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Photoinduced dynamics of a quasicrystalline excitonic insulator
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We study the photoinduced dynamics of the excitonic insulator in the two-orbital Hubbard model on the
Penrose tiling by means of the time-dependent real-space mean-field approximation. We show that, with
a single-cycle electric-field pulse, the bulk (spatially averaged) excitonic order parameter decreases in the
Bardeen-Cooper-Schrieffer (BCS) regime, while it increases in the Bose-Einstein condensate (BEC) regime.
This behavior is in common with the excitonic insulator in the square lattice reported previously. To explore the
dynamics peculiar to the Penrose tiling, we examine the coordination number dependence of observables and
analyze the perpendicular space. In the BEC regime, characteristic oscillations of the electron number at each
site are induced by the pulse, which are not observed in normal crystals with single coordination number. On
the other hand, the dynamics in the BCS regime is characterized by drastic change in the spatial pattern of the
excitonic order parameter. Our results imply that potentially interesting nonequilibrium physics is caused by rich
local structural patterns involved in quasicrystals.
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I. INTRODUCTION

Quasicrystals (QCs) are characterized by a long-range
order without translational symmetry. Experimental and the-
oretical efforts have been done to clarify physical properties
inherent in the QCs since its discovery in 1984 [1,2]. Recently
the scope of this field has been extended due to reports of new
quasicrystalline or approximant materials. One of the impor-
tant examples is the superconductivity observed in Al-Zn-Mg
quasicrystalline alloy [3], which exemplifies the existence
of ordered phases and pair condensation even in QCs. An-
other important example is semiconducting behavior in the
approximant Al-Si-Ru [4], which indicates the possibility of
semiconducting QCs and brings attention to the physics close
to the metal-insulator transition in QCs.

Despite of these efforts in research of QC, most of previ-
ous studies have mainly focused on static properties such as
transport and specific heat to characterize QC [5–14]. Their
nonequilibrium properties have only been studied in limited
setups [15,16] and are not well understood, in contrast to those
for the crystals. In normal crystals, the effect of photoexcita-
tions has been discussed [17–23], and novel properties have
been clarified such as nonthermal superconductivity [24–27]
and charge density orders [28–33]. When dynamical proper-
ties are analyzed in normal crystals, relevant physics is often
discussed in the momentum space. On the other hand, in QCs,
the momentum space is not well defined due to the lack of the
translational symmetry and such a discussion is not directly
applicable. Thus, a simple but important question arises: how
is the nonequilibrium (in particular photoinduced) dynamics
in QCs similar to or different from that in normal crystals?
One can also expect that a characteristic spatial dynamics
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is induced by photoexcitations in QCs reflecting their lattice
structure.

In order to answer the fundamental question for nonequi-
librium dynamics in QCs, we focus on the excitonic insulating
(EI) phase, which is known as the macroscopic quantum
condensed state of electron-hole pairs (excitons) in semimet-
als and semiconductors [34,35]. We choose the EI phase
because its nonequilibrium dynamics is recently actively
studied for normal crystals and this phase should be con-
ceptually relevant to the recently-reported semiconducting
approximant Al-Si-Ru and the superconducting QC Al-Zn-
Mg. In normal crystals, the research of the EI state has been
boosted due to recent proposals of candidate materials such
as Ta2NiSe5 [36,37] and 1T -TiSe2 [38,39]. Effects of strong
photoexcitations on these materials have been experimentally
investigated, where the enhancement [40], robustness [41] or
suppression [42–45] of the order have been reported depend-
ing on the excitation conditions. These experiments stimulate
further theoretical studies on nonequilibrium phenomena in
the EI phase [46–56]. In particular, it has been recently shown
that the photoinduced dynamics in the EI phase is qualitatively
different in the Bardeen-Cooper-Schrieffer (BCS) and Bose-
Einstein condensate (BEC) regimes, which can be explained
by the dynamics of the order parameters in the momentum
space [48,53].

In this paper, in light of these situations, we study the
photoinduced dynamics of the EI state on a QC, consid-
ering the setup similar to that for the square lattice [48].
Namely, we deal with the two-orbital Hubbard model on
the Penrose tiling [57], which is a prototypical theoreti-
cal model of the QCs, see Fig. 1. In our previous study
[58], we have explored the equilibrium EI state on this
model and found the characteristic condensation. In this
paper, we extend the previous work to nonequilibrium sys-
tems and study the model by means of the time-dependent
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FIG. 1. Vertex model on the Penrose tiling and eight types
of vertices. e1, . . . , e5 are projection of the translational
vectors in five dimensions, n = (n1, n2, n3, n4, n5) =
(1, 0, 0, 0, 0), . . . , (0, 0, 0, 0, 1). Using the integers {ni}, the
lattice point r is represented as r = ∑

i niei.

real-space mean-field (Hartree-Fock) approximation. We clar-
ify that the photoirradiation decreases (increases) the bulk
average of the EI order parameter in the BCS (BEC)
regime, which phenomena are similar to that in the Hubbard
model on the square lattice [48]. To explore the characteristic
dynamics on the Penrose tiling, we examine the coordination
number dependence of observables. It is found that charge
fluctuations are enhanced in the BEC regime, which have not
been observed in the conventional periodic systems. We also
analyze the dynamics in the perpendicular space, which al-
lows us to systematically discuss how the local environments
affect local physical quantities. It is found that the spatial
pattern of the EI order parameter changes remarkably in the
BCS regime. This paper is organized as follows. In Sec. II, we
introduce the two-orbital Hubbard model on the Penrose tiling
and our numerical technique. In Sec. III, we show the results
of numerical simulations. In Sec. III A, we explain the EI state
in equilibrium. In Sec. III B, we study the time-evolution of
the system triggered by the single-cycle pulse to explore the
dynamics peculiar to the Penrose tiling. Summary and outlook
are given in the last section.

II. MODEL AND METHOD

In this paper, we consider the two-orbital Hubbard model
to discuss the EI state at zero temperature. The Hamiltonian is
expressed as

Ĥ = − J
∑
〈i, j〉σ

(ĉ†
iσ ĉ jσ − f̂ †

iσ f̂ jσ ) + D

2

∑
iσ

(n̂ciσ − n̂ f iσ )

− μ
∑

iσ

(n̂ f iσ + n̂ciσ ) + U
∑

i

(n̂ci↑n̂ci↓ + n̂ f i↑n̂ f i↓)

+ V
∑
iσσ ′

n̂ciσ n̂ f iσ ′ , (1)

where f̂ †
iσ (ĉ†

iσ ) is a creation operator of the electron at site i
with spin σ ∈ {↑,↓} in the f orbital (c orbital), n̂ciσ = ĉ†

iσ ĉiσ

and n̂ f iσ = f̂ †
iσ f̂iσ . J (−J) is the hopping integral between the

nearest-neighbor sites in the f orbital (c orbital), D is the
energy difference between two bands, and μ is the chemical
potential. U (>0) is the intraorbital on-site interaction and
V (>0) is the interorbital on-site interaction. In the following,
we consider the half-filling condition, i.e., μ = U/2 + V .

In this paper, we treat the Penrose tiling as one of examples
in quasiperiodic lattices. It is composed of the fat and skinny
rhombuses and includes eight kinds of vertices [59,60], whose
coordination number (the number of bonds) takes 3 to 7, as
shown in Fig. 1. Here, we consider the vertex model [61],
where electrons are located at vertices and hop along edges
of rhombuses. We set the length of edge to 1.

To discuss photoinduced dynamics of the two-orbital Hub-
bard model on the Penrose tiling, we introduce the dipole
transition term between two bands. The corresponding Hamil-
tonian [48,53] is represented as

Ĥex(t ) = Fex(t )
∑

iσ

(ĉ†
iσ f̂iσ + H.c.), (2)

where Fex(t ) = F0 sin(ωt )θ (t )θ (tp − t ) expresses the time-
dependent external electric field. θ (t ) is the Heaviside step
function, |F0| is the magnitude of the external field, ω is
the frequency, and tp is the light irradiation time. Although,
in more realistic and general setups, we also need to treat
the intraband excitations, in this paper, we consider only the
interband transitions to keep the problem simple and imitate
the setup of the previous work for a normal crystal (the square
lattice) [48].

To study the nonequilibrium dynamics, we employ the
time-dependent real-space mean-field (MF) approximation.
This enables us to treat the large system size, which is im-
portant to discuss the effects of quasiperiodic structures and
electric properties inherent in the Penrose tiling [58,62–66].
While the MF theory can capture the large system, we note
that the time-dependent MF theory should be reliable for
simulating short-time dynamics but cannot handle long-time
dynamics involving the thermalization. Actually, this scope
of application of MF theory is confirmed in several previous
studies [51,55,67], where the MF theory and more sophis-
ticated theories (e.g., the nonequilibrium Green’s function
method) are compared in normal crystals. Strictly speaking,
also in the study of QCs, it is necessary to compare the sophis-
ticated theories and the MF theory as well to define the scope
of the application. However, this comparison is difficult at the
present because the sophisticated methods have large com-
putational cost in large-size systems, and small-size systems
cannot fully capture effects peculiar to QCs. In the future,
when sophisticated methods that can handle the dynamics in
large nonuniform systems are developed, comparison between
those sophisticated methods and the MF method is important
and necessary.

In the MF theory, we use the site-dependent MF parameters
that are represented by means of the wave function |ψ (t )〉 as

n f i(t ) = 〈ψ (t )| f̂ †
iσ f̂iσ |ψ (t )〉, (3)

nci(t ) = 〈ψ (t )|ĉ†
iσ ĉiσ |ψ (t )〉, (4)

�i(t ) = 〈ψ (t )|ĉ†
iσ f̂iσ |ψ (t )〉. (5)
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Here, n f i(t ) and nci(t ) are the electron numbers in f and c
orbitals, and �i(t ) is the order parameter of the EI state at
site i. Here, our discussions are restricted to the paramagnetic
case, where the spin indices are omitted. Strictly speaking,
one needs to consider the possibility of other orders, such as
charge orders and magnetic orders, to determine the rigorous
phase diagram in equilibrium. However, since the goal of
this paper is to clarify the effects of quasiperiodic lattices
on dynamics, we focus on the EI phase as in the previous
paper for the square lattice [48] and use the above sets of MF
parameters. The explicit form of the MF Hamiltonian is

Ĥ total
MF (t ) = J

∑
〈i, j〉

( f̂ †
i f̂ j −ĉ†

i ĉ j ) + D

2

∑
i

(n̂ci − n̂ f i ) + (2V −U )

×
∑

i

[{
nci(t ) − 1

2

}
n̂ f i +

{
n f i(t ) − 1

2

}
n̂ci

]
−

∑
i

[{V �i(t ) − Fex(t )} f̂ †
i ĉi + H.c.]. (6)

Detailed derivation of Eq. (6) is given in Appendix A. Then,
the time evolution of the ground state is expressed as

|ψ (t )〉 = Tt exp

[
− i

h̄

∫ t

0
Ĥ total

MF (t ′)dt ′
]
|ψ (0)〉, (7)

where Tt is the time-ordering operator and |ψ (0)〉 is the
ground state of Ĥ total

MF (t = 0).
If one examines the time evolution of the mean fields, it

is not necessary to calculate the wave function (7). Instead,
we evaluate the evolution of the single-particle density matrix
defined as

ρia, jb(t ) = 〈ψ (t )|b̂†
j âi|ψ (t )〉, (8)

where â†
i is a creation operator of the electron at site i and

a(= c, f ) orbital. Then, the time evolution of ρ(t ) is given by

ih̄
∂

∂t
ρ(t ) = [HMF(t ), ρ(t )]. (9)

Here, HMF(t ) (ρ(t )) is the matrix with elements HMF
ia, jb(t )

(ρia, jb(t )), and HMF
ia, jb(t ) is the matrix element of the MF

Hamiltonian (6) defined as Ĥ total
MF (t ) = ∑

ia, jb HMF
ia, jb(t )â†

i b̂ j .

Since HMF(t ) is a function of ρ(t ), we can numerically solve
Eq. (9). Here, we use the fourth-order Runge-Kutta method
with the time slice �t = 0.1h̄/J , where the numerical error is
negligible in our simulation with t < 100h̄/J .

When no external field is applied, the electron number at
site i in the a orbital is represented as

∂

∂t
nai(t ) = ∂

∂t
ρia,ia(t )

= − Ja

ih̄

{∑
m

ρia,ma(t ) −
∑

m

ρma,ia(t )

}
, (10)

where m runs the nearest neighbor sites for site i and Jc = −J ,
J f = J . Then, we obtain

∂

∂t
na(t ) = 0, (11)

where na(t ) = ∑
i nai(t )/N and N is the number of sites. This

is a natural consequence from the fact that the Hamiltonian
conserves the number of electrons in each orbital without the
electric field. Equation (11) is useful to check the numerical
accuracy in our simulations.

In the following, we take J as the unit of the energy and set
h̄ = 1. Thus, the units of time and frequency are h̄/J = 1 and
J/h̄ = 1, respectively. We treat the two-orbital Hubbard model
with U = D = 4. The Penrose tiling is generated in terms of
the deflation rule [57]. We mainly treat the large cluster with
the total sites N = 11006 under the open boundary condition
to discuss the real-time dynamics in the quasiperiodic system.
The finite size effect will be discussed in the Appendix C.

III. RESULTS

A. Equilibrium

Before starting with discussion of the nonequilibrium dy-
namics, we explain the EI state in equilibrium. At the first,
we comment about the excitonic condensation in the QC.
The concept of excitons is well defined even without the
momentum space. It can be regarded as the bound state
of an electron and a hole added to the normal semicon-
ducting state, which is the two-body problem interacting
with attractive interaction on the Penrose tiling. Without the
momentum space, we can define the energy “band” and en-
ergy gap (single-particle excitation gap) between bands by
looking at the eigenenergies of the single-particle states of
the Hamiltonian ĤMF(0). Therefore, we can understand that
the excitonic condensation occurs when the exciton bind-
ing energy is larger than the excitation gap. Of course, we
can understand this condensation as a spontaneous symmetry
breaking. Our model Hamiltonian Ĥ [Eq. (1)] has the U(1)
symmetry since the number of c− and f −orbital electrons
are conserved ([Ĥ,

∑
i ĉ†

i ĉi] = [Ĥ ,
∑

i f̂ †
i f̂i] = 0). When the

EI order is realized with nonzero �i, this symmetry is broken.
This situation is same as in the theoretical studies of super-
conductor on the Penrose tiling [62]. Note that in general and
realistic systems [68–70], the Hamiltonian has some discrete
symmetry instead of U(1) symmetry. The detailed study will
be discussed elsewhere.

Figure 2 shows the spatially-averaged EI order parameter
� and single-particle gap �Gap as a function of the interorbital
interaction V , where � = ∑N

i=1 �i(0)/N and we take �i(0)
as the positive value. �Gap is defined as the difference be-
tween the minimum energy of the unoccupied single-particle
states and the maximum energy of the occupied single-particle
states of Ĥ total

MF (t = 0). When V = 0, the system is metallic
since the level difference D is smaller than the bandwidth W .
Introducing V , the EI order is induced with the finite order
parameter � and the gap �gap opens around the Fermi level,
as shown in Fig. 2. Increasing the interaction, � and �gap

increase, have a maximum, and decrease. At V = Vc, the
order parameter � vanishes, and the quantum phase transition
occurs to the band insulating (BI) state. It is well known that,
in the EI state with 0 < V < Vc, the spatial extent of electron-
hole pair is larger in the weak coupling regime (V ∼ 0), while
is smaller in the strong coupling regime (V ∼ VC ). These
are characterized by the BCS and BEC regimes, respectively.
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FIG. 2. � and �Gap in the system with U = D = 4 and N =
11 006. The excitation gap in the BI state is given by 2V − W ,
which is shown with the light-blue dashed line. Here, W (	8.4) is
the bandwidth of the vertex model. We define the bandwidth as the
difference between the maximum and minimum energy eigenvalues
of the tight-binding model at U = D = V = 0.

Note that the boundary of the BCS and BEC regimes is
not well defined (it is a crossover) and conventionally there
are several criterions to determine the crossover regime. In
this paper, we decided to use the maximum point of the EI
order (V ∼ 3.35) as the boundary [48,52]. The difference
of the spatial extent of electron-hole pairs should be con-
firmed in the off-site electron-hole pair amplitude OP(ri j ) =
〈ψ (0)|ĉ†

i f̂ j |ψ (0)〉, where ri j is a distance between sites i and
j. Figure 3 shows that the pair amplitude in the BEC regime
decays faster than that in the BCS regime. This means that, in
the BCS regime, the electron-hole pairs are spatially extended,
while in the BEC regime, they are confined, as discussed
above. In the paper, we mainly focus on the cases with the
interorbital interactions V = 1.95 and 4.28 as examples of the

BCS and BEC states, where the single-particle gap is the same
(�gap = 0.2).

In Fig. 4, we show the density of states (DOS) and the
partial DOS for the a(= c, f ) orbital. These are defined as
ρc+ f (E ) = ρc(E ) + ρ f (E ) and

ρa(E ) = 1

2N

2N∑
p=1

(
N∑

i=1

|〈ia|φp〉|2
)

δ(E − Ep). (12)

where |φp〉 and Ep represent the wave function and energy of
the pth (single-particle) eigenstate of Ĥ total

MF (t = 0), which are
occupied in the ground state. |ia〉 is the wave function of an
a-orbital electron at site i. Two sharp peaks in ρc+ f (E ) orig-
inate from the existence of the macroscopic degenerate states
(confined states) characteristic of the Penrose tiling [58,61].
When the system is in the BCS regime, the width between
these two peaks is small, resulting in the large hybridization
between c and f orbitals. In fact, the DOS at the gap edges
is almost equally contributed by the partial DOSs for both
orbitals. On the other hand, in the BEC case with V = 4.28,
there are little overlap between ρc and ρ f , and thereby the
DOS around the lower (higher) edge originates from the f
(c) orbitals. In the following, we discuss the photoinduced
dynamics of the EI state in these two distinct regimes.

B. Photoinduced dynamics

In our study, we examine the time evolution of the EI states
in the BCS and BEC regimes to discuss the characteristic
dynamics of the Penrose tiling. We focus on the cases with
the interorbital interactions V = 1.95 and 4.28 as examples
of the BCS and BEC states. In these cases, the average of
the order parameter is different from each other while the
excitation gap takes the same value �Gap = 0.2, as shown in
Fig. 2. We consider the photoinduced dynamics triggered by
the single-cycle pulse with ω = 0.4 and tp = 2π/ω 	 15.7 as
in the previous study for the square lattice [48]. Here, we set
the photon energy ω twice the excitation gap �Gap so that it
excites the quasiparticles with the energy beyond the gap.

FIG. 3. Off-site electron-hole pair amplitude OP(ri j ) for the system with N = 11 006 and U = D = 4 in (a) the BCS regime with V = 1.95
and in (b) the BEC regime with V = 4.28. Note that the shortest distance between two sites is the length of diagonal of skinny rhombus, whose
length is

√
5−1
2 . The yellow (orange) dashed line represents the slope of data set for V = 1.95 (4.28). These are obtained by using the least

squares method for the data groups in (ri j, log10|OP/�|).
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FIG. 4. The partial DOS ρa(E ) and the total DOS ρc+ f (E ) in the system with U = D = 4 and N = 11006. Lower two figures show
enlarged view of upper figures around the Fermi level (E = 0). Here, we approximate the Dirac delta function by the Gaussian function√

1/πσ 2e−x2/σ 2
with a large value σ−2 (small standard deviation). We use σ−2 = 1000 for upper figures and σ−2 = 10 000 for lower figures.

Note that the edges of the gaps are not sharp due to the Gaussian function used on behalf of the Dirac delta function.

In the following, we analyze the dynamics of physical
quantities in three steps. Firstly, we focus on the spatial av-
eraged quantities. Secondly, we discuss their coordination
number dependence. Thirdly, we analyze physical quantities
using the perpendicular space, which provides detailed infor-
mation of their spatial pattern.

1. Spatial averaged values

Figure 5 shows the time evolution of bulk quantities
|�(t )| = ∑N

i=1 |�i(t )|/N and nc(t ) = ∑N
i=1 nci(t )/N in the

system with U = D = 4. These quantities are modulated by
the single-cycle pulse, and the behavior of the time evolution
depends on the field strength |F0| and the interaction V . We
find that no oscillation appears in the electron number for
each orbital when t > tp, as shown in Figs. 5(b) and 5(d). This
is consistent with the constraint (11), as discussed above. By
contrast, oscillatory behavior appears in the EI order param-
eter even when t > tp, and the frequencies of the oscillations
depend on the field strength, see Figs. 5(a) and 5(c). In the
BCS regime with V = 1.95, the EI order parameter becomes
smaller than the initial value |�(0)|. On the other hand, in
the BEC regime, physical quantities behave differently from
those in the BCS regime as shown in Figs. 5(c) and 5(d). In
particular, the amplitude of the EI order parameter increases.
Similar results, i.e., the increase (decrease) of the EI order
parameter in the BEC (BCS) regime, have been obtained in the
two-orbital Hubbard model on the square lattice [48]. In the
BCS regime, the results may seem natural since electron-hole
pairs are spatially extended and the detail lattice structure may

be less relevant for physical quantities. In the BEC regime,
when t = 0, the c orbital is almost empty and f orbital is
almost occupied. The introduction of the single-cycle pulse
rapidly increases the electron number in the c orbital, which
leads to the formation of electron-hole pairs since the system
remains coherent within the mean-field theory [50,51,71,72].
This picture is essentially the same as the explanation of the
dynamics in the BEC region in the normal lattice [53], which
is reduced to the dynamics of a two-level system.

2. Coordination number dependence

So far, we showed that the qualitative behavior of the
spatially-averaged quantities is similar to that in normal crys-
tals. We now focus on the spatial dependence of physical
quantities and explore the effects of the quasiperiodic struc-
ture in the nonequilibrium dynamics. One of the important
features of the Penrose tiling is that the coordination number
at site i Zi takes 3 to 7, in contrast to the square lattice with
Zi = 4. In the following, to avoid the boundary effects in the
system, we consider the bulk region. The definition of it is
explicitly shown in the Appendix B. The bulk region includes
N ′ = 7936 sites when one treats the system with N = 11 006.
To see the coordination number dependence of physical quan-
tities, we introduce the coordination-dependent averages as

|�(t )|α = 1

N ′
α

∑
i with Zi=α

|�i(t )|, (13)

nα
c (t ) = 1

N ′
α

∑
i with Zi=α

nci(t ), (14)
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FIG. 5. Time evolutions of |�| and nc in the system with N = 11006 and U = D = 4 after the single-cycle pulse is injected with several
F0. Upper panels are the results for the BCS case with V = 1.95, and lower ones are for the BEC case with V = 4.28. Horizontal-black lines
indicate the initial values at t = 0 and vertical-dotted lines indicate tp.

where N ′
α is the number of the lattice sites with Zi =

α (3, · · · , 7) in the bulk region. Figure 6 shows the results
for the system with F0 = −0.07, around which the changes of
|�| and nc are prominent as shown in Fig. 5. The standard
deviations of the quantities are drawn as the shaded areas.
We also plot averaged values |�(t )|′ = ∑

α N ′
α|�(t )|α/N ′ and

nc(t )
′ = ∑

α N ′
αnα

c (t )/N ′. In the BCS regime, we found that
all |�|α and nα

c behave as |�|′ and nc
′. Namely, the order

parameters decreases and its oscillation frequency is indepen-
dent of the coordination number, while the c-orbital electrons
increase for all α, as shown in Figs. 6(a) and 6(b). This similar
behavior for the bulk averaged values may be reasonable
since, in the BCS regime, electron-hole pairs are spatially
extended and physical quantities should not strongly depend
on the vertices. On the other hand, the coordination number
dependence is different between |�|′ and nc

′. We find that nα
c

is well classified by the coordination number, and nα
c is larger

for larger α both in and out of equilibrium. However, |�|α
is not in accordance with the order of α and the dynamics
of |�|α does not match with that of nα

c . This mismatch may
reflects that, in the BCS regime, the electron-hole pairs are
spatially extended and thus the excitonic properties are not
determined only by local structures (vertices). In the BEC
regime, we find that both |�|α and nα

c increase from the
initial values, and their dynamics is qualitatively similar to
each other, see Figs. 6(c) and 6(d). Both |�|α and nα

c are well
classified by the coordination number α, and they take larger
value for larger α. These behaviors should be attributed to
that, in the BEC regime, the electron-hole pairs are tightly
bounded and thus excitonic properties should be mainly de-
termined by local structures (vertices). The match between

|�|α and nα
c should be explained, by considering the atomic

limit J → 0 as Ref. [53]. In this limit, one can express the
EI order φ by the electron number nc as

√
1 − (nc − n f )2/2,

which explains the similar behavior of |�|α and nα
c . How-

ever, we cannot see the clear dependence of the oscillation
frequency of |�|α on the vertex type. The same thing happens
with other F0 in Fig. 5 (not shown). Figure 5(c) shows that
the frequency of spatial averaged order parameter changes
with F0 values. The changes in frequency due to F0 are phe-
nomena, which are also observed in crystals [48]. Therefore,
it is possible that the frequency depends more on the shape
and intensity of external field than coordination numbers.
The detailed analysis of the relation between the coordination
number and frequency of EI order parameter is treated in the
future work, and we do not discuss it further in this paper.

We now show that fluctuations of physical quantities can
host characteristic behaviors in QCs. For example, oscilla-
tory behavior appears in the electron number nα

c at t > tp

although their total number nc is always constant. Such
peculiar charge fluctuations have not been reported in the
square lattice. Furthermore, these are not clearly visible in
the BCS regime with V = 1.95. Since the change in nc in-
duced by the photoirradiation is large in the BEC case, a
charge oscillation is also large after the irradiation. Thus,
we can say that charge fluctuations are inherent in the BEC
regime. To look in detail the oscillatory behavior in nα

c for the
sites with Zi = α, we introduce the deviation from the time
average as

δñα
c (t ) = nα

c (t )

ñc(α)
− 1, (15)
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FIG. 6. Photoinduced dynamics of |�|α and nα
c for each α in the system after the single-cycle pulse is injected with F0 = −0.07. Upper

panels are the results for the BCS case with V = 1.95, and lower ones are for the BEC case with V = 4.28. Red lines represent |�|′ and nc
′,

and vertical-dotted lines represent tp. Note that nc
′ oscillates slightly although nc is conserved when t > tp, see Fig. 11 for an enlarged view of

nc
′.

where ñc(α)(= 1
t7−t1

∫ t7
t1

nα
c (t ) dt ) is an average in the in-

terval (t1, t7), and ti is the maximum or minimum in the
curve of n7

c (t ) with t > tp, see Fig. 7. We also plot δñc
′(t ) =

nc
′(t )/ñc

′ − 1 where ñc
′(= 1

t7−t1

∫ t7
t1

nc
′(t ) dt ). The results are

shown in Fig. 7. It is found that the charge oscillation induced
by the single-cycle pulse decays with increasing t . The small

FIG. 7. Photoinduced dynamics of δñα
c (t ) for each α in the BEC

case with V = 4.28 after the single-cycle pulse is injected with
F0 = −0.07. Red line represents δñc

′(t ).

change of δñc
′ (nc

′) is caused by the finite size effect, see the
Appendix C. We note that the quantities nα

c can be classified
into two groups {n6

c, n7
c} and {n3

c, n4
c, n5

c}, where the relative
phase of their oscillations is almost π . This difference is
consistent with the fact that the total number of electrons in
c orbital never changes when t > tp. We note that the total
number of electrons at each site (nci + n f i) remains unity
during the time evolution. Therefore, the charge oscillation is
distinct from a charge density wave induced by the pulse.

3. Perpendicular space analysis

Now we discuss the site dependence of physical quantities
from a bit different point of view using the perpendicular
space [73]. This space is useful since it allows us to systemati-
cally discuss how the local lattice structures affect the physical
quantities. On the Penrose tiling, each site is represented by
the five-dimensional vector n = (n1, n2, n3, n4, n5) with inte-
gers nμ as shown in Fig. 1. Its coordinate r is constructed by
the projection onto the two dimensions as

r = (x, y) = (n · ex, n · ey), (16)

where ex
μ = cos(φμ + θ0), ey

μ = sin(φμ + θ0), and φ =
2π/5. The initial phase θ0 is arbitrary and we set θ0 = − 3π

10
as an example. The projection onto the three-dimensional
perpendicular space is given by

r̃ = (x̃, ỹ) = (n · ẽx, n · ẽy), (17)

z̃ = n · ẽz, (18)
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FIG. 8. Time-evolution of δ[|�|′]i and δ[nc
′]i in the perpendicular space for the (a) BCS (V = 1.95) and (b) BEC (V = 4.28) cases with

F0 = −0.07. (c) Each domain is the region for the eight kinds of vertices shown in Fig. 1. The integer in parenthesis indicates the coordination
number for each vertex.

where ẽx
μ = cos(2φμ + θ0), ẽy

μ = sin(2φμ + θ0), and ẽz
μ = 1.

It is known that z̃ takes only four consecutive integers. In
each z̃ plane, the r̃ points densely cover a region of pentagon
shape. The pentagon in 3 − z̃ plane has the same size as
the pentagon in z̃ plane. Eight kinds of vertices, which are
quasiperiodically arranged in the real space as Fig. 1, are
mapped to distinct domains, as shown in Fig. 8(c). Therefore,
this perpendicular-space analysis allows us to discuss how
site-dependent physical quantities are characterized by the
local lattice structures, which include more information than
the coordination number.

Here, we calculate the deviation of the quantities,

δ[|�|′]i(t ) = |�i(t )|
|�(t )|′

− 1, (19)

δ[nc
′]i(t ) = nci(t )

nc(t )
′ − 1, (20)

and we show the results in Fig. 8. Now, we plot δ[|�|′]i and
δ[nc

′]i on z̃ and 3 − z̃ planes on the same plane because the

profiles for z̃ and 3 − z̃ planes are identical in the thermody-
namic limit (N → ∞). When the system belongs to the BCS
regime with V = 1.95, the average of nα

c is little changed by
the time evolution, as shown in Fig. 6(b). This is also found
in the perpendicular space, where δ[nc

′]i is almost constant
in each domain for the corresponding vertex, as shown in
Fig. 8(a). On the other hand, different behavior appears in
the distribution of |�i|. In the initial state at t = 0, the pat-
tern of δ[|�|′]i are different from that of δ[nc

′]i. Namely, the
EI order parameter is not correlated with the local electron
density. This means that the EI order parameters are not only
determined by the local condition, which is consistent with
that the electron-hole pairs are spatially extended in the BCS
regime. After the single-cycle pulse is injected, the pattern
of the order parameter is modified, while that of the electron
number is hardly changed. For example, let us look at the D
and J vertices. In the initial state, the magnitude of their order
parameters is smaller (larger) than the total average on the the
D (J) vertices. However, at t > 0, we find red and blue regions
in the D and J domains, which indicates the modulation of
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FIG. 9. Time-evolution of local charge fluctuations δ[ñc]i in the perpendicular space for the BEC case (V = 4.28) with F0 = −0.07.

the spatial pattern even within these domains. By contrast,
in the BEC case with V = 4.28, the pattern of δ[|�|′]i and
δ[nc

′]i are similar in the perpendicular space, and it is hardly
modified even after the excitation. This indicates that, in the
BEC case, the system is mainly described only by the local
lattice structures since electron-hole pairs are confined. We
note that the mismatch (match) between the patterns of the
EI order parameter and the c-orbital electron number in the
BCS (BEC) regimes is consistent with the behavior previ-
ously reported in superconductivity on the Penrose tiling in
equilibrium [62]. They found the mismatch (match) between
the patterns of superconducting order parameter and electron
number in the weak (strong) coupling regime. Our results
newly show that the pattern of order parameter is sensitive
against the excitation in the BCS regime, while it is insensitive
in the BEC regime.

Finally, we analyze the charge fluctuations using the per-
pendicular space. To see the spatial pattern of the charge
fluctuations, we show δ[ñc]i(t ) = nci(t )/ñc(Zi ) − 1 for the
BEC state (V = 4.28) with F0 = −0.07 in Fig. 9. In the
domains for S4 and S3 vertices where α = 6, 7 in the per-
pendicular space, we find that the quantities clearly oscillate
together with sign changes. By contrast, in the other domains
for α = 3, 4, and 5, we could not see clear oscillatory behavior
with sign changes. In addition, we find that the domain can
be further classified into some subdomains. For examples,
the D domain is split into seven subdomains, as shown in
Fig. 9. These two points are consistent with the fact that the
width of oscillations is smaller than its standard deviation, as
shown in Fig. 6(d). The existence of subdomain structures
implies that the local charge fluctuations are affected by not
only the coordination number but also the environment of the
connecting sites. In fact, such a subdomain structure in δ[ñc]i

is not changed during the time evolution.
We wish to note that even when the initial state is in

the band insulating state with �i = 0 and V > Vc, substan-
tial size of the excitonic order parameter appears due to the
single-cycle pulse and oscillatory behavior similar to the BEC
regime emerges (reported in Ref. [74]). This implies the ex-
istence of photoinduced transient EI order [72] in the QC,

and our results may be relevant for dynamics of photoexcited
semiconductors. Although neither of an excitonic insulator
or a semiconductor on a QC has been found up to now,
the semiconducting approximant Al-Si-Ru has recently been
synthesized [4]. We believe that semiconducting QC will be
synthesized in near future, and interesting excitonic properties
discussed here should be observed.

IV. SUMMARY AND OUTLOOK

In this study, we have examined the photoinduced dy-
namics of the EI phase in the two-orbital Hubbard model
on the Penrose tiling. We have shown that the dynamics is
qualitatively similar to that in the square lattice as far as we
focus on the bulk quantities. Namely, it is found that after the
single-cycle pulse is injected the magnitude of the EI order
parameters decreases in the BCS regime and it increases in the
BEC regime. Furthermore, we have demonstrated that spatial
dependence of physical quantities and their fluctuations show
characteristic behaviors in the Penrose tiling. Examining the
coordination number dependence in the physical quantities,
we have found oscillatory behavior of the c-orbital electron
number. Since the charge oscillation is not prominent in the
BCS regime, the induced charge fluctuations are inherent in
the BEC regime. We further clarified the difference of the
dynamics between the BCS and BEC regimes in terms of the
perpendicular space analysis. In the BEC regime, the patterns
of the EI order parameter and the number of c-orbital electron
are similar, which holds even after the photoexcitation. On
the other hand, in the BCS regime, the pattern of the EI order
parameter is distinct from that of the c-orbital electron num-
ber. In particular, the pattern of the order parameters changes
remarkably with the photoexcitation.

In our study, we showed that the rich local structures
involved in QCs can lead to interesting nonequilibirum dy-
namics of physical quantities. Still, to be strict, we have to
note that the similar spatial dependence may be also observed
in the normal crystals with multiple coordination numbers
or approximants. In order to rigorously identify the unique
features in QCs, further systematic comparison with various
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FIG. 10. The area within the dashed arc line indicates the bulk
region. The area between two yellow lines in the figure is one of the
ten equivalent regions defined by the C5v symmetry of the Penrose
tiling.

types of lattice may be needed. For such exploration, the
detailed analysis of the patterns in the perpendicular space
should be useful.

We also wish to comment on the experimental realization
of the EI state in QCs. Although we have studied the EI state in
the theoretically ideal situation, in real materials the existence
of the EI state and how to distinguish this state from other
ordered states are still controversial even in normal crystals
[40,41,43,45,70,75–88]. Thus, the direct experimental obser-
vation of the characteristic EI dynamics discussed in this
paper may be difficult. Still we believe that the photoinduced
nonequilibrium dynamics in quasicrystalline systems hosts
potentially interesting questions and our work should be a
milestone for researches in this direction. We expect that char-
acteristic spatial-dependent dynamics can also be observed in
various ordered phase, such as the superconducting phase and
the antiferromagnetic phase, in the QC. The perpendicular
space analysis should be useful also in these cases as we
demonstrated here. One of interesting topics in the field is
the role of the confined states, which are macroscopically
degenerate states peculiar to quasicrystals. In our previous
paper [58], it has been found that the EI order parameter
shows intriguing spatial distribution reflecting the confined
states. It is interesting and important to clarify that this unique
distribution can be photoinduced or changed in response to
the photoirradiation. These are now under consideration.
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APPENDIX A: DERIVATION OF MF HAMILTONIAN

We derive the MF Hamiltonian (6) from the full Hamil-
tonian Ĥ total(t ) = Ĥ + Ĥex(t ), which consists of Eqs. (1) and
(2). Applying the Hartree-Fock decoupling to the interaction
term at each site in the full Hamiltonian, we first obtain the
MF Hamiltonian Ĥ total

MF as

Ĥ total
MF (t ) = −J

∑
〈i, j〉σ

(ĉ†
iσ ĉ jσ − f̂ †

iσ f̂ jσ ) + D

2

∑
iσ

(n̂ciσ − n̂ f iσ )

−μ
∑

iσ

(n̂ f iσ + n̂ciσ )

+U
∑

iσ

(nci(t )n̂ciσ + n f i(t )n̂ f iσ )

+ 2V
∑

iσ

(n f i(t )n̂ciσ + nci(t )n̂ f iσ )

−
∑

iσ

[{V �i(t ) − Fex(t )} f̂ †
iσ ĉiσ + H.c.]. (A1)

The Hartree and chemical potential terms,∑
iσ

[{Unci(t ) + 2V n f i(t ) − μ}n̂ciσ

+{Un f i(t ) + 2V nci(t ) − μ}n̂ f iσ ], (A2)

can be simplified by the half-filling condition, i.e., μ = U/2 +
V , nci(t ) + n f i(t ) = 1. Namely, under this condition, the term
is expressed as

(2V − U )
∑

iσ

[{
nci(t ) − 1

2

}
n̂ f iσ +

{
n f i(t ) − 1

2

}
n̂ciσ

]
.

(A3)

Finally, we omit the spin index and obtain Eq. (6).

APPENDIX B: BULK REGION IN OUR MODEL

In order to eliminates the effects of the edges, we de-
fine the bulk region as an area within a reasonable distance
from the center of the tiling. Specifically, we take a cir-
cular area as shown in Fig. 10. The system has the C5v

symmetry and it can be separated into ten equivalent re-
gions, one of which is the area between two yellow lines
in Fig. 10. The area inside the black dashed arc is taken
as the bulk region in the N = 11006 system we used.
When we denote the number of sites with the coordination
number α in the whole system and in the bulk region as
Nα and N ′

α , respectively, we have (N2, N3, N4, N5, N6, N7) =
(180, 5795, 995, 3066, 405, 565) and (N ′

2, N ′
3, N ′

4, N ′
5, N ′

6, N ′
7)

= (0, 4195, 725, 2296, 275, 445).
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FIG. 11. Comparison of photoinduced dynamics between the system with N = 11 006 and the system with N = 4181 under the condition
(U, D, ω, F0 ) = (4, 4, 0.4, −0.07). [(a), (b)] Time evolution of |�| and nc for V = 1.95. [(c), (d)] Time evolution of |�| and nc for V = 4.28.
Dashed lines represent |�|′ and nc

′ for each system.

APPENDIX C: THE EFFECTS OF THE SYSTEM SIZE AND EDGES

To discuss the effects of the system size and edges, we look at the dynamics of |�|, |�|′, nc, and nc
′ under the con-

ditions, (U, D,V, ω, F0) = (4, 4, 1.95, 0.4,−0.07) and (U, D,V, ω, F0) = (4, 4, 4.28, 0.4,−0.07), in the system with N =
11 006 (N ′ = 7936) and the system with N = 4181 (N ′ = 2921), see Fig. 11. It is found that the qualitative behavior of |�|,
|�|′, nc, and nc

′ is similar in the systems with N = 11 006 and N = 4181. However, strictly speaking, the detailed values of |�|,
|�|′, nc, and nc

′ are different. If we want to evaluate the accurate values in the thermodynamic limit, we need to calculate the
time evolution for larger systems, which is too expensive for the current computational resources. Therefore, in this paper, we
focus on the qualitative aspects.

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev.
Lett. 53, 1951 (1984).

[2] D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477
(1984).

[3] K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada, T. Ishimasa, A.
Ochiai, K. Deguchi, K. Imura, and N. Sato, Nat. Commun. 9,
154 (2018).

[4] Y. Iwasaki, K. Kitahara, and K. Kimura, Phys. Rev. Materials 3,
061601(R) (2019).

[5] K. Kimura, H. Iwahashi, T. Hashimoto, S. Takeuchi, U.
Mizutani, S. Ohashi, and G. Itoh, J. Phys. Soc. Jpn. 58, 2472
(1989).

[6] B. D. Biggs, S. J. Poon, and N. R. Munirathnam, Phys. Rev.
Lett. 65, 2700 (1990).

[7] T. Klein, C. Berger, D. Mayou, and F. Cyrot-Lackmann,
Phys. Rev. Lett. 66, 2907 (1991).

[8] S. J. Poon, Adv. Phys. 41, 303 (1992).
[9] H. Akiyama, Y. Honda, T. Hashimoto, K. Edagawa, and S.

Takeuchi, Jpn. J. Appl. Phys. 32, L1003 (1993).

[10] K. Edagawa and K. Kajiyama, Mater. Sci. Eng. A 294-296, 646
(2000).

[11] K. Edagawa, K. Kajiyama, R. Tamura, and S. Takeuchi,
Mater. Sci. Eng. A 312, 293 (2001).

[12] A. Inaba, R. Lortz, C. Meingast, J. Guo, and A.-P. Tsai, J. Alloys
Compd. 342, 302 (2002).

[13] A. F. Prekul, V. A. Kazantsev, N. I. Shchegolikhina, R. I.
Gulyaeva, and K. Edagawa, Phys. Solid State 50, 2013 (2008).

[14] S. Tamura, K. Fukushima, Y. Tokumoto, Y. Takagiwa, and K.
Edagawa, Mater. Trans. 62, 356 (2021).

[15] F. Iglói, G. Roósz, and Y.-C. Lin, New J. Phys. 15, 023036
(2013).

[16] M. A. Bandres, M. C. Rechtsman, and M. Segev, Phys. Rev. X
6, 011016 (2016).

[17] K. Yonemitsu and K. Nasu, Phys. Rep. 465, 1 (2008).
[18] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P.

Werner, Rev. Mod. Phys. 86, 779 (2014).
[19] C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani,

and D. Mihailovic, Adv. Phys. 65, 58 (2016).

104307-11

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1038/s41467-017-02667-x
https://doi.org/10.1103/PhysRevMaterials.3.061601
https://doi.org/10.1143/JPSJ.58.2472
https://doi.org/10.1103/PhysRevLett.65.2700
https://doi.org/10.1103/PhysRevLett.66.2907
https://doi.org/10.1080/00018739200101513
https://doi.org/10.1143/JJAP.32.L1003
https://doi.org/10.1016/S0921-5093(00)01132-1
https://doi.org/10.1016/S0921-5093(00)01875-X
https://doi.org/10.1016/S0925-8388(02)00197-4
https://doi.org/10.1134/S1063783408110024
https://doi.org/10.2320/matertrans.MT-MB2020004
https://doi.org/10.1088/1367-2630/15/2/023036
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1016/j.physrep.2008.04.008
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1080/00018732.2016.1194044


INAYOSHI, MURAKAMI, AND KOGA PHYSICAL REVIEW B 105, 104307 (2022)

[20] D. N. Basov, R. D. Averitt, and D. Hsieh, Nat. Mater. 16, 1077
(2017).

[21] A. Cavalleri, Contemp. Phys. 59, 31 (2018).
[22] T. Oka and S. Kitamura, Annu. Rev. Condens. Matter Phys. 10,

387 (2019).
[23] A. de la Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W.

McIver, and M. A. Sentef, Rev. Mod. Phys. 93, 041002 (2021).
[24] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.

Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Science 331, 189 (2011).

[25] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu,
M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri,
Phys. Rev. B 89, 184516 (2014).

[26] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi,
S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D.
Jaksch, and A. Cavalleri, Nature (London) 530, 461 (2016).

[27] T. Suzuki, T. Someya, T. Hashimoto, S. Michimae, M.
Watanabe, M. Fujisawa, T. Kanai, N. Ishii, J. Itatani, S.
Kasahara, Y. Matsuda, T. Shibauchi, K. Okazaki, and S. Shin,
Commun. Phys. 2, 115 (2019).

[28] L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin, S.
Brazovskii, and D. Mihailovic, Science 344, 177 (2014).

[29] M. Porer, U. Leierseder, J.-M. Ménard, H. Dachraoui, L.
Mouchliadis, I. E. Perakis, U. Heinzmann, J. Demsar, K.
Rossnagel, and R. Huber, Nat. Mater. 13, 857 (2014).

[30] T. Ishikawa, Y. Sagae, Y. Naitoh, Y. Kawakami, H. Itoh, K.
Yamamoto, K. Yakushi, H. Kishida, T. Sasaki, S. Ishihara, Y.
Tanaka, K. Yonemitsu, and S. Iwai, Nat. Commun. 5, 5528
(2014).

[31] A. Kogar, A. Zong, P. E. Dolgirev, X. Shen, J. Straquadine,
Y.-Q. Bie, X. Wang, T. Rohwer, I.-C. Tung, Y. Yang et al.,
Nat. Phys. 16, 159 (2020).

[32] F. Zhou, J. Williams, S. Sun, C. D. Malliakas, M. G. Kanatzidis,
A. F. Kemper, and C.-Y. Ruan, Nat. Commun. 12, 566 (2021).

[33] M. Trigo, P. Giraldo-Gallo, J. N. Clark, M. E. Kozina, T.
Henighan, M. P. Jiang, M. Chollet, I. R. Fisher, J. M. Glownia,
T. Katayama, P. S. Kirchmann, D. Leuenberger, H. Liu, D. A.
Reis, Z. X. Shen, and D. Zhu, Phys. Rev. B 103, 054109 (2021).

[34] L. V. Keldish and Y. V. Kopaev, Sov. Phys. Solid State 6, 2219
(1965).

[35] D. Jérome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462
(1967).

[36] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, M. Arita,
H. Namatame, M. Taniguchi, N. Katayama, M. Nohara, and H.
Takagi, Phys. Rev. Lett. 103, 026402 (2009).

[37] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, N. L.
Saini, M. Arita, H. Namatame, M. Taniguchi, N. Katayama, M.
Nohara, and H. Takagi, J. Supercond. Novel Magn. 25, 1231
(2012).

[38] H. Cercellier, C. Monney, F. Clerc, C. Battaglia, L. Despont,
M. G. Garnier, H. Beck, P. Aebi, L. Patthey, H. Berger, and L.
Forró, Phys. Rev. Lett. 99, 146403 (2007).

[39] C. Monney, C. Battaglia, H. Cercellier, P. Aebi, and H. Beck,
Phys. Rev. Lett. 106, 106404 (2011).

[40] S. Mor, M. Herzog, D. Golež, P. Werner, M. Eckstein, N.
Katayama, M. Nohara, H. Takagi, T. Mizokawa, C. Monney,
and J. Stähler, Phys. Rev. Lett. 119, 086401 (2017).

[41] E. Baldini, A. Zong, D. Choi, C. Lee, M. H. Michael, L.
Windgaetter, I. I. Mazin, S. Latini, D. Azoury, B. Lv et al.,
arXiv:2007.02909.

[42] S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt,
A. Stange, A. Carr, M. M. Murnane, H. C. Kapteyn, L.
Kipp, M. Bauer, and K. Rossnagel, Nat. Commun. 3, 1069
(2012).

[43] K. Okazaki, Y. Ogawa, T. Suzuki, T. Yamamoto, T. Someya, S.
Michimae, M. Watanabe, Y. Lu, M. Nohara, H. Takagi et al.,
Nat. Commun. 9, 4322 (2018).

[44] T. Mitsuoka, T. Suzuki, H. Takagi, N. Katayama, H. Sawa,
M. Nohara, M. Watanabe, J. Xu, Q. Ren, M. Fujisawa et al.,
J. Phys. Soc. Jpn. 89, 124703 (2020).

[45] T. Saha, D. Golež, G. De Ninno, J. Mravlje, Y. Murakami, B.
Ressel, M. Stupar, and P. c. v. R. Ribič, Phys. Rev. B 103,
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