIMENTAL CONSIDERATIONS

In the following experiments, we employ a spectrally par-
tially coherent source: a bulk-generated supercontinuum. We
are interested in three operation regimes: at threshold, just
above it, and strong pumping. To remove any coherence ef-
fects caused by the pump pulse, we generate supercontinuum
pulses in two different sapphire plates, both of which are
seeded with a copy of the same pump pulse. This is equivalent
to generating a supercontinuum pulse train with a completely
coherent pump pulse train, from which two different super-
continuum pulses are picked and interfered. Our approach is
just far simpler to practically demonstrate, since the stability
constraints on the pump pulse are lower, and there is no
need for large delay lines to get subsequent pulses from the
train. In the last set of our experiments, we also remove the
pump wavelengths entirely, by employing a short-pass filter.
This ensures that we are probing only the properties of the
nonlinearly generated frequencies. Note that the pump power
may be significantly higher than the supercontinuum power,
since we are operating in the normal dispersion regime [24].

The experimental setup is illustrated in Fig. 1. We employ
femtosecond pulses from a mode-locked Ti-sapphire laser
(Continuum Integra C-5) as the pump. The laser has a center
wavelength of 792 nm, approximately 8 nm spectral width,
and 1 kHz repetition rate. The incident beam is passed through
a spatial Gaussian apodizing filter (F) to generate a clean
Gaussian beam of 5 mm width, and focused with a lens (L)
of focal length of 300 mm. Using a 50:50 beam splitter (BS1;
Thorlabs BS014), we divide the beam into two arms of a
Mach-Zehnder-type interferometer, such that the split beams
focus onto two 5-mm-thick sapphire plates (S1 and S2).

FIG. 1. Schematic diagram of the experimental setup. F, spatial
Gaussian filter; L, focusing lens (300 mm); ND, neutral density filter
with variable transmittance; S1 and S2, 5-mm-thick sapphire plates;
AL1 and AL2, positive achromatic lenses of focal length 150 mm;
M, mirror; BS1 and BS2, beam splitters; CMOS, camera; FS, fiber
spectrometer; out1 and out2, outputs 1 and 2.

The overall power of the pump pulse is controlled before
the input. To obtain identical pumping conditions at the two
plates, we use the same lens to focus the beam in both arms
(placed before BS1) and balance the intensities with a neutral
density filter (ND) in one of the arms. After the plates, we
use two achromatic lenses of focal length 150 mm (AL1 and
AL2), to collimate the output supercontinuum beams. Delay is
introduced to one of the arms with a piezoelectric translation
stage (P-611.1S from PI Store), which has a step size of ≈ 10
± 2 nm and a travel range of 100 μm.

The collimated beams are then superimposed on a camera
[complementary metal-oxide semiconductor (CMOS); Thor-
labs DCC1545M-GL] at output 1 of the second beam splitter
(BS2; Thorlabs BSW26R). The alignment is done in such a
way that the beam centers from both arms overlap with each
other. Utilizing the last two mirrors of the second arm, we
control the tilt angle of the beam, and hence the fringe width
of the interference pattern on the camera without changing
beam position. At output 2 we measure the power spectrum
with a spectrometer (AvaSpec-2048).

Our setup can be used to measure the position-dependent
cross-correlation function for various different pumping con-
ditions. We adjust the power of the incident beam with a
half-wave plate and a linear polarizer. Since the repetition
rate of the femtosecond laser is 1 kHz, the pulse energies are
particularly simple to find from the measured incident power.
We measure the power after the first beam splitter (BS1 in
Fig. 1) in both arms, which are listed in Table I.

TABLE I. Different pumping conditions. The pump pulse full
width at half maximum (FWHM) is ≈ 200 fs, and the beam radius
at the focal spot is ≈ 25 μm. The colors refer to the colors used in
Fig. 3.

Power levels Power (mW) Energy (μJ)

Below threshold (red) 1.22 1.22
At threshold (green) 1.31 1.31
Above threshold (blue) 1.63 1.63
High pumping (black) 2.4 2.4
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FIG. 2. Illustration of the measured interference fringes, at
above-threshold pumping and zero delay at the center of the beam.
(a) Observed interference I (ρ), (b) normalized interference fringes
Inorm(ρ), (c) degree of coherence, and (d) cropped red marked
part of (c) used further to calculate the intensity-normalized cross-
correlation function.

IV. RESULTS

Allowing light only from the first arm measures Ii(ρ),
whereas I j (ρ) is found by blocking the other arm. Keeping
both arms open produces the interference pattern I (ρ; �t ),
which we then normalize using the individual intensities

Inorm(ρ; �t ) = I (ρ; �t ) − Ii(ρ) − I j (ρ)

2
√

Ii(ρ)I j (ρ)
. (16)

We show a typical measured interference pattern at zero delay
in Fig. 2(a) and the extraction of the degree of coherence
in Figs. 2(b)–f(d). The fringes are removed with the use of
standard Fourier signal processing techniques [25,26].

Once we get the normalized interference pattern, we pick a
central location around x = 0, which is plotted in Fig. 2(d),
and average a small segment along the x direction to get
|μ̄(0, y; �t )|. In our experiments, the fields were rotationally
symmetric, and therefore measuring along the y axis yields the
same information as |μ̄(ρ; �t )|. The decrease in the overall
degree of coherence along the y axis is due to crossed wave
fronts, which causes position-dependent time delay. However,
we can compensate for this by scanning the piezo stage,
causing the maximum fringe visibility to move over the inter-
ference pattern. Note that there is no position-dependent time
delay along the x axis in this particular setup, as can be seen
from Fig. 2(c). Moreover, the position-dependent time delay
could be entirely removed by setting the wave fronts parallel
and scanning the delay instead to see the interference [27].
We repeat the measurement for the three different pumping
conditions.

In Fig. 3(a), we demonstrate the measured normalized
cross correlation as a function of delay at the beam center
(x = 0, y = 0). Different colors in the figure correspond to
different pumping levels. Looking at Fig. 3, one can imme-
diately recognize that the overall degree of spectral coherence

FIG. 3. (a) Measured intensity-normalized cross-correlation
function at the beam center. Different colors represent different
pumping conditions. Red, below threshold; green, at threshold; blue,
above threshold; black, high pumping. (b) The overall degree of spec-
tral coherence (solid lines) and intensity distribution (dotted lines)
plotted against the left and right axes, respectively, as a function
of position. The colors are otherwise the same as in (a), with one
extra color for high pumping with a low-pass filter (magenta). The
cross-correlation trace for the filtered high-pumping case is shown in
Fig. 4, with substantially higher resolution.

(|μ̄(ρ, 0)|) is close to unity for all considered pumping condi-
tions. For the pump pulse only, the cross correlation reduces
to the autocorrelation (red line) and the zero time delay corre-
sponds to visibility near 1, as one would expect. However, we
see a dip in the overall degree of coherence at threshold, and
the coherence of the field increases as pumping is increased.
This is in perfect agreement with Ref. [22].

Next, we introduce a short-pass filter at the output of the
interferometer, with a cutoff wavelength of 750 nm (Thorlabs
FESH0750) to remove the pump wavelengths in the high-
pumping case. This dramatically changes the measured cross
correlation, and the measured overall degree of spectral co-
herence goes down to μ̄ ≈ 0.5 [see Fig. 3(b)]. Unfortunately,
our temporal delay axis does not contain enough data points
for reliable direct retrieval of the quasicoherent part of the
spectrum with Eq. (6). Therefore we investigate the spatial
dependence of the supercontinuum to find out whether it is
possible to extract more data by exploiting the time delay due
to crossed wave fronts and return to the filtered case later.

In Fig. 3(b), we present the measured position-dependent
overall degrees of spectral coherence for all considered pump-
ing conditions. First, let us consider the unfiltered cases.
Again, the overall trend in the measured degree of coherence
is similar to what was found in Ref. [22]; the lowest coherence
is found at the center of the beam when the pumping is
at supercontinuum generation threshold. However, the drop
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FIG. 4. (a) Measured cross-correlation trace for the high-
pumping case after introducing a low-pass filter, where we have both
the absolute value (blue), as well as the phase (red). (b) Measured
power spectrum with low-pass filter (blue) and retrieved Sqc (red).
The quasicoherent contribution should never exceed the overall spec-
trum, and the short-wavelength end is dominated by noise.

in coherence is not as significant as what was predicted by
numerical simulations. This is probably due to the slightly
different pumping conditions compared with those in the nu-
merical case, as we could not exactly duplicate them.

Moving on to the filtered case, we see that in this case the
temporal properties are only weakly dependent on the spatial
position (magenta line in Fig. 3), and therefore we can attain a
very good approximation of the cross correlation by exploiting
crossed wave fronts. Now, we handle the data slightly dif-
ferently: We take the cross section along the y axis—which
contains the temporal cross-correlation data due to the time
delay along the y axis—for all piezo-stage-induced delays and
extract the absolute value and phase with standard Fourier
signal processing. We then take the data from each measure-
ment and concatenate the extracted values. The absolute value
was directly found with this method, whereas the (reduced)
phase was found by removing a constant linear term. Only
weak position dependence was found, and Fig. 4(a) depicts
the retrieved values.

Next, we attempt to retrieve the quasicoherent part of the
spectrum with Eq. (6). In principle, the retrieval can be done
with a simple fast Fourier transform. However, since our band-
width is quite large (∼300 nm), the cross-correlation trace
has to be measured with very good resolution. The employed
piezo stage can reach such resolution, but the rest of the
setup is susceptible to vibration. Therefore the time domain
signal forms a convolution between vibration noise and the
quasicoherent part of the spectrum, and a lot of the temporal
resolution is lost. Doing a direct fast Fourier transform on the
data presented in Fig. 4(a) results in a quasicoherent spectrum
which shows only the filter edge. This is because the longer

FIG. 5. Constructed Wqc and μqc. The degree of coherence attains
values higher than unity below ∼475 nm, but as this is not physically
possible, any values above 1 are cut off.

wavelengths do not require as good resolution as the shorter
ones.

Thankfully, we have two additional data constraints that
can be used to deconvolve the quasicoherent part of the spec-
trum from the vibration noise. First, we know that the overall
degree of coherence has to be on the order of μ̄ ≈ 0.5, and
according to Eq. (11), this means that the quasicoherent part
of the field has about half of the energy of the total field.
Second, we observed that the fringe spacing changed when
the filter was introduced. The spacing is determined by the
central frequency of the field, which was found to be about
635 nm in the filtered case. Since time domain convolution is
equal to frequency domain multiplication, we can deconvolve
the data by dividing the retrieved Sqc with a Gaussian noise
spectrum, such that the position and width are fixed by the
two additional constraints.

The retrieved quasicoherent part of the spectrum is found
in Fig. 4(b), together with the overall spectrum measured with
a spectrometer. As can be seen from the figure, the spectral
coherence is greatest near the pump, and it decreases toward
shorter wavelengths. The signal-to-noise ratio of the retrieved
Sqc also decreases when moving towards shorter wavelengths,
and from ∼475 nm onward, noise becomes dominant. There
is no method to remove this noise, since the deconvolution
increases the noise floor as well. Therefore the blue end of
the quasicoherent spectrum does not reliably reproduce the
coherence properties of the field.

Finally, we employ the retrieved Sqc to form the quasico-
herent part of the CSD as well as the quasicoherent part of
the spectral degree of coherence, as outlined in Eqs. (8) and
(9) (Fig. 5). Due to increasing noise power toward shorter
wavelengths, the results are reliable only up to ∼475 nm, after
which the field gains impossibly high coherence (μqc > 1).

V. DISCUSSION AND CONCLUSIONS

In this paper, we have first theoretically established that
the cross-correlation technique introduced in Ref. [21] can
be used to find the overall degree of spectral coherence in
a single measurement. Furthermore, we have experimentally
demonstrated the cross correlation by measuring the bulk-
generated supercontinuum and consequently confirmed the
theoretical predictions made in Refs. [21,22]. The qualita-
tive agreement between the earlier numerical results and the
experimental results presented here is very good, with both
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showing similar features. For example, there is a dip in the
overall degree of coherence at the supercontinuum generation
threshold in the center of the beam, and the overall degree
of coherence increases with increasing pump power. These
features are exactly the same as what was found in numerical
simulations, although the dip in overall degree of coherence is
not as large. This can be attributed to the differences between
the experiment and simulation pumping conditions, since we
could not exactly replicate the numerical parameters.

After confirming the results from our earlier studies, we
went on to characterize the properties of the bulk-generated
supercontinuum in more detail. This was accomplished by
placing a short-pass filter at the output of the interferometer,
which removed all of the pump power, and therefore we could
measure frequencies that were nonlinearly generated. This
caused the measured overall degree of coherence to plummet
from near unity to about μ̄ ≈ 0.5. The sharp decrease in the
spectral coherence shows that the majority of the correlations
in the field were due to the pump pulse. This would suggest
that the increase in coherence as pumping is increased is
mainly due to a saturation of the supercontinuum generation,
and the nonlinear efficiency decreases with increasing power
density.

The data attained from the cross-correlation measurements
were then used to retrieve Sqc and later employed to form
Wqc, as well as μqc. By examining the correlation functions
and the spectra, it is evident that the majority of the co-
herent contribution is near the pump, which is produced by
anti-Stokes shift. On the other hand, the higher frequencies
generated by self-phase modulation [23] feature a degree of

coherence below 0.5 for all wavelength pairs, and the highest
power peak located at ∼490 nm features a degree of coherence
on the order of ∼0.3. Hence our results suggest that in the
case of bulk-generated supercontinuum, stimulated Raman
scattering is a coherent process, whereas self-phase modu-
lation driven broadening causes incoherence. This is rather
surprising, since the roles of these two nonlinear effects are
reversed when comparing with the supercontinuum generated
in a normal dispersion fiber [24]. Our results apply to a pump
pulse of about 200 fs length, and a more detailed study of the
effect of pump pulse duration may give further insight into
these properties.

In conclusion, we have experimentally established a
method for relatively simple retrieval of spectral coherence
properties, from measured time domain data. The quasicoher-
ent part of the correlation function can be retrieved even for
a supercontinuum source, although it requires deconvolution
steps if the setup is not ultrastable. More importantly, it is
possible to find the overall degree of spectral coherence of
the field with a single simple measurement. This allows for
extremely fast evaluation of the stability of the field, which
is crucial for generating short pulses and stable frequency
combs.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the
Academy of Finland Flagship Programme (PREIN-Decisions
No. 320165 and No. 320166) and Academy of Finland
Projects No. 322002 and No. 333938.

[1] A. Forbes, Laser Beam Propagation: Generation and Propaga-
tion of Customized Light (CRC Press, Boca Raton, FL, 2014).

[2] G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, Second-
order coherence of supercontinuum light, Opt. Lett. 35, 3057
(2010).

[3] G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, Complete
characterization of supercontinuum coherence, J. Opt. Soc. Am.
B 28, 2301 (2011).

[4] R. Dutta, A. T. Friberg, G. Genty, and J. Turunen, Two-time
coherence of pulse trains and the integrated degree of temporal
coherence, J. Opt. Soc. Am. A 32, 1631 (2015).

[5] R. Dutta, J. Turunen, G. Genty, and A. T. Friberg, Tem-
poral coherence characterization of supercontinuum pulse
trains using Michelson’s interferometer, Appl. Opt. 55, B72
(2016).

[6] H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski,
Spectral coherence properties of temporally modulated station-
ary light sources, Opt. Express 11, 1894 (2003).

[7] H. Lajunen, J. Tervo, and P. Vahimaa, Overall coherence and
coherent-mode expansion of spectrally partially coherent plane-
wave pulses, J. Opt. Soc. Am. A 21, 2117 (2004).

[8] H. Lajunen, P. Vahimaa, and J. Tervo, Theory of spatially and
spectrally partially coherent pulses, J. Opt. Soc. Am. A 22, 1536
(2005).

[9] R. Trebino, Frequency-Resolved Optical Gating: The Measure-
ment of Ultrashort Laser Pulses (Kluwer, Boston, 2000).

[10] C. Iaconis and I. A. Walmsley, Spectral phase interferometry for
direct electric-field reconstruction of ultrashort optical pulses,
Opt. Lett. 23, 792 (1998).

[11] I. A. Walmsley and C. Dorrer, Characterization of ultra-
short electromagnetic pulses, Adv. Opt. Photon. 1, 308
(2009).

[12] M. Närhi, J. Turunen, A. T. Friberg, and G. Genty, Experimental
Measurement of the Second-Order Coherence of Supercontin-
uum, Phys. Rev. Lett. 116, 243901 (2016).

[13] P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F.
Wyrowski, Partially coherent Gaussian pulses, Opt. Commun.
204, 53 (2002).

[14] V. V. Kozlov, N. N. Rosanov, and S. Wabnitz, Obtaining single-
cycle pulses from a mode-locked laser, Phys. Rev. A 84, 053810
(2011).

[15] V. V. Kozlov and N. N. Rosanov, Single-cycle-pulse passively-
mode-locked laser with inhomogeneously broadened active
medium, Phys. Rev. A 87, 043836 (2013).

[16] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Accu-
rate measurement of large optical frequency differences with a
mode-locked laser, Opt. Lett. 24, 881 (1999).

[17] T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency
metrology, Nature (London) 416, 233 (2002).

[18] V. Torres-Company, H. Lajunen, and A. T. Friberg, Effects of
partial coherence on frequency combs, J. Eur. Opt. Soc. Rapid
Publ. 2, 070071-4 (2007).

104310-6

https://doi.org/10.1364/OL.35.003057
https://doi.org/10.1364/JOSAB.28.002301
https://doi.org/10.1364/JOSAA.32.001631
https://doi.org/10.1364/AO.55.000B72
https://doi.org/10.1364/OE.11.001894
https://doi.org/10.1364/JOSAA.21.002117
https://doi.org/10.1364/JOSAA.22.001536
https://doi.org/10.1364/OL.23.000792
https://doi.org/10.1364/AOP.1.000308
https://doi.org/10.1103/PhysRevLett.116.243901
https://doi.org/10.1016/S0030-4018(02)01240-3
https://doi.org/10.1103/PhysRevA.84.053810
https://doi.org/10.1103/PhysRevA.87.043836
https://doi.org/10.1364/OL.24.000881
https://doi.org/10.1038/416233a
https://doi.org/10.2971/jeos.2007.07007


SINGLE-SHOT MEASUREMENT OF OVERALL DEGREE OF … PHYSICAL REVIEW B 105, 104310 (2022)

[19] N. R. Newbury and W. C. Swann, Low-noise fiber-laser fre-
quency combs, J. Opt. Soc. Am. B 24, 1756 (2007).

[20] S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and
G. Steinmeyer, Direct frequency comb synthesis with arbitrary
offset and shot-noise-limited phase noise, Nat. Photon. 4, 462
(2010).

[21] M. Koivurova, L. Ahad, G. Geloni, T. Setälä, J. Turunen, and
A. T. Friberg, Interferometry and coherence of nonstationary
light, Opt. Lett. 44, 522 (2019).

[22] A. Halder, V. Jukna, M. Koivurova, A. Dubietis, and J. Turunen,
Coherence of bulk-generated supercontinuum, Photon. Res. 7,
1345 (2019).

[23] J. M. Dudley, G. Genty, and S. Coen, Supercontinuum genera-
tion in photonic crystal fiber, Rev. Mod. Phys. 78, 1135 (2006).

[24] A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, Limits
of coherent supercontinuum generation in normal dispersion
fibers, J. Opt. Soc. Am. B 34, 764 (2017).

[25] M. Koivurova, H. Partanen, J. Lahyani, N. Cariou, and
J. Turunen, Scanning wavefront folding interferometers,
Opt. Express 27, 7738 (2019).

[26] A. Halder, H. Partanen, A. Leinonen, M. Koivurova, T. K.
Hakala, T. Setälä, J. Turunen, and A. T. Friberg, Mirror-based
scanning wavefront-folding interferometer for coherence mea-
surements, Opt. Lett. 45, 4260 (2020).

[27] A. Efimov, Lateral-shearing, delay-dithering Mach–Zehnder in-
terferometer for spatial coherence measurement, Opt. Lett. 38,
4522 (2013).

104310-7

https://doi.org/10.1364/JOSAB.24.001756
https://doi.org/10.1038/nphoton.2010.91
https://doi.org/10.1364/OL.44.000522
https://doi.org/10.1364/PRJ.7.001345
https://doi.org/10.1103/RevModPhys.78.1135
https://doi.org/10.1364/JOSAB.34.000764
https://doi.org/10.1364/OE.27.007738
https://doi.org/10.1364/OL.398704
https://doi.org/10.1364/OL.38.004522

