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General memory kernels and further corrections to the variational path integral approach for the
Bogoliubov-Fröhlich Hamiltonian
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The celebrated variational path integral approach to the polaron problem shows remarkable discrepancies with
diagrammatic Monte Carlo (DiagMC) for the Bogoliubov-Fröhlich Hamiltonian which describes an impurity
weakly coupled to a Bose condensed atomic gas. It has been shown both by a renormalization group approach
and by the method of correlated Gaussian wave functions that the model has a subtle UV divergence caused
by quantum fluctuations, which are not captured within Feynman’s approach. In this work we address the
issues with Feynman’s approach and show that by extending the model action to a more general form, and
by considering higher-order corrections beyond the Jensen-Feynman inequality, a good agreement with DiagMC
can be obtained.
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I. INTRODUCTION

Feynman’s variational path integral approach [1] has since
its inception been regarded as the semianalytical tool of choice
to study the Fröhlich Hamiltonian [2]. The Fröhlich Hamilto-
nian describes an electron interacting with a bath of phonons
in a crystal lattice and is used to study the large polaron
in solids [3]. In the path integral representation the phonon
degrees of freedom can be integrated out exactly, yielding
an effective action Seff where the electron is interacting with
itself at previous times. A variational upper bound for the
free energy corresponding to the effective action can be found
in terms of a simpler model action S0. Feynman’s original
proposal for the model action [1,4] consists out of a coupled
harmonic oscillator with two variational parameters, where
one of the particles has been integrated out to simulate the
memory effects.

Regardless of its simplicity, Feynman’s approach shows
remarkable agreement with computationally demanding di-
agrammatic Monte Carlo (DiagMC) calculations [5]. In
particular, at weak and strong coupling the approach reduces
to, respectively, the coherent state Lee-Low-Pines method [6]
and the strong-coupling Landau-Pekar ansatz [7] and has for
this reason also been called the all-coupling approach for the
Fröhlich model. Two distinct ways to improve on Feynman’s
original proposal can be found in the literature. First, the
model action can be generalized to the best quadratic action
functional [8,9], which yields an improvement to Feynman’s
result for the ground-state energy below 0.15%. Second, cor-
rections beyond the first-order variational expansion can be
made [10,11] and yield improvement on Feynman’s result
below 1.6%. These results confirm the astounding accuracy
of the simple coupled oscillator model in solid-state polaron
theory.
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More recently, a number of experiments have observed
the existence of Bose polarons [12–16] where impurities im-
mersed in a Bose-Einstein condensate exhibit quasiparticle
properties. An impurity with mass m, described by first quan-
tization operators r̂ and p̂, couples to the excitations of the
Bose gas described in second quantization by the operators α̂

†
k

and α̂k. This closely resembles the solid-state polaron and for
this reason, at weak coupling, within the Bogoliubov approx-
imation and neglecting interactions between impurities, the
Bose polaron can be described by the Bogoliubov-Fröhlich
Hamiltonian [17,18]

Ĥ = p̂2

2m
+

∑
k

h̄ωkα̂
†
kα̂k

+
√

N0gib

V

∑
k

Vkeik·r̂(α̂†
−k + α̂k

)
. (1)

Here N0 is the number of condensed bosons, gib is the contact
interaction coupling parameter between the impurity and the
bosons, and V is a finite volume in which the Bose gas exists.

Expression (1) closely resembles the Fröhlich Hamilto-
nian, and the only difference lies in the functional form of
the excitation spectrum ωk and interaction amplitude Vk,

h̄ωk =
√

h̄2k2

2mb

(
h̄2k2

2mb
+ 2gbbn0

)
, (2)

Vk =
(

h̄2k2

2mb

h̄2k2

2mb
+ 2gbbn0

)1/4

. (3)

Here mb, n0, and gbb are, respectively, the boson mass, density,
and intraspecies interaction strength. Whereas in the origi-
nal Fröhlich Hamiltonian, ωk is the constant frequency of
longitudinal optical phonons and Vk tends to zero at large mo-
menta, in the Bogoliubov-Fröhlich Hamiltonian the coupling
amplitude remains finite and the excitation spectrum becomes
particlelike. This seemingly innocuous change has dramatic
consequences for the UV behavior of the model, which from a
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mathematical physics point of view does not fall into any class
of UV divergencies previously encountered in Fröhlich-like
Hamiltonians [19].

It is important to emphasize that beyond weak coupling
between the impurity and the gas, the physics of the Bose
polaron is not accurately captured by the Bogoliubov-Fröhlich
Hamiltonian (1). At stronger interactions the Bogoliubov ap-
proximation appears to suffer from an instability for attractive
polarons [20,21] which was explored in great detail in a more
recent study [22]. In addition, inclusion of higher-order in-
teractions on top of the lowest-order Fröhlich coupling term
has been considered and were shown to be of importance
[20,21,23,24]. Finally, the Bogoliubov-Fröhlich model does
not capture Efimov physics that also play a role in a complete
description [25–28]. In the rest of this work, we will solely
focus on a discussion of the Bogoliubov-Fröhlich model (1)
with repulsive effective interactions gib. The discussion will
also concern results at stronger coupling and at large momen-
tum cutoff, which are not to be interpreted as a prediction for
the Bose polaron in that regime but rather as a testing ground
for corrections to the path integral approach.

The Bogoliubov-Fröhlich Hamiltonian can also be studied
within Feynman’s variational approach [1,18], where after
the phonons are integrated out, the partition function of the
polaron is expressed as a single-particle path integral,

Z =
∫

Dr e−Seff[r]/h̄. (4)

The effective action in this path integral contains nonquadratic
interactions, which are in addition nonlocal in time,

Seff =
∫ h̄β

0

mṙ2

2
dτ − 1

V

∑
k

g2
ibn0

2h̄
V 2

k

×
∫ h̄β

0
dτ

∫ h̄β

0
dσ Gk(τ − σ )eik·[r(τ )−r(σ )], (5)

so that the partition function (4) cannot be obtained an-
alytically. In Expression (5), β = (kBT )−1 is the inverse
temperature with Boltzmann factor kB and

Gk(u) = cosh [ωk(|u| − h̄β/2)]

sinh (ωk h̄β/2)
(6)

is the Green’s function of the excitations. For any model
action S0, the Jensen-Feynman inequality provides an upper
bound to the free energy F of (4)

F � F0 + 1

h̄β
〈Seff − S0〉, (7)

where F0 is the free energy of the model action and the expec-
tation value in (7) is taken with respect to the model system as
well.

The Bogoliubov-Fröhlich model has been studied within
this approach [18], where Feynman’s original S0 has been
used [4]. Just as is the case for the solid-state polaron, the
variational energy contains the coherent state result in its
weak coupling limit [29] and hence was expected to work
well for this Hamiltonian. However, not long afterward, very
unexpectedly large discrepancies between the theory and
the rigorous DiagMC calculations [30] have been observed.
In addition to the well-known linear UV divergence in the

momentum integrals associated with using contact interac-
tions, a novel logarithmic UV divergence was argued to
be present in the DiagMC study [31]. The logarithmic UV
behavior is completely absent in the variational approach
[18], which is indicative of new physics that is not captured
within the approach. Quantum Monte Carlo methods for the
Bogoliubov-Fröhlich model have also been recently used to
study the impurity tunneling problem [32].

In an impressive series of papers by Grusdt et al., em-
ploying a renormalization group (RG) theory [31,33–35], and
by Shchadilova et al. employing correlated Gaussian wave
functions (CGW) [36], the Bogoliubov-Fröhlich model has
been studied in great detail. The authors show that the ground
state of the Bogoliubov-Fröhlich Hamiltonian contains en-
tangled phonon modes at different energies [36], and that
adequately capturing quantum fluctuations in the RG or CGW
approaches gives rise to the logarithmic UV divergence of the
ground-state energy in the momentum cutoff that can also be
observed in DiagMC calculations [30]. The momentum cutoff
� therefore plays an important role in the problem, dictating
the importance of quantum fluctuations. In particular, at large
cutoff in the intermediate coupling regime α ≈ 1, the phonons
are argued to be strongly correlated forming the most chal-
lenging theoretical regime. When compared at small cutoff
values and strong coupling, the Jensen-Feynman approach
performs better than perturbative RG [31] or CGW [36] and
is in good agreement with DiagMC [30]. However, when �

is large, Feynman’s approach fails to completely capture the
quantum fluctuations and the other approaches provide a far
more accurate description, in particular at weak and interme-
diate coupling. More recently, the perturbative RG approach
has been extended to also work well at strong coupling [34]
lifting it to the status of an all-coupling approach. On the
other hand, CGW [36] works well at weak to intermediate
coupling but shows significant discrepancies with DiagMC
toward strong coupling. It is curious to note that in the study
of the original Fröhlich model, Feynman’s approach is cele-
brated precisely for its ability to capture quantum fluctuations
when compared with adiabatic density-functional theory [37],
which only emphasizes the elusiveness of the Bogoliubov-
Fröhlich model in comparison with its solid-state counterpart.
Although the Bogoliubov-Fröhlich Hamiltonian is now better
understood, nevertheless the question remains as to why Feyn-
man’s approach fails or how it can be improved. This can be
of interest purely from a mathematical point of view [19] or
as a first step toward future applications to multiple particles
in this model or extended Fröhlich Hamiltonians [21,24]. In
addition, the method employed in this work will illustrate the
utility of general memory kernels for variational applications
which we have also considered in another context [38]. The
central goal of this paper is therefore to use the Bogoliubov-
Fröhlich model as an illustration of the importance of further
corrections to the path integral method when applied to po-
laronic models where quantum fluctuations cause additional
UV divergences.

Note that in Ref. [31], a regularization procedure of this
UV divergence is proposed through effective mass corrections
to the mean-field impurity-condensate interactions term gibn0,
which we have not included in the Hamiltonian (1). Here
we will not be concerned with this regularization since the
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goal is specifically to discuss the mechanism of appearance
of this UV behavior in Feynman’s approach. Moreover, for an
accurate comparison with realistic experiments the cutoff �

should be related to either the inverse van der Waals length
of the atomic potential [18,20] or the first Efimov resonance
[28]. For the current system the former value corresponds to
� ≈ 200ξ−1 and in what follows figures will be presented
with results up to � ≈ 4000ξ−1. For this reason, in addition
to the Bogoliubov-Fröhlich model being only valid at weak
coupling, we emphasize that the results in their current form
are not suitable for direct comparison with experiment.

In this paper we show that two modifications bring
significant improvements to Feynman’s approach for the
Bogoliubov-Fröhlich Hamiltonian. In Sec. II we consider the
best quadratic action functional [9] as the model action for
this system. While this correction is extremely small in the
Fröhlich model, we show that the largest correction to the
ground-state energy of the Bogoliubov-Fröhlich model is ob-
tained in this step. We obtain the optimal memory kernel
which also provides insights as to why Feynman’s original
model fails. At strong coupling the results show good agree-
ment with DiagMC, but near the challenging intermediate
coupling regime some noticeable discrepancy remains.

To obtain further corrections for the intermediate regime,
in Sec. III we derive an expression for the correction from
the second-order cumulant expansion of the partition func-
tion. This correction has been shown to be small [10,11] in
the Fröhlich model but turns out to be appreciable for the
Bogoliubov-Fröhlich model. Combining the two aforemen-
tioned improvements, we retrieve the logarithmic divergence
of the model and find excellent agreement with DiagMC in
the intermediate regime.

II. QUADRATIC ACTION WITH A GENERAL
MEMORY KERNEL

The derivation presented here has been performed for the
Fröhlich model in Ref. [8] and further addressed in Ref. [9].
Contrary to the treatment in Ref. [8], the momentum integrals
cannot be analytically performed in the Bogoliubov-Fröhlich
model and hence we briefly review the derivation now applied
to Eq. (1). The central quantity in this section will be the
model action functional (working in units of h̄ = 1 from now
on)

S0 = m

2

∫ β

0
ṙ2dτ

+ m

2β

∫ β

0

∫ β

0
dτdσ x(τ − σ )r(τ ) · r(σ ), (8)

where x(τ − σ ) is a general memory kernel with greater free-
dom than the commonly used Feynman model action. Note
that introducing an additional β in the denominator of the
second term in Eq. (8) will prove to be convenient further
on. Following [8], we make the restriction to β-periodic func-
tions x(β − τ ) = x(τ ) and in addition assume

∫ β

0 x(τ )dτ = 0.
While the first assumption is necessary for the derivation, the
second could in principle be relaxed [8]. The goal is to find an
expression for the variational free energy (7) as a functional

of the memory kernel x(τ − σ )

Fv[x] = F0 + 1

β
〈Seff − S0〉. (9)

Since the action functional is quadratic in the impurity degree
of freedom, exact expressions for all quantities in Eq. (9)
can be obtained. In what follows we summarize the steps in
Ref. [8] now applied to the Bogoliubov-Fröhlich model. In
principle, all expectation values of analytic functions of r(τ )
can be computed via a generating function which satisfies
the following identity for any vector function g(τ ) (in three
dimensions):

〈exp

(∫ β

0
g(τ ) · r(τ )dτ

)
〉

= exp

(
1

6

∫ β

0

∫ β

0
〈r(τ ) · r(σ )〉g(τ ) · g(σ )dτdσ

)
. (10)

The property of β periodicity allows us to decompose the
memory kernel in Fourier space x(u) = ∑∞

n=−∞ xneiνnu with
Matsubara frequencies νn = 2πn/β. The covariance in ex-
pression (10) is nothing else than the Green’s function of
the corresponding classical equation of motion as commonly
encountered in introductory quantum field theory [39]. Here
it can also be obtained in first quantization

〈r(τ ) · r(σ )〉 = 6

mβ

∞∑
n=1

cos [νn(τ − σ )]

ν2
n + xn

. (11)

If an auxiliary parameter λ is introduced in the action
functional (8) as a scaling factor to the memory kernel x(τ −
σ ) → λx(τ − σ ), the partition function Z and free energy F0

obtain a λ dependence, and it can be readily shown that

∂F (λ)
0

∂λ
= m

2β2

∫ β

0

∫ β

0
x(τ − σ )〈r(τ ) · r(σ )〉λdτdσ. (12)

The subscript λ indicates that xn has been scaled to λxn in the
covariance (11). Expression (12) can now be integrated over
λ to obtain the free energy of the model system

F (λ)
0 = − 1

β
log

[(
m

2πβ

)3/2

V

]

+ 3

β

∞∑
n=1

log

(
1 + λxn

ν2
n

)
. (13)

The kinetic energy contributions to the action functionals
cancel in the second term of Eq. (9) and hence it is useful to
redefine S̃0 and S̃eff, where the absence of the kinetic energy
terms is emphasized by the tilde. By once again introducing
the auxiliary variable and taking the derivative of the partition
function with respect to λ, one can show

1

β
〈S̃0〉 = ∂F (λ)

0

∂λ

∣∣∣∣
λ=1

= 3

β

∞∑
n=1

xn

xn + ν2
n

. (14)

The generating function result (10) also immediately yields
the expectation value of the effective action (5). Note that the
covariance (11) only depends on the time difference |τ − σ |
and is in addition β periodic. In the limit of zero-temperature
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β → ∞ this simplifies the double time integral from Eq. (5)
to

1

β
〈S̃eff〉 = −g2

ibn0

V

∑
k

V 2
k

∫ β/2

0
Gk(u)Fk(u)du, (15)

where

Fk(u) = exp

(
−2k2

mβ

∞∑
n=1

1 − cos(νnu)

xn + ν2
n

)
. (16)

In the β → ∞ limit, the Matsubara summations in the pre-
vious expressions are transformed into frequency integrals,
where the coefficients xn become the Fourier transform x(ν)
of the memory kernel (notation not to be confused with the
original function)

Fk(u) = exp

(
− k2

πm

∫ ∞

0
dν

1 − cos(νu)

x(ν) + ν2

)
. (17)

Expression (15) contains a linear divergence in the momen-
tum summation and is regularized by relating gib to the s-wave
scattering length aib up to the second order in the Lippmann-
Schwinger equation in the Bose-polaron mean-field energy
gibn0 [18]. This regularization eventually comes down to sim-
ply using the lowest-order expression for gib = 2π h̄2aib/μ,
where μ−1 = m−1 + m−1

b is the reduced impurity-boson mass
but now subtracting the divergent behavior from Eq. (15). For
the Bose intraspecies interaction, a lowest-order expression
gbb = 4π h̄2abb/mb is sufficient. Note that this regularization
procedure is commonly performed in systems with contact
interactions and this divergence is not related to the phonon
entanglement discussed in the Introduction.

Unless specified otherwise, in the rest of the text we will
use polaronic units of Ref. [18] in terms of the impurity mass
m = 1, the condensate healing length ξ = h̄/

√
2mbgbbn0 = 1,

and the corresponding energy scale h̄2/(mξ 2) = 1, which also
corresponds to setting h̄ = 1. In the rest of this work the mass
ratio mb = 3.8m is used for all the figures for comparison with
the DiagMC results of Ref. [30]. Note that to facilitate com-
parison with Ref. [30] where the boson mass mb was preferred
as the mass unit, an appropriate energy rescaling is performed
on the figures. The dimensionless coupling constant of this
model [18] is then given by α = a2

ib/(abbξ ). Combining all of
the previous terms, taking the β → ∞ limit and also taking
the volume V to infinity, allows one to write the variational
functional as

Fv[x] = 3

2π

∫ ∞

0
dν

[
log

(
1 + x(ν)

ν2

)
− x(ν)

x(ν) + ν2

]

− α

4πμ2

∫ �

0
dk k2V 2

k

∫ β/2

0
Gk(u)Fk(u)du

+ α�

2πμ
. (18)

Here � is the finite momentum cutoff discussed in Sec. I, and
the final term arises from the contact interaction regulariza-
tion. The functional that minimizes the energy is found by
taking the derivative with respect to a discrete Fourier compo-
nent ∂xn Fv = 0 before the continuum limit is taken. Once the
continuum limit is taken, the following integral equation can

be obtained for the memory kernel:

x(ν) = α

3πμ2

∫ �

0
dk k4V 2

k

×
∫ β/2

0
Gk(u)Fk(u) sin

(
νu

2

)2

du. (19)

Since Fk(u) is itself a functional of x(ν) this equation has
to be solved numerically. This is done iteratively, starting
by substituting the Lee-Low-Pines solution x(ν) = 0 into the
right-hand side of Eq. (19) and obtaining an improved mem-
ory kernel on the left-hand side. Depending on α, roughly 1
to 10 iterations are needed until the relative increase in the
corresponding energy (18) becomes less than 1%, which we
accept as our final value. The next iteration yields further cor-
rections of the order of 0.1% and can no longer be discerned
on the graphs shown in this paper. We find that the frequency
at which the memory kernel reaches an asymptotic value can
become very large. For this reason we perform a scaling trans-
formation ν = ez − 1 and select N = 1000 Gauss-Legendre
quadrature points on the z grid up to νmax = 108. The iterative
improvement (19) is then performed for each point.

The results are shown in Fig. 1 where we compare the
ground-state energy (18) for the optimized memory kernel
with DiagMC results from Ref. [30]. As already observed in
Refs. [30], [36], and [31], the original Feynman model yields
surprisingly large discrepancies at strong coupling, especially
at larger values of the cutoff � = 3000ξ−1. This indicates that
even in the limit of strong coupling, quantum fluctuations are
of importance and the adiabatic ansatz, included in Feynman’s
original model, fails for this system. We can see that the result
for the best quadratic action functional (18) provides signifi-
cant corrections to Feynman’s model and yields a variational
bound in good agreement with DiagMC at strong coupling.
However, as will be shown in Fig. 4 in the next section, in the
challenging intermediate coupling regime some discrepancies
remain. To estimate corrections in this region, in the next
section we consider further contributions to the energy beyond
the first-order variational inequality.

Let us also pay some attention to the optimized memory
kernel itself. In Fig. 2 we show the obtained optimized so-
lutions for x(ν) that lead to the results shown in Fig. 1. We
can see that the UV limit of x(ν) agrees with the analytic
expression x(ν) = α

6πμ2 (2μ�3/3). This limit can be readily
obtained by substituting the mean-field guess x(ν) = 0 in the
RHS of Eq. (19) and then taking the ν → ∞ limit. Therefore
it appears that in the Bogoliubov-Fröhlich model the UV limit
of the optimal memory kernel does not converge as � → ∞.
On the other hand, we have checked that the small frequency
behavior shown in the inset of Fig. 2 is only very weakly
influenced by the cutoff (while it does depend on α).

Finally, in Fig. 3 we compare the shape of the optimized
memory kernel to Feynman’s original model, which is given
by xFeyn(ν) = MW 2ν2/(ν2 + W 2). The memory kernel tends
to zero quadratically in ν, in the ν → 0 limit. This can be
analytically shown in the first iteration by expanding Expres-
sion (19) to lowest order in ν, and for the optimized solution
this behavior is shown in the inset of Fig. 2. However, as can
be seen in the inset of Fig. 3, the quadratic behavior rapidly
transitions into an extended linear regime. In principle, the
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FIG. 1. The ground-state energy at zero temperature (β = 200 used as a cutoff) for (a) moderate � = 100ξ−1 and (b) large � = 3000ξ−1

cutoff values compared with the results taken from DiagMC calculations [30] (scatter squares). The dashed line shows an application of
Feynman’s original model [18] to this system, while the solid line is our result obtained with the general quadratic memory kernel. Note that
for this comparison the energy scale is defined using the boson mass mb = 3.8m.

memory kernel of Feynman’s model system exhibits a similar
behavior; it starts as quadratic and then transitions into a linear
regime before moving to an asymptotic value. The problem,
however, is that Feynman’s model has only two variational pa-
rameters so that the ranges of the regimes cannot all be chosen
independently. The quadratic behavior at small frequencies is
dictated by the parameter MW 2 while the transition into the
linear regime depends on W 2 in the denominator. This forces
the memory kernel of Feynman’s model system to make a
compromise and reach its asymptotic value far more quickly
than the general solution.
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x
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)
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)

FIG. 2. The optimized memory kernel x(ν ) at � = 3000ξ−1 (in
polaronic units) obtained for the energy plot in Fig 1(b) at three
different coupling strengths α = 1, 2, 3. The main plot shows the
behavior at large ν on a logarithmic frequency axis, whereas the
inset indicates a quadratic behavior at small frequencies. The dashed
horizontal lines represent the analytic ν → ∞ limit mentioned in the
text.

III. SECOND-ORDER CORRECTION

By adding and subtracting the model action functional S0

in the path integral of the polaron partition function (4), the
free energy of the system can be exactly written as [40]

F = F0 − 1

β
ln(〈e−S〉), (20)

where S = Seff − S0, and the expectation values are taken
with respect to the model action. The second term can be
recognized as the cumulant-generating function of the path
integral, which can be expanded as [10,40]

F = F0 + 1

β
〈S〉0 − 1

2!

1

β
〈(S − 〈S〉)2〉

+ O
(
S3

)
. (21)
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FIG. 3. A comparison between the general optimized memory
kernel x(ν ) and Feynman’s original memory kernel. Inset shows the
same plot at smaller frequencies. Plots are made at � = 3000ξ−1 and
α = 5.
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Here we can recognize the variational free energy in the first
two terms, which represent the Jensen-Feynman inequality (7)
if all the higher-order terms are discarded.

In this section we perturbatively include the second-order
correction in the cumulant expansion of Eq. (21). This correc-
tion has been studied and shown to be small in the Fröhlich
model [10,11], but we find it to be nonnegligible in the
Bogoliubiov-Fröhlich model. We emphasize that the resulting
correction is approximate for two reasons. First of all to the
best of our knowledge, no general inequalities that include
higher orders of the expansion are known [41] and hence
from this point on, the variational inequality can be violated.
Second, the obtained correction is significantly more difficult
to compute than the one obtained in Ref. [11] due to the fact
that the momentum integrals cannot be analytically performed
in the Bogoliubov-Fröhlich model. For this reason a mean-
field-like approximation to obtain a semianalytic expression
will be made. At weak to intermediate coupling the obtained
corrected energy is in excellent agreement with DiagMC and
exhibits the exact logarithmic divergence that was observed in
Ref. [30].

In what follows, we are strictly interested in the β → ∞
limit. For convenience of notation, and to avoid having to
write the formal limit everywhere, we will keep the Matsubara
summations in their discrete form and still write the factor β

in, e.g., the integral boundaries. Such expressions are to be
strictly interpreted on the condition that β is very large and
will be taken to infinity in the end on which our derivation
relies. The cumulant in the second-order correction can be
written as

1

2β
〈(S − 〈S〉)2〉 = 1

2β

[〈
S̃2

eff

〉 − 〈S̃eff〉2
]

+ 1

2β

[〈
S̃2

0

〉 − 〈S̃0〉2
]

− 1

β

[〈S̃effS̃0〉 − 〈S̃eff〉〈S̃0〉
]
. (22)

In Appendix A we show that it is convenient to define the
following fivefold integral:

σn[x(ν)] = 1

(2n + 1)!

(
α

4πμ2

)2 ∫ �

0
dk

∫ �

0
ds

× k2s2V 2
k V 2

s

∫ β/2

0
du1

∫ β/2

0
du2 Gk(u1)Gs(u2)

× Fk(u1)Fs(u2)
∫ β/2

0
dz

(
ks

4
ζ (u1, u2, z)

)2n

, (23)

where

ζ (u1, u2, z) = 32

β

∞∑
n=1

[
1

ν2
n + xn

cos(νnz)

× sin

(
νnu1

2

)
sin

(
νnu2

2

)]
. (24)

For any memory kernel x(ν), the second-order correction (22)

can now be written as

1

2β
〈(S − 〈S〉)2〉 =

∞∑
n=2

σn[x(ν)]

+
[
σ1[x(ν)] + 1

2β

(〈
S̃2

0

〉 − 〈S̃0〉2)

− 1

β

(〈S̃effS̃0〉 − 〈S̃eff〉〈S̃0〉
)]

. (25)

Note that if x(ν) = 0 is substituted in the variational free
energy (18) one obtains the mean-field Lee-Low-Pines result
at zero polaron momentum. Therefore for x(ν) = 0 we can
interpret the result (25) as a correction to mean-field theory

1

2β
〈(S − 〈S〉)2〉(MF) =

∞∑
n=1

σn[0]. (26)

Incidentally, the polaron problem mean-field theory corre-
sponds to first-order perturbation theory [35] and hence (26)
is also nothing else than the second-order perturbative correc-
tion. Due to the simplification x(ν) = 0, the sum in Eq. (26)
can be performed. However, mean-field theory completely
misses the DiagMC polaronic energy in the Bogoliubov-
Fröhlich Hamiltonian beyond weak coupling [31] and hence
it is desirable to start from a better point.

Let us now consider the corrections on top of the best
quadratic action functional with the optimized memory kernel
(19). As shown in Appendix A, in this case the terms in the
square brackets in Eq. (25) all completely cancel and the
summation starts from n = 2

1

2β
〈(S − 〈S〉)2〉(best) =

∞∑
n=2

σn[x(ν)]. (27)

Therefore an important feature of expanding around the best
quadratic action is to omit the dominant contribution from σ1

in the mean-field correction (26). In contrast with previous
approaches that have considered the second-order correction
for the polaron, the momentum integrals in Eq. (23) cannot
be performed analytically. For any nontrivial memory kernel
x(ν) one is hence left with a fivefold integral, which we have
not been able to compute efficiently.

Let us therefore in spirit of Feynman’s approach consider
a simple semianalytic approximation. We expand around the
best quadratic action in Eq. (25) and use this knowledge to
cancel the term in the square brackets but then approximate
the remaining contributions at the mean-field level,

1

2β
〈(S − 〈S〉)2〉(best) ≈

∞∑
n=2

σn[0]. (28)

The error of this approximation is roughly estimated by cal-
culating the difference in the first-order term σ1[x(ν)] − σ1[0]
for which the fivefold integral can be easily performed. This
difference is obtained in expression (A21) in Appendix A
(which is to be computed in the β → ∞ limit),

σ1[x(ν)] − σ1[0] = 3

2β

∞∑
n=1

[
x2

n

(ν2
n + xn)2

− x̃2
n

ν4
n

]
. (29)
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FIG. 4. The polaronic energy obtained from DiagMC [30]
(squares with error bars) at � = 2000ξ−1 is compared with the result
of Feynman’s original model action (dashed curve) with the result of
the general memory kernel method of Sec. II (dash dotted curve),
and to the general memory kernel result including the second-order
correction of Sec. III (solid curve).

Here xn represents the optimal memory kernel, whereas x̃n

is the first-order iterative improvement obtained from sub-
stituting x(ν) = 0 into Eq. (19). For a cutoff � = 2000ξ−1

the relative error on the correction is of the order of 3% for
α = 0.5 and of the order of 5% for α = 1. This justifies using
the approximation to get an accurate second-order correction
in the weak to intermediate coupling regime, in particular
for Fig. 4. This error is, however, larger at large coupling
strengths, and we found an overcorrection toward energies
below DiagMC for α � 5 when applied to Fig. 1. This sug-
gests that even higher-order corrections are likely needed to
get exactly on DiagMC in that regime, and in what follows we
only apply the correction in the weak to intermediate coupling
regime.

As shown in Appendix B, the full corrected energy on top
of the minimized Ev from Eq. (18) with this approximated
correction is given by

E = Ev − α2Q, (30)

where

Q =
∞∑

n=2

1

(2n + 1)

(
1

4πμ2

)2

×
∫ �

0
dk

∫ �

0
dsV 2

k V 2
s

k2+2ns2+2n(3a(k) + a(s))

a(k)2(a(k) + a(s))2+2n , (31)

with a(k) = ωk + k2/(2m). This double integral is easily per-
formed and the series converges within less than 0.1% after
n = 10. If the sum is extended to n = 0, the series expansion
of xarctanh(x) can be recognized here which indicates that
the integral could likely be more easily performed in the
sinh(x)/x form in Eq. (A13) once the x(ν) = 0 approximation
is made. Nevertheless, the series expansion proves to be useful
to discuss the differences of the corrections in Eqs. (26) and
(27).

0 0.5 1 1.5 2 2.5 3 3.5 4
−12

−10
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0

2

log(10)(Λξ)

E
p
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�
2 /

(m
bξ

2 )
]

Feynman’s original model
General memory kernel Ev

Ev − α2Q

DiagMC Vlietinck et al.

FIG. 5. The polaronic energy contribution obtained within Feyn-
man’s original model (dashed), the general memory kernel method
(dash dotted), and the corrected energy (solid) with DiagMC [30]
(squares) are plotted for α = 3 as a function of the cutoff � on a
logarithmic scale.

In Fig. 4 we compare the results with DiagMC values
obtained at small to intermediate coupling strengths [30] at
a cutoff of � = 2000ξ−1. We see that a significant correction
to Feynman’s original model is obtained by using the general
memory kernel method, but nevertheless in the challenging in-
termediate coupling regime, noticeable discrepancies remain.
The corrected energy to second order discussed in this sec-
tion yields excellent agreement with DiagMC in this regime.
It should be emphasized that both the RG [31] and the CGW
[36] methods yield equally good agreement with DiagMC
here.

Finally, in Fig. 5 we show how the logarithmic diver-
gence observed in DiagMC can be completely retrieved in
the corrected energy. Once again, while the general mem-
ory kernel approach yields significant improvements to the
original model system, the corrected energy is necessary to
obtain further agreement with DiagMC. However, it should be
noted that in this regime at α ≈ 3, especially at small cutoff
values, we leave the weak to intermediate coupling regime
and the approximation (28) can no longer be safely justified
to accurately represent the second-order cumulant correction.
Nevertheless, the expression appears to be in excellent agree-
ment with DiagMC, but we leave open the possibility that
the exact second-order correction would slightly overcorrect
DiagMC in this regime only to be brought back in the third-
order cumulant.

IV. CONCLUSION

In conclusion, in this work we explored extensions
of Feynman’s variational path integral treatment of the
Bogoliubov-Fröhlich model and addressed the issues of this
method that were brought up in a number of works [30,31,36].
We show that two adjustments can be made to obtain major
improvements to the original approach to this model that was
first studied in Ref. [18].
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First, instead of considering a coupled oscillator for the
model action, a general quadratic action functional with a
variational memory kernel is proposed. This method has al-
ready been studied for the original Fröhlich model [8,9] but
was found to yield only minor corrections. We show that this
step is absolutely necessary to treat the Bogoliubov-Fröhlich
model and obtain relatively good agreement with DiagMC at
strong coupling.

To capture the difficult intermediate regime where the
phonons of the model are strongly correlated [36], even with
this improvement noticeable discrepancies remain. For this
reason we propose to include higher-order corrections to the
energy beyond the first-order variational inequality expanded
around the general model action functional. These corrections
have also been studied in the context of the original Fröhlich
model [10,11,40], but the studies were situated strictly within
Feynman’s approach and, in addition, the corrections were
found to be small. In this work we have generalized previous
results to the general memory kernel case and applied it to
the Bogoliubov-Fröhlich model. To obtain an easy semian-
alytic expression for the correction, we have proposed an
approximation that naturally presents itself within the general
memory kernel treatment. We estimated this approximation
to be accurate in the weak to intermediate coupling regime
and obtain excellent agreement with DiagMC. In addition,

the correct logarithmic divergence of the model is retrieved.
Renormalization procedures of the divergence are discussed
in Refs. [31] and [19].

This approach could be extended to many particles or
to finite temperatures, which could be a way to probe the
effect of thermal fluctuations on a system where quantum
fluctuations are of great importance. Having seen how the
second-order correction around the optimal quadratic action
functional can be approximated by subtracting a single term
from the perturbative correction with respect to a free particle,
it would also be interesting to explore this in the context of
higher-order corrections.
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APPENDIX A: SIMPLIFYING THE SECOND-ORDER CORRECTION

Written out in its full form, the effective action is given by

S̃eff = − 1

8π

α

4πμ2

∫
dkV 2

k

∫ β

0
dτ

∫ β

0
dσGk(τ − σ )eik·[r(τ )−r(σ )]. (A1)

The expectation value of the effective action with respect to the model system can be written in terms of

Fk(τ − σ ) = 〈eik·[r(τ )−r(σ )]〉, (A2)

as

〈S̃eff〉 = − α

4πμ2

1

2

∫ �

0
dk k2V 2

k

∫ β

0
dτ

∫ β

0
dσGk(τ − σ )Fk(τ − σ ). (A3)

Both Gk(τ − σ ) and Fk(τ − σ ) only depend on the difference |τ − σ | and are in addition β periodic. This allows to simplify
the expectation value of the effective action to:

1

β
〈S̃eff〉 = − α

4πμ2

∫ �

0
dk k2V 2

k

∫ β/2

0
duGk(u)Fk(u). (A4)

As already seen in Sec. II, for a general model action Fk(u) is given by

Fk(u) = exp

(
−2k2

β

∞∑
n=1

1 − cos(νnu)

xn + ν2
n

)
. (A5)

The terms in the cumulant expansion (22) can be derived using the λ trick that has also been used in Sec. II. It is not difficult to
show that if a scaling parameter x → λx is introduced in the memory kernel, the last two terms of (22) can be written as

1

2β

(〈S̃2
0 〉 − 〈S̃0〉2

) = −1

2

∂2F (λ)
0

∂λ2

∣∣∣∣
λ=1

,

1

β

(〈
S̃effS̃0

〉 − 〈S̃eff〉〈S̃0〉
) = − 1

β

∂〈S̃eff〉λ
∂λ

∣∣∣∣
λ=1

.
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The expression for F (λ)
0 is given by (13) and hence

1

2β

(〈
S̃2

0

〉 − 〈S̃0〉2
) = 3

2β

∞∑
n=1

x2
n(

ν2
n + xn

)2 . (A6)

Similarly, 〈S̃eff〉 is given by expression (A3). To include the λ dependence, xn is substituted by λxn in the memory function Fk(u)
after which the derivative can be taken. This yields

1

β

(〈S̃effS̃0〉 − 〈S̃eff〉〈S̃0〉
) = 4

β

∑
n=1

xn(
ν2

n + xn
)2

α

4πμ2

∫ �

0
dk k4V 2

k

∫ β/2

0
sin

(
νnu

2

)2

Gk(u)Fk(u)du. (A7)

We can now recognize in Eq. (A7) the right-hand side of the iterative equation (19). This means that if we are considering a
perturbative correction on top of the memory kernel that solves Eq. (19), we can write

1

β

(〈S̃effS̃0〉 − 〈S̃eff〉〈S̃0〉
) = 3

β

∑
n=1

x2
n(

ν2
n + xn

)2 , (A8)

which yields for the full second-order correction around the optimized model action:

1

2β
〈(S − 〈S〉)2〉 = 1

2β

(〈
S̃2

eff

〉 − 〈S̃eff〉2
) − 3

2β

∞∑
n=1

x2
n(

ν2
n + xn

)2 . (A9)

Next, consider the variance of the effective action in the first square bracket of Eq. (A9). The first term of the variance can be
written as

〈S̃2
eff〉 = π2

(2π )6

(
α

4μ2

)2 ∫
dk

∫
dsV 2

k V 2
s

∫ β

0
dτ1

∫ β

0
dσ1

∫ β

0
dτ2

∫ β

0
dσ2 Gk(τ1 − σ1)Gs(τ2 − σ2)〈eik·[r(τ1 )−r(σ1 )]+is·[r(τ2 )−r(σ2 )]〉.

(A10)

The generating function result (10) can now be used to find

〈eik·[r(τ1 )−r(σ1 )]+is·[r(τ2 )−r(σ2 )]〉 = Fk(τ1 − σ1)Fs(τ2 − σ2) exp

(
−k · s

4
ζ
(
τ1 − σ1, τ2 − σ2,

τ1 + σ1 − τ2 − σ2

2

))
, (A11)

where ζ is given by

ζ (u1, u2, s) = 32

β

∞∑
n=1

sin( νnu1
2 ) sin( νnu2

2 ) cos(νns)

ν2
n + xn

. (A12)

The angle between k and s can be integrated out in Eq. (A10) immediately. In addition we can see that the imaginary time
integrals in Eq. (A10) contain four variables, whereas the integrand only depends on τ1 − σ1, τ2 − σ2, and ( τ1+σ1−τ2−σ2

2 ). This
allows to remove one integration variable and through the use of symmetry in the limit β → ∞ significantly simplify the
integral in similar spirit to what is done in [11]. Note, however, that even when divided by β, the integral (A10) will still contain
a divergence as β → ∞ which is exactly canceled by subtracting its mean squared. Therefore in the limit of β → ∞ we take
both Eqs. (A10) and (A3) together and obtain

1

2β

(〈
S̃2

eff

〉 − 〈S̃eff〉2
) =

(
α

4πμ2

)2 ∫ �

0
dkk2

∫ �

0
dss2V 2

k V 2
s

×
∫ β/2

0
du1

∫ β/2

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dz

(
sinh

[
ks
4 ζ (u1, u2, z)

]
ks
4 ζ (u1, u2, z)

− 1

)
. (A13)

Contrary to the analogous expression for (A13) in [10,11], the quantity in the inner integral is a sinh(x)/x function rather than
an arcsin(x)/x function due to the fact that the momentum integrals cannot be performed analytically. It will prove to be useful
to replace the hyperbolic sine function by its Taylor expansion

sinh(x)

x
=

∞∑
n=0

x2n

(2n + 1)!
, (A14)
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which yields

1

2β

(〈
S̃2

eff

〉 − 〈S̃eff〉2
) =

(
α

4πμ2

)2 ∫ �

0
dk k2

∫ �

0
ds s2V 2

k V 2
s

×
∫ β/2

0
du1

∫ β/2

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dz

∞∑
n=1

1

(2n + 1)!

(
ks

4
ζ (u1, u2, z)

)2n

. (A15)

Let us also define the individual terms of the sum and emphasize their dependence on the memory kernel x(ν):

σn[x(ν)] = 1

(2n + 1)!

(
α

4πμ2

)2 ∫ �

0
dkk2

∫ �

0
dss2V 2

k V 2
s

×
∫ β/2

0
du1

∫ β/2

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dz

(
ks

4
ζ (u1, u2, z)

)2n

, (A16)

such that the entire second-order cumulant is written as

1

2β
〈(S − 〈S〉)2〉 =

∞∑
n=1

σn[x(ν)] − 3

2β

∞∑
n=1

x2
n(

ν2
n + xn

)2 . (A17)

Note that the second term in Eq. (A17) was obtained by assuming an expansion around the optimal memory kernel action and
hence the same has to be done for the rest of the terms. Unfortunately, for a(n) (optimized) memory kernel x(ν) that has no trivial
expression, we cannot analytically perform the fivefold integral in Eqs. (A15) or (A16), which is difficult even numerically. The
exception to this is the n = 1 expansion term

σ1[x(ν)] = 1

6(4)2

(
α

4πμ2

)2 ∫ �

0
dkk4

∫ �

0
dss4V 2

k V 2
s

×
∫ β/2

0
du1

∫ β/2

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dzζ (u1, u2, z)2. (A18)

By substituting ζ as given in Eq. (A12) and using the orthogonality of the cosine, the z integral can be performed:∫ β/2

0
dzζ (u1, u2, z)2 = 322

4β

∞∑
n=1

sin( νnu1
2 )2 sin( νnu2

2 )2(
ν2

n + xn
)2 . (A19)

The remaining fourfold integral completely decouples in each term of the sum in Eq. (A19) and can be slightly simplified to

σ1[x(ν)] = 3

2β

∞∑
n=1

1(
ν2

n + xn
)2

[
α

3πμ2

∫ �

0
dkk4V 2

k

∫ β/2

0
duGk(u)Fk(u) sin(

νnu

2
)2

]2

. (A20)

The integral inside the square brackets is once again exactly the right-hand side of the iterative equation (19) which means that
for the optimal memory kernel

σ1[x(ν)] = 3

2β

∞∑
n=1

x2
n

(ν2
n + xn)2

(A21)

cancels with the contribution from the other terms in Eq. (A17). For an expansion around the optimal memory kernel, the
second-order cumulant is written as

1

2β
〈(S − 〈S〉)2〉 =

∞∑
n=2

σn[x(ν)]. (A22)

APPENDIX B: CALCULATING THE APPROXIMATED CORRECTION

In this Appendix we will obtain a semianalytic expression for the second-order correction within the approximation discussed
in Sec. III:

1

2β
〈(S − 〈S〉)2〉(approx.) =

∞∑
n=2

σn[0]. (B1)
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The fact that the memory kernel vanishes significantly simplifies the integral. First, expression (A16) is rewritten using the
symmetry around β/2 to fold the u1, u2 integration domain in half,

σn[x(ν)] = 2

42n

1

(2n + 1)!

(
α

4πμ2

)2 ∫ �

0
dkk2+2n

∫ �

0
dss2+2nV 2

k V 2
s

×
∫ β/2

0
du1

∫ u1

0
du2Gk(u1)Gs(u2)Fk(u1)Fs(u2)

∫ β/2

0
dzζ (u1, u2, z)2n. (B2)

Next, observe that for x(ν) = 0, the memory functions Fk(u) simplify and in the limit of zero temperature this expression can
be written as

σn[0] = 2

42n

1

(2n + 1)!

(
α

4πμ2

)2 ∫ �

0
dkk2+2n

∫ �

0
dss2+2nV 2

k V 2
s

×
∫ β/2

0
du1

∫ u1

0
du2e−a(k)u1 e−a(s)u2

∫ β/2

0
dzζ (u1, u2, z)2n, (B3)

where the shorthand notation with ωk from (2) is introduced:

a(k) = ωk + k2

2m
. (B4)

As has already been observed in the weak-coupling limit of [11], in the absence of a memory kernel the expression for ζ becomes
quite simple (note that our ζ is defined differently but the same structure holds):

ζ (u1, u2, z) =
⎧⎨
⎩

4u2 for z < u1−u2
2 ,

2u1 + 2u2 − 4z for u1−u2
2 < z < u1+u2

2 ,

0 for u1+u2
2 < z.

The integral over z can now be analytically performed:∫ β/2

0
dzζ (u1, u2, z)2n = 42nu2n

2
u1 − u2

2
+ 42n u2n+1

2

2n + 1
. (B5)

This allows us to write Eq. (B3) as

σn[0] = 2

(2n + 1)!

(
α

4πμ2

)2 ∫ �

0
dkk2+2n

∫ �

0
dss2+2nV 2

k V 2
s

×
∫ β/2

0
du1

∫ u1

0
du2e−a(k)u1 e−a(s)u2

[
u2n

2
u1 − u2

2
+ u2n+1

2

2n + 1

]
. (B6)

The integrals over u1 and u2 are given by∫ ∞

0
du1

∫ u1

0
du2e−a(k)u1 e−a(s)u2

[
u2n

2
u1 − u2

2
+ u2n+1

2

2n + 1

]
= (3a(k) + a(s))n�(2n)

a(k)2(a(k) + a(s))2+2n . (B7)

Since n is an integer n�(2n) = (2n)!/2 and therefore

σn[0] = 1

(2n + 1)

(
α

4πμ2

)2 ∫ �

0
dk

∫ �

0
dsV 2

k V 2
s

k2+2ns2+2n(3a(k) + a(s))

a(k)2(a(k) + a(s))2+2n . (B8)

Finally, we can define

Q =
∞∑

n=2

1

(2n + 1)

(
1

4πμ2

)2 ∫ �

0
dk

∫ �

0
dsV 2

k V 2
s

k2+2ns2+2n(3a(k) + a(s))

a(k)2(a(k) + a(s))2+2n , (B9)

such that the full approximate second-order correction is given by

E2 = −α2Q. (B10)
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