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We show that the correlation functions of a class of periodically driven integrable closed quantum systems
approach their steady-state value as n−(α+1)/β , where n is the number of drive cycles and α and β denote positive
integers. We find that, generically, β = 2 within a dynamical phase characterized by a fixed α; however, its value
can change to β = 3 or β = 4 either at critical drive frequencies separating two dynamical phases or at special
points within a phase. We show that such decays are realized in both driven Su-Schrieffer-Heeger (SSH) and
one-dimensional (1D) transverse field Ising models, discuss the role of symmetries of the Floquet spectrum in
determining β, and chart out the values of α and β realized in these models. We analyze the SSH model for a
continuous drive protocol using a Floquet perturbation theory which provides analytical insight into the behavior
of the correlation functions in terms of its Floquet Hamiltonian. This is supplemented by an exact numerical
study of a similar behavior for the 1D Ising model driven by a square pulse protocol. For both models, we find
a crossover timescale nc which diverges at the transition. We also unravel a long-time oscillatory behavior of
the correlators when the critical drive frequency, ωc, is approached from below (ω < ωc). We tie such behavior
to the presence of multiple stationary points in the Floquet spectrum of these models and provide an analytic
expression for the time period of these oscillations.
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I. INTRODUCTION

Nonequilibrium dynamics of closed quantum systems has
been the subject of intense research activity in the recent
past [1–7]. Theoretical studies on the subject focused initially
on quench [8–10] and ramp [11–16] protocols. However, re-
cently, the focus in the field has shifted to periodically driven
systems [5–7]. More recently, quasiperiodic and aperiodically
driven systems have also been studied [17–21]. The experi-
mental signatures of such dynamics have been investigated in
the context of ultracold atoms in optical lattices [22–27].

Quantum systems driven out of equilibrium via a periodic
protocol host several phenomena which are not seen in those
driven by a quench or a ramp. These include the generation of
drive-induced topological states of matter [28–30], realization
of Floquet time crystals [31–33], and phenomena such as
dynamical localization [34–37], dynamical freezing [38–40],
and drive-induced tuning of ergodicity[41,42]. These proper-
ties of periodically driven systems, having a time period T ,
are most easily understood from their Floquet Hamiltonian HF

which is related to their unitary evolution operator U via the
relation U (T, 0) = exp[−iHF T/h̄] [7].

The presence of dynamical transitions constitutes yet an-
other interesting phenomenon in periodically driven closed
quantum systems [43–49]. Such transitions can be categorized
into two distinct classes. The first involves nonanalyticities
of the return probability of its wave function; these nonana-
lyticities show up as cusps in Loschmidt echoes [43]. Such
transitions can be related to Fischer zeros of the complex
partition function of the driven system [43,44]. In contrast, the

second class of transitions constitutes a change in the long-
time behavior of the correlation functions of a periodically
driven integrable quantum system as a function of the drive
frequency [46,47]. Such a transition results from a change in
the extrema of the eigenvalues of the Floquet Hamiltonian HF

as a function of the drive parameters; the signature of such
transitions can be deciphered from the study of local corre-
lation functions of such models [46,47]. The study of such
transitions has also been extended to integrable models with
long-ranged interactions [47] and those coupled to an external
bath [48]. The characteristics of the correlation function in the
two dynamical phases across the transition have been studied
in detail. It was shown that for a d-dimensional integrable
system after n drive cycles and for large n, these correlators
decay as n−(d+2)/2 in the high-frequency regime and as n−d/2

in the low-frequency regime. However, the behavior of the
system at a dynamical critical point and its vicinity has not
been studied previously.

In this paper, we study the properties of correlation func-
tions for general driven 1D integrable quantum systems which
have a simple representation in terms of free fermions. Our
analysis holds for several 1D spin systems such as the Ising
model in a transverse field, the XY model, and the 1D Ki-
taev chain. All these models allow for a simple fermionic
representation via a Jordan-Wigner transformation leading to
a quadratic, exactly solvable Hamiltonian [50]. In addition,
it is also applicable to charge- or spin-density-wave systems
described by the SSH model [51].

The central points that emerge from such a study are as
follows. First, we show that all local fermionic correlation
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functions of such driven models decay to their steady-state
value according to the relation

Cx(nT ) ∼ n−(α+1)/β, (1)

where α and β are positive integers and x indicates the spatial
coordinate. We note that only the case of β = 2 and α = 0, 2
has been discussed in earlier studies [46–48]; these are repro-
duced as special cases of the general result given by Eq. (1).
We show that such a result is tied to the stationary point
structure and symmetry properties of the Floquet spectrum
of the system. We identify the condition for the existence of
anomalous powers (β �= 2) for the driven system and estimate
a crossover scale, nc, after which the system is expected to de-
viate from the anomalous (β �= 2) scaling toward the generic
(β = 2) one. This crossover scale diverges at specific points
in the parameter space of the driven system; we chart out
the condition for the realization of such points in terms of its
Floquet spectrum. Second, we provide a specific example of
such decay with β �= 2 in the context of simple models. To this
end, we study the driven SSH model using a continuous drive
protocol. We find the realization of decay exponents −1/3
corresponding to β = 3 and α = 0. We analytically calcu-
late the corresponding Floquet Hamiltonian within a Floquet
perturbation theory (FPT) [7,52,53] which provides insight
into the structure of the Floquet spectrum and the correlation
functions of the model. Such analytical results are shown to
match closely with exact numerical studies. Third, we identify
a long-time coherent oscillation of the correlation function of
such models when the drive frequency is near to but less than
a critical drive frequency. We show that the oscillation is a
consequence of the presence of multiple stationary points in
the Floquet spectrum of the SSH model; consequently, it is
absent at drive frequencies higher than the critical frequencies.
We provide an analytic expression for the time period of
the oscillation which matches our numerical results. Fourth,
we analyze the Ising model driven by a square pulse proto-
col and show the existence of anomalous decay exponents
corresponding to β = 4 at the first dynamical transition. We
provide a detailed analysis of the crossover scale around this
transition. Furthermore, we note that at the reentrant transi-
tions present in this model, the correlation functions show
a decay characterized by an exponent of −1/3, which is
similar to that in the SSH model. In addition, near the first
transition, we unravel the long-time oscillatory nature of the
correlation functions when the critical drive frequency is ap-
proached from below (lower frequency); this feature is absent
when the transition is approached from above. We provide
an explanation of such behavior using the properties of the
Floquet spectrum of the driven models. Finally, our analysis
identifies a crossover scale nc which diverges at the dynamical
transition characterized by the critical drive frequency ωc:
nc ∼ |ω − ωc|−β0/(β0−a0 ), where a0 = 1 or 2 depending on the
symmetry of the model, and β0 > a0 corresponds to the order
of the second term in expansion of the Floquet energy around
the transition point. For n > nc, the decay of the correlation
function follows a generic exponent corresponding to β = 2;
below nc, the decay is characterized by β > 2. We validate
such a power-law divergence of nc from exact numerics for
both the Ising and the SSH model.

The rest of the paper is as follows. In Sec. II, we analyze the
correlation functions of a driven fermion model and provide a
detailed derivation of Eq. (1). This is followed, in Sec. III,
by a study of the driven SSH model which provides concrete
examples of the scaling laws discussed. Next, in Sec. IV,
we study the scaling behavior of the correlation functions of
the periodically driven 1D Ising model in a transverse field.
Finally, we summarize our results and conclude in Sec. V.

II. GENERAL RESULTS

In this section, we shall discuss the general behavior of cor-
relation functions of periodically driven 1D integrable models.
In what follows, we shall consider a 1D integrable model
whose Hamiltonian is given by

H =
∑

k

ψ
†
k Hkψk, Hk = �σ · �h(k, t ), (2)

where �σ = (σx, σy, σz ) denotes the standard Pauli matrices, k
is the wave vector with h̄k being the momentum, and �h(k, t ) =
(hx(k, t ), hy(k, t ), hz(k, t ))T is the Hamiltonian density in mo-
mentum space. The time dependence of �h(k, t ) is fixed by
the drive; in this paper, we shall consider the case where the
drive is characterized by a time period T = 2π/ω, where ω is
the drive frequency. In what follows, we shall consider ψk =
(ak, bk )T to be a two-component fermionic field characterized
by annihilation operators ak and bk . The exact nature of these
operators depend on the model and shall be discussed in detail
in subsequent sections for the SSH and the Ising models.

The unitary evolution operator for such systems can be
expressed in term of their Floquet Hamiltonian

U (T, 0) = ∏
k

Uk (T, 0) = Tt e−i
∫ T

0 dtH (t )/h̄ = e−iHF T/h̄, (3)

where HF is the Floquet Hamiltonian of the system. Thus, Uk

for such models can be resolved in terms of the Floquet eigen-
values and eigenvectors. Since Uk (T, 0) is a 2 × 2 matrix, we
find

Uk (T, 0) =
∑
j=1,2

e−iε ( j)
F (k)T/h̄|n j (k)〉〈n j (k)|, (4)

where ε
( j)
F (k), for j = 1, 2, are the Floquet eigenvalues and

|nj (k)〉 are the corresponding eigenvectors.
To compute the correlation functions for such a driven

system, we start from an initial state |ψ in
k 〉 and compute the

expectation value

Ck (nT ) = 〈
ψ in

k

∣∣(U †
k )nOk (Uk )n

∣∣ψ in
k

〉
, (5)

where Ok is a generic quadratic operator constructed out of
ψk and ψ

†
k . The specific forms of these operators shall be

discussed in subsequent sections in the context of the SSH
and Ising models. We note that for the integrable models
treated here, the correlations of Ok constitute the most general
independent correlation functions; all quartic or higher order
correlation of fermionic operators can be expressed in terms
of Ok .
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Using Eq. (4), we can express these correlations as

Ck (nT ) = C0k + δCk (nT ),

C0k =
∑

j

|α j (k)|2Oj j (k),

δCk (nT ) = e−in
(k)T/h̄ f (k) + H.c., (6)

f (k) = α∗
2 (k)α1(k)O12(k),

Cx(nT ) =
∫

BZ

dk

2π
eikxCk (nT ),

where the integral is taken over the Brillouin zone. Here the
Floquet energy gap 
(k), the overlap α j (k) of the initial state
with the Floquet eigenstates, and the matrix elements Oj1 j2 (k)
are given by


(k) = ε
(1)
F (k) − ε

(2)
F (k), α j (k) = 〈

ψ in
k

∣∣n j (k)
〉
,

Oj1 j2 (k) = 〈n j1 (k)|Ok|n j2 (k)〉. (7)

We note that the Fourier transform of C0k [Eqs. (6)] denotes
the steady-state value of Cx in real space which is independent
of n. Thus,

δCx(nT ) =
∫

BZ

dk

2π
eikx ( f (k)e−in
(k)T/h̄ + H.c.) (8)

represents the deviation of Cx(nT ) from its steady-state value
in real space. Since such a steady state is reached for large
n in any driven system, we expect δCx(nT ) to be a decaying
function of n for large n.

To understand the nature of this decay, we note that for
large n, the integral for δCx(nT ) can be evaluated within a
stationary point approximation. To this end, let us assume
that the leading contribution to the integral comes from a
stationary point at k = k0. Around this point, let us assume
that


(k) � 
(k0) + 
(β )(k0)δkβ + · · · ,

f (k) � f (k0) + f α (k0)δkα + · · · , (9)


(β )(k0) = 1

β!

∂β
(k)

∂kβ

∣∣∣
k=k0

, f α (k0) = 1

α!

∂α f (k)

∂kα

∣∣∣
k=k0

,

where α and β denote the leading powers for expansion 
(k)
and f (k), respectively, around k = k0. We note that since k0 is
a stationary point, β � 2. Substituting Eqs. (9) in Eq. (8), we
find the leading behavior of the correlation to be given by

δCx(nT ) ∼ A(k0; n, T )
∫ ∞

−∞

dδk

2π
eiδkx

(
f α (k0)δkα

× e−in
(β ) (k0 )δkβ T/h̄
) + H.c., (10)

where we have included f (k0) ≡ f (0)(k0) by allowing the ex-
ponent α to have zero value. Here A(k0; n, T ) = exp[i(k0x −

(k0)nT )] is a phase factor which does not contribute to the
decay of the correlator since its an oscillatory function of
n. A scaling δk → δk′ = n1/βδk and x → x′ = x/n1/β in the
integral in Eq. (10) leads to

δCx(nT ) = A(k0; n, T )n−(α+1)/βg(k0; x′) + H.c.,

g(k0; z) =
∫ ∞

−∞

dy

2π
f α (k0)yαei(yz−
(β ) (k0 )yβT/h̄). (11)

Since g(k0; z) is an oscillatory function of z, it does not
contribute to the decay of the correlators. Thus, we find
the general result that the leading decay of the correlator is
given by

Cx(nT ) ∼ n−(α+1)/β, (12)

which is the main result of this section. For multiple stationary
points, it is easy to see that the leading behavior is given by
the one which allows for the slowest decay.

We note that for any stationary point expansion, gener-
ically, we expect β = 2 since the second derivative of the
energy gap need not vanish at the stationary point. In this case,
we find that the correlators would decay as δCx(nT ) ∼ n−3/2 if
f (k0) vanishes at the point and f (k0 + δk) ∼ (δk)2 as δk → 0
and as δCx(nT ) ∼ n−1/2 if f (k0) is finite (this corresponds
to α = 0). These two behaviors correspond to two dynamical
phases; the former behavior is seen for high drive frequencies
where the stationary point typically occurs at the edge of the
Brillouin zone [46], while the latter occurs at lower frequen-
cies where additional stationary points which correspond to
α = 0 appear inside the Brillouin zone. As noted in Ref. [46],
these two phases are separated by a dynamical phase transition
characterized by a critical drive frequency ωc.

The decay of the correlators exactly at the transition allows
for richer behavior, which we explore next. We note that
exactly at the transition point, the Floquet energy gap 
(k)
must have a point of inflection which necessitates its second
derivative to also vanish. Thus, for this case β > 2. Depending
on the symmetry of model, we find that either the third or
fourth derivative of the Floquet gap contributes to the lowest
nonvanishing term in the expansion of 
(k) about k = k0.
The former behavior corresponds to β = 3 and occurs if the
Floquet energy is odd under the transformation k → −k. This
leads to

Cx(nT ) ∼ n−(α+1)/3. (13)

In contrast, if the Floquet energy is even under k → −k, its
fourth derivative contributes to the lowest nonvanishing term.
This yields β = 4 and leads to

Cx(nT ) ∼ n−(α+1)/4. (14)

Thus the decay of the correlators may follow a different power
law at the critical point. Such a point may separate two distinct
dynamical phases characterized by different values of α; how-
ever, this is not a necessary condition for the existence of a
critical frequency where the decay exponent changes. Indeed,
as we shall see in Sec. III, one may have such points at a
frequency ω = ωc with same α for both ω > ωc and ω < ωc.
This is possible since β (and hence ωc) is determined by the
property of the Floquet quasienergy gap while f (k) (and thus
α) depends on the operator whose correlation is measured. We
note that a special case of the general results given by Eq. (14)
for α = 2 and β = 4 leading to n−3/4 decay has been found
earlier in Ref. [49].

Finally, we discuss the crossover scale nc which denotes the
number of drive cycles after which the system crosses over to
a decay characterized by β = 2. We note that nc diverges at
a dynamical transition and tends to zero far away from it. To
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estimate nc, we note that near a transition we can always write

δCx(nT ) ∼ A(k0; n, T )
∫ ∞

−∞

dδk

2π
e−iδkx

× (
f α (k0)δkαe−in(c1δka0 +c2δkβ0 +...)T/h̄

) + H.c., (15)

where c1 and c2 are the coefficients of expansions of the
Floquet spectrum around k = k0, β0 denotes the lowest inte-
ger larger than a0 for which c2 �= 0, a0 = 1 or 2 depending
on the symmetry of the Floquet spectrum, and the ellipsis
indicates higher order terms in the expansion of 
(k) around
k = k0 which we shall ignore. Note that here we approach the
transition from one of the dynamic phases; the exponent α

corresponding to f (k) remains the same since we do not cross
the transition. A simple scaling k → δk′ = n1/β0δk yields

δCx(nT ) ∼ A(k0; n, T )
∫ ∞

−∞

dδk′

2π
e−iδk′n1/β0 x

× [
f α (k0)n−(α+1)/β0 (δk′)α

× e−i(c1n1−a0/β0 (δk′ )a0 +c2(δk′ )β0 )T/h̄ + H.c.
]
. (16)

Thus, the behavior of the integral is governed by the coeffi-
cient of (δk′)a0 in the exponent after

nc � (c2/c1)β0/(β0−a0 ) (17)

drive cycles. Hence, the crossover scale is also controlled by
the symmetry of the model which renders a0 = 1(2) and β0 =
3(4) for models whose Floquet spectrum is odd (even) under
k → −k near the transition point. Furthermore, for a generic
transition point for these integrable models, c1 ∼ |ω − ωc|
and c2 is a constant. Thus we find

nc ∼ |ω − ωc|−β0/(β0−a0 ), (18)

which shows that nc diverges at the transition point where
c1 = 0 and is small away from the transition where generically
c1 
 c2. We explore this crossover physics in detail in Secs.
III and IV in the context of specific models.

III. SSH MODEL

In this section, we will study the effect of periodic driving
in the Su-Schrieffer-Heeger (SSH) model. We will show that
the long-time behavior of the correlation function can show
transitions between different power laws for some special
choices of the driving parameters. We shall analyze the driven
SSH model within first-order FPT; this is done so as to obtain
simple analytical insights. The results obtained from FPT
shall be compared with exact numerics toward the end of the
section.

The SSH model is a tight-binding model of noninteracting
electrons in 1D in which the nearest-neighbor hopping has
different strengths on alternate bonds [51]. We will ignore
the spin of the electron since it will not play any role in this
paper. In second-quantized notation, the Hamiltonian for a
system with N sites (where N is even) and periodic boundary
conditions is given by

H =
N/2∑
n=1

[γ1a†
nbn + γ2b†

nan+1 + H.c.], (19)

where aN/2+1 ≡ a1. (We will set both Planck’s constant h̄ and
the spacing a between nearest-neighbor sites to 1). Transform-
ing to momentum space, we find that

H =
∑

k

[γ1a†
kbk + γ2b†

kakei2k + H.c.], (20)

where k takes N/2 equally spaced values lying in the range
[−π/2, π/2]. This can be written in terms of a 2 × 2 matrix
Hk as

H =
∑

k

(a†
k b†

k ) Hk

(
ak

bk

)
,

Hk =
(

0 γ1 + γ2e−i2k

γ1 + γ2ei2k 0

)
. (21)

The energy-momentum dispersion is given by Ek± = ±Ek ,
where

Ek =
√

γ 2
1 + γ 2

2 + 2γ1γ2 cos(2k). (22)

We see that the spectrum has a minimum gap equal to Ek+ −
Ek− = 2|γ1 ± γ2| at k = 0 and ±π/2, respectively, depending
on whether γ1 and γ2 have opposite signs or the same sign.

We will now consider driving this system periodically in
time [54–59] by adding a term to the hopping which is of the
form a sin(ωt ), where a and ω are the driving amplitude and
frequency, respectively. The Hamiltonian in momentum space
is therefore given by

H =
∑

k

[(γ1 + a sin(ωt ))a†
kbk

+ (γ2 + a sin(ωt )b†
kakei2k + H.c.]. (23)

This system can be analytically studied by several methods
such as the Floquet-Magnus expansion, which works in the
limit ω, is much larger than all the other parameters, a, γ1,
and γ2, and FPT which is valid in the limit that both a and
ω are much larger than γ1 and γ2. We will use FPT, which
proceeds as follows.

For each value of k, we consider the Floquet operator

Uk = T exp[−i
∫ T

0
dtHk (t )], (24)

where T denotes time-ordering. Note that Uk is an SU(2)
matrix since Hk (t ) is a Hermitian and traceless matrix for all
times t . We can write the Floquet operator as

Uk = e−iHFkT , (25)

where HFk is time independent and is called the Floquet
Hamiltonian. Assuming a � γ1, γ2, we write

Hk (t ) = H0(t ) + V,

H0(t ) =
(

0 a sin(ωt )(1 + e−i2k )
a sin(ωt )(1 + ei2k ) 0

)
,

V =
(

0 γ1 + γ2e−i2k

γ1 + γ2ei2k 0

)
. (26)

We will find the form of HFk only to first order in the pertur-
bation V .
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The instantaneous eigenvalues of H0(t ) are given by Ek+ =
2a sin(ωt ) cos k and Ek− = −2a sin(ωt ) cos k. These satisfy
the condition

ei
∫ T

0 dt (Ek+−Ek− ) = 1. (27)

We will therefore have to carry out degenerate FPT. The
eigenfunctions corresponding to Ek± are given by

|+〉k = 1√
2

(
1

eik

)
,

|−〉k = 1√
2

(
1

−eik

)
. (28)

We begin with the Schrödinger equation

i
d|ψ〉

dt
= (H0 + V )|ψ〉. (29)

We assume that |ψ (t )〉 has the expansion

|ψ (t )〉 =
∑

n

cn(t ) e−i
∫ t

0 dt ′En(t ′ )|n〉, (30)

where |n〉 = |+〉 and |−〉. Equation (29) then implies that

dcm

dt
= −i

∑
n

〈m|V |n〉ei
∫ t

0 dt ′(Em (t ′ )−En(t ′ ))cn. (31)

Integrating this equation, and keeping terms only to first
order in V , we find that

cm(T ) = cm(0) − i
∑

n

∫ T

0
dt〈m|V |n〉

× ei
∫ t

0 (Em (t ′ )−En(t ′ )) dt ′
cn(0). (32)

This can be written as

cm(T ) =
∑

n

(
I − iH (1)

Fk T
)

mncn(0), (33)

where I denotes the identity matrix and H (1)
F is the Floquet

Hamiltonian to first order in V . We then find, using the iden-
tity eiz sin x = ∑∞

n=−∞ Jn(z)einx (where Jn denotes the nth order
Bessel function), that

〈+|H (1)
Fk |+〉 = (γ1 + γ2) cos k,

〈−|H (1)
Fk |−〉 = −(γ1 + γ2) cos k,

〈+|H (1)
Fk |−〉 = −i(γ1 − γ2)(sin k)J0

(
4a

ω
cos k

)
ei 4a

ω
cos k,

〈−|H (1)
Fk |+〉 = i(γ1 − γ2)(sin k)J0

(
4a

ω
cos k

)
e−i 4a

ω
cos k . (34)

H (1)
Fk then takes the following form in the |+〉k, |−〉k basis:

H (1)
Fk = (γ1 + γ2) cos k σz

+ (γ1 − γ2)(sin k)J0

(
4a

ω
cos k

)
sin

(
4a

ω
cos k

)
σx

+ (γ1 − γ2)(sin k)J0

(
4a

ω
cos k

)
cos

(
4a

ω
cos k

)
σy.

(35)
We now change the basis to

|↑〉k = a†
k |0〉,

(36)
|↓〉k = b†

k|0〉,
so

|+〉k = 1√
2

(|↑〉k + eik|↓〉k ),

|−〉k = 1√
2

(|↑〉k − eik|↓〉k ). (37)

In the |↑〉k , |↓〉k basis, we get

H (1)
Fk =

[
(γ1 + γ2) cos2 k + (γ1 − γ2)J0

(
4a

ω
cos k

)
cos

(
4a

ω
cos k

)
sin2 k

]
σx

+ sin k cos k

[
(γ1 + γ2) − (γ1 − γ2)J0

(
4a

ω
cos k

)
cos

(
4a

ω
cos k

)]
σy

+ (γ1 − γ2)(sin k)J0

(
4a

ω
cos k

)
sin

(
4a

ω
cos k

)
σz. (38)

Before proceeding further, we make two comments about
the exact form of HFk to all orders based on certain symme-
tries. First, HFk must be an odd function of γ1, γ2. To see
this, we note that Eq. (24) can be written as a product of
Nt factors in which t increases from 0 to T as we go from
right to left in steps of T/Nt (eventually, we take the limit
Nt → ∞). We then use the fact that the driving term satisfies
sin (ω(T − t )) = − sin(ωt ) to see that

[Uk (γ1, γ2)]−1 = Uk (−γ1,−γ2), (39)

if we hold a, ω fixed. Equation (25) then implies that

HF (−γ1,−γ2) = −HF (γ1, γ2). (40)

Hence HF can only have odd powers of γ1, γ2. This implies
that if γ1, γ2 
 a, ω, the first-order Floquet Hamiltonian will
be a very good approximation to the exact Floquet Hamil-
tonian since the next correction is of third order in γ1, γ2.
Second, let us consider the special case γ2 = −γ1 which will
be considered in more detail below. We then find that after
doing a unitary transformation,

Hk (t ) → VkHk (t )V †
k ,

where Vk =
(

1 0
0 e−ik

)
, (41)

we obtain

Hk (t ) = 2a sin(ωt ) cos kσx − 2γ1 sin kσy. (42)
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FIG. 1. Energy Ek (black solid line) and its first derivative dEk/dk (blue dot-dashed line) versus k obtained from the first-order Floquet
Hamiltonian for γ1 = 1, γ2 = −1, a = 6, and (left panel) ω = 4a/(μ1 + 0.3), (middle panel) ω = 4a/μ1, and (right panel) ω = 4a/(μ1 −
0.3). For ω = 4a/μ1, there is a stationary point at k = 0 with both dEk/dk and d2Ek/dk2 equal to zero.

We now use Eq. (42) to calculate the Floquet operator and
Floquet Hamiltonian in Eqs. (24) and (25). Then an argument
similar to the one above shows that

[Uk]−1 = U−k, (43)

where we have held γ1, γ2 fixed and only changed k → −k.
Equation (43) implies that

HF,−k = −HF,k . (44)

This means that the eigenvalues of HF (quasienergies) must
be odd functions of k if γ2 = −γ1.

The eigenvalues of the first-order Floquet Hamiltonian in
Eq. (38) are given by ±Ek [with the Floquet energy gap being

(k) = 2E (k)], where

Ek =
√

(γ1+γ2)2 cos2 k + (γ1−γ2)2 sin2 k

[
J0

(
4a

ω
cos k

)]2

.

(45)

For general values of γ1, γ2, we see that Ek is nonzero for all
values of k. However, for γ2 = γ1 it vanishes if k = π/2 (in
fact, Ek does not depend on the driving if γ2 = γ1), while for
γ2 = −γ1 it vanishes when either k = 0 or J0((4a/ω) cos k) =
0. Thus, driving can lead to nontrivial zeros of the Floquet
energy for special values of (a/ω) cos k. In the rest of this
section, we will therefore consider the case γ2 = −γ1. Setting
γ1 = 1, we have

Ek = 2(sin k)J0

(
4a

ω
cos k

)
. (46)

Figure 1 shows plots of Ek and dEk/dk for a system with γ1 =
1, γ2 = −1, a = 6, and ω < ωc, ω = ωc and ω > ωc, where
ωc = 4a/μ1 and μ1 � 2.4048 is the first zero of J0(z). At
k = 0, we see that Ek = 0 in all three cases, but dEk/dk = 0
only if ω = ωc.

While the calculations shown above are for the case of a
driving of the form a sin(ωt ), it turns out that the expressions
for the Floquet Hamiltonian and therefore its eigenvectors
simplify considerably when the driving is given by a cos(ωt ).
We then find that

H (1)
Fk =

[
(γ1 + γ2) cos2 k + (γ1 − γ2)J0

(
4a

ω
cos k

)
sin2 k

]
σx + sin k cos k

[
(γ1 + γ2) − (γ1 − γ2)J0

(
4a

ω
cos k

)]
σy. (47)

We will consider this driving in the rest of the section for both
analytical and numerical studies. Note that the eigenvalues of
the Floquet operator and hence of the Floquet Hamiltonian
(±Ek) are independent of the phase of the driving, i.e., they
do not depend on φ when the driving is a sin(ωt + φ). We
will see that the analysis in the rest of this section is governed
mainly by the properties of Ek and we can therefore choose
any value of φ for our calculations.

We now consider an operator of the form a†
j b j where j

denotes a particular unit cell. Starting from an initial state
�(0), we will look at the correlation function at stroboscopic
instances of time t = nT ,

Cn = 〈�(nT )|a†
j b j |�(nT )〉, (48)

and we will study how this behaves for large values of n. We
take the initial state to be a half-filled state given by a product

in momentum space:

|�(0)〉 =
∏

k

[(a†
k + eiφb†

k )/
√

2]|vac〉. (49)

For simplicity, we have taken the phase φ to be independent
of k:

Cn = 2

N

∑
k

〈�(nT )|a†
kbk|�(nT )〉

= 2

N

∑
k

〈�(0)|(U †
k )na†

kbk (Uk )n|�(0)〉. (50)

H (1)
Fk can be written in the following matrix form:

H (1)
Fk = Ek

(
0 ie−ik

−ieik 0

)
, (51)
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whose eigenvalues are ±Ek and eigenfunctions are

|+〉k = 1√
2

(
1

−ieik

)
,

|−〉k = 1√
2

(
1

ieik

)
. (52)

Then we have

(Uk )n = e−inEk T |+〉k〈+|k + einEk T |−〉k〈−|k .

=
(

cos(nEkT ) e−ik sin(nEkT )
−eik sin(nEkT ) cos(nEkT )

)
. (53)

Since

a†
k |vac〉 =

(
1
0

)
, b†

k|vac〉 =
(

0
1

)
, (54)

we find that

(U †
k )na†

kbk (Uk )n =
(− 1

2 eik sin(2nEkT ) cos2(nEkT )

−ei2k sin2(nEkT ) 1
2 eik sin(2nEkT )

)
.

(55)

Using Eqs. (49) and (55), we obtain

Cn = A + 2

N

∑
k

f (k) cos(2nT Ek ),

A = 1

2N

∑
k

(eiφ − ei(2k−φ) ),

f (k) = 1

4
(eiφ + ei(2k−φ) ). (56)

For N → ∞, these quantities have the integral forms

Cn = A + 1

4π

∫ π/2

−π/2
dk (eiφ + e−iφ cos(2k)) cos(2nT Ek ),

A = 1

4π

∫ π/2

−π/2
dk (eiφ − ei(2k−φ) ) = eiφ

4
, (57)

where we have used the relation cos(2nT Ek ) = cos(2nT E−k )
(since E−k = −Ek) to write the first equation in Eq. (57).

We will now study the form of the n-dependent part of
Cn, called δCn, for large n. The dominant contributions will
come from regions around the values of k where Ek has an
extremum, namely, dEk/dk = 0. One such point is k = π/2.
Expanding around it to second order, we find that Ek = 2 −
(1 + 8a2/ω2)(k − π/2)2, where we have used the expansion
J0(z) = 1 − z2/4 for small z. We first assume that f (k =
π/2) �= 0; this will be true if φ is not an integer multiple of
π . Near k′ = k − π/2, the n-dependent term in Eqs. (57) then
takes the form

δCn � i

2π

∫
dk′ sin φ Re

× exp[i4nT − i2nT (1 + 8a2/ω2)k′2], (58)

where Re denotes the real part. We thus see that Cn will
oscillate as cos(4nT ) (which implies that its absolute value
will vary periodically with n with a period 
n = π/(4T ) =
ω/8) multiplied by an integral of the form

∫
dk′ exp[iαnk′2]

which, by a scaling argument, will decay as 1/n1/2 for large

n. However, in the special case that φ is an integer multiple
of π , both eiφ + e−iφ cos(2k) and its first derivative vanish at
k = π/2. We then get a factor of k′2 appearing in the inte-
grand of Eq. (58). The integral will therefore be of the form∫

dk′k′2 exp[iαnk′2], which will decay as 1/n3/2 for large n.
Below we will see plots showing a 1/n1/2 decay (for φ = π/4;
Fig. 2) and a 1/n3/2 decay (for φ = 0; Fig. 5).

Next, we consider if there are any other values of k where
dEk/dk = 0. We find that such points exist if ω < ωc, where
ωc = 4a/μ1. This is because, as k goes from 0 to π/2, sin k
goes from 0 to 1, taking only positive values in between, while
J0((4a/ω) cos k) goes between J0(4a/ω) and 1, crossing zero
p times in between if 4a/ω is larger than the first p zeros
of J0(z). This implies that Ek in Eq. (46) will go between
0 and 2, crossing zero p times in between; hence Ek will
have p extrema where dEk/dk = 0. Next, if k = k0 is one of
the points where dEk/dk = 0, and k0 is not equal to either
0 or π/2, the factor f (k) in Eq. (48) is not zero, but the
argument of cos(2EknT ) will go as cos(2Ek0 nT + αn(k −
k0)2). This means that δCn will oscillate as cos(2Ek0 nT ) (im-
plying that its absolute value with vary periodically with a
period 
n = ω/(4Ek0 )) multiplied by an integral of the form∫

dk′ exp[iαnk′2]. By a scaling argument, this will again de-
cay as 1/n1/2 for large n.

We thus conclude that δCn will generally oscillate and
decay as 1/n1/2. This is what we see in Fig. 2, left and
middle panels, for a system with γ1 = 1, γ2 = −1, a = 6,
ω = 4a/(μ1 ± ε), where ε = 0.1, and φ = π/4 for the initial
state [see Eq. (49)]. If 4a/ω is larger than p zeros of J0(z)
(where p can be 1, 2, 3, · · · ), there will be p terms in δCn, all
of which decay as 1/n1/2 but which oscillate with p different
periods 
n.

Interestingly, a different scaling of δCn versus n arises if
ω is exactly equal to ωp = 4a/μp with μp being the pth
zero of J0(z). (We will call the ωp’s critical frequencies, ω1

being the largest such frequency). Then both Ek and its first
two derivatives vanish at k = 0 as we will now show. For
definiteness, we consider the neighborhood of ω1, namely,
we take ω = 4a/(μ1 + ε), where |ε| 
 1. We now expand
Eq. (46) around k = 0 up to order k3. Using the property
dJ0(z)/dz = −J1(z) and J1(μ1) ≡ ν1 � 0.519, we find that

Ek � ν1(−2εk + μ1k3). (59)

Equation (48) then gives, in the region around k = 0,

δCn � cos φ

2π

∫
dkRe exp[i2nT ν1(−2εk + μ1k3)]. (60)

Defining a scaled variable k′ = kn1/3, we get

δCn � cos φ

2πn1/3

∫
dk′ Re

× exp[i2T ν1 (−2εn2/3k′ + μ1k′3)]. (61)

We see from Eq. (61) that if ε = 0, i.e., ω = ω1 exactly, δCn

will go as 1/n1/3 times a factor which does not oscillate with
n at large n. This can be seen in Fig. 2, right panel. (If n is
not very large, we see some oscillations which arise due to the
stationary point at k = π/2). Further, if ε is nonzero but small,
then we will still get the 1/n1/3 scaling if |ε|n2/3 
 1 since the
term of order k′ will dominate over the term of order k′3. But
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FIG. 2. Log-log plots of the absolute value of the n-dependent part δCn of the correlation function 〈a†
j b j〉 as a function of the time nT ,

for γ1 = 1, γ2 = −1, a = 6, ω = 4a/(μ1 + ε), and φ = π/4 for the initial state. Here μ1 denotes the first zero of the Bessel function J0

so ωc = 4a/μ1 is the critical frequency. Left panel: ε = −0.1, so ω > ωc. Middle panel: ε = 0.1, hence ω < ωc. Right panel: ε = 0, hence
ω = ωc. Both the left and middle panels show crossovers between 1/n1/3 and an oscillating function times 1/n1/2. The right panel with ε = 0
and hence ω = ωc shows only a 1/n1/3 scaling with no oscillations.

if |ε|n2/3 � 1, the k′ term will dominate over the k′3 term,
and we do not expect to get the 1/n1/3 scaling anymore. We
will then get the other scaling, namely, an oscillating function
of n times 1/n1/2. Hence, a crossover will occur between a
nonoscillating function of n times 1/n1/3 and an oscillating
function of n times 1/n1/2 at a crossover nc which scales with
ε as 1/|ε|3/2. This is shown in Fig. 3. Since |ε| ∼ |ω − ω1|,
we see that nc ∼ 1/|ω − ω1|3/2. This corresponds to β0 = 3
and a0 = 1 [Eq. (18)].

We now consider the oscillations which appear in δCn

when n is larger than the crossover scale and ω not equal
to a critical frequency. These are shown in Fig. 2, left and
middle panels, for ω close to the value 4a/μ1. For ε < 0,
|δCn| goes as an oscillating function of n times 1/n1/2 due
to the integral over the region around k = π/2; the oscillation
period is 
n = ω/8 which is independent of ε and too small to
be visible in Fig. 2, left panel. But for ε > 0, we see in Fig. 2,
middle panel, that the oscillations in δCn have quite a large

FIG. 3. Plot of crossover scale nc versus ε, for γ1 = 1, γ2 =
−1, a = 6, ω = 4a/(μ1 + ε), and φ = π/4 for the initial state. We
take nc as the point where the guiding line for 1/n1/2 behavior (black
dashed line) first crosses the numerical result in the left panel of
Fig. 2 and where the first large dip in the correlation function appears
in the middle panel of Fig. 2. We find that nc diverges as 1/|ε|3/2 as
ε → 0.

period, about 
n = 215. We will now derive this. For ε > 0,
we see from Eq. (59) that dEk/dk = 0 at k = ±k0, where

k0 =
√

2ε

3μ1
. (62)

Expanding around the stationary point at k0, we find that the
argument of the exponential in Eq. (60) is given by

−i2nT ν1
4

3

√
2

3μ1
ε3/2 + atermoforder(k − k0)2. (63)

The Gaussian integral involving the term of order (k − k0)2

will give a scaling like 1/n1/2 while the first term in Eq. (63)
implies that |δCn| will oscillate with n with period


n = π

(4/3) 2T ν1

√
2

3μ1
ε3/2

= a

(4/3) μ1ν1

√
2

3μ1
ε3/2

, (64)

where we have used T = 2π/ω = πμ1/(2a) to derive the
second line. In Fig. 4, we show a plot of 
n versus ε,
for γ1 = 1, γ2 = −1, a = 6, ω = 4a/(μ1 + ε) for ε > 0 (so
ω < 4a/μ1), and φ = π/4 for the initial state. The best fit is
given by 
n = 6.81/ε3/2, which agrees well with the value of
6.85/ε3/2 that we find from Eq. (64).

Finally, we compare our results for first-order FPT with
that found from exact numerics. The latter is shown in Fig. 5
for γ1 = −γ2 = 1 and a = 6. We note that for these values of
a, γ1, and γ2, the first-order FPT yields a critical drive fre-
quency to be ωc � 9.9799 whereas the exact numerics leads
to ωc � 9.9794; this reflects the accuracy of FPT for these
parameters. (This occurs since the expansion parameter for
FPT is γ1/a = 1/6 and only odd powers of this parameter
appear. So the third-order term is about 36 times smaller than
the first-order term). The top left panel of Fig. 5 displays the
Floquet energy and its derivative as a function of k, showing
that the exact Floquet energies precisely match the results
from first-order FPT shown in the middle panel of Fig. 1. The
top right (bottom left) panel indicates that the crossover from
n−1/3 to n−1/2(n−3/2) behavior at ω = 4a/(2.4048 + (−)0.1)
is present in the exact theory and is almost identical to that

104303-8



DYNAMICAL RELAXATION OF CORRELATORS IN … PHYSICAL REVIEW B 105, 104303 (2022)

FIG. 4. Plot of oscillation period 
n versus ε, for γ1 = 1, γ2 =
−1, a = 6, ω = 4a/(μ1 + ε), and φ = π/4 for the initial state. We
find that 
n diverges as 1/|ε|3/2 as ε → 0 from the positive side.

obtained within first-order FPT. Finally, the bottom right panel
shows that the n−1/3 decay of the correlation function at ω =
ωc = 9.7994 is reproduced within exact numerics. The reason
for this near-exact match can be traced to a large value of a
which shifts the transition to high frequency where first-order
FPT naturally produces accurate results.

We end this section by noting that it is not necessary for
a dynamical phase transition to have different power laws for
ω < ωc and ω > ωc. We have seen above that the power law
(1/n1/2) is the same on the two sides of ωc for a general
initial state, but there is a different power law (1/n1/3) exactly
at ωc. However, for a special choice of initial state (φ = 0),
the power law is different on the two sides, being 1/n1/2 for
ω < ωc and 1/n3/2 for ω > ωc.

IV. ISING MODEL

For the one-dimensional S = 1/2 Ising model with L spins
and periodic boundary conditions, the Hamiltonian reads

H = −1

2

L∑
j=1

(
gτ x

j + τ z
j τ

z
j+1

)
, (65)

where τ
x,y,z
j denote the Pauli matrices for the physical spins

on site j, we have set the Ising nearest-neighbor interaction
to J = 1/2, and g = h/J is the dimensionless magnetic field.
Carrying out a Jordan-Wigner transformation from spins to
spinless fermions with

τ x
i = 1 − 2c†

i ci, τ z
i = −

[∏
j<i

(1 − 2c†
j c j )

]
(c†

i + ci ), (66)

where c†
i (ci ) creates (destroys) a spinless fermion on site i

allows one to rewrite H in Eq. (65) as

H = g
L∑

j=1

c†
j c j −

L−1∑
j=1

(c†
j c j+1 + c†

j c
†
j+1 + H.c.)/2

+ (−1)NF (c†
Lc1 + c†

Lc†
1 + H.c.)/2, (67)

where NF denotes the number of fermions. For the rest, we
restrict to even NF , which implies that cL+1 = −c1. Further
using

ck = exp(iπ/4)√
L

∑
j

exp(−ik j)c j, (68)

where k = 2πm/L with m = −(L −
1)/2, · · · ,−1/2, 1/2, · · · , (L − 1)/2, Eq. (67) can be
written as H = ∑

k>0 Hk where

Hk = (g − cos k)[c†
kck − c−kc†

−k] + sin k[c−kck + c†
kc†

−k].

(69)

This can be recast in the form of Eqs. (2) by noting that since
the fermions can be created or destroyed only in pairs, one can
introduce pseudospins |↑〉k = c†

kc†
−k|0〉 and |↓〉k = |0〉, where

|0〉 represents the fermion vacuum which gives

hz(k, t ) = g(t ) − cos k,

hx(k, t ) = sin k, hy(k, t ) = 0. (70)

We concentrate on a square pulse protocol with g(t ) = gi

for 0 � t < T/2 and g(t ) = g f for T/2 � t < T following
Ref. [46]. Further, without any loss of generality, we choose
the initial state to be (0, 1)T for all k which represents the
fermion vacuum or τ x

i = +1 in terms of the physical spins to
study relaxation of local quantities to their final steady state
values as a function of n, the number of drive cycles. Equa-
tions (71)–(74) follow from the discussion in Ref. [46] and we
reproduce these below for ease of presentation. For the choice
of initial state and for L → ∞, δCi j (n) = 〈c†

i c j〉n − 〈c†
i c j〉∞

and δFi j (n) = 〈c†
i c†

j 〉n − 〈c†
i c†

j 〉∞ equal [46]

δCi j (n) =
∫ π

0

dk

2π
f1(k) cos(2nφ(k)),

δFi j (n) =
∫ π

0

dk

2π
[ f2(k) cos(2nφ(k)) + f3(k) sin(2nφ(k))],

(71)

with

f1(k) = −(
1 − n̂2

z (k)
)

cos(k(i − j)),

f2(k) = −in̂z(k) f3(k),

f3(k) = i(nx(k) + iny(k)) sin(k(i − j)). (72)

In Eqs. (72), we used the fact that the Floquet unitary at
each k mode can be written as a 2 × 2 matrix of the form
Uk = exp[−iφ(k)�σ · n̂(k)] where n̂(k) = (nx(k), ny(k), nz(k))
represents a unit vector and φ(k) ∈ [0, π ] in the reduced zone
scheme. The Floquet Hamiltonian can be expressed as

HF (k) = �σ · �ε(k) = 
(k)�σ · n̂(k)/2, (73)

where �ε(k) = (εx(k), εy(k), εz(k)), 
(k) = 2|�ε(k)| is the Flo-
quet energy gap, and n̂(k) = �ε(k)/|�ε(k)|. This fixes φ(k) =
T 
(k)/2 where each component of �ε(k) is restricted to
[−π/T, π/T ] in the reduced zone scheme. The expression
of �ε(k) has been computed in Ref. [46]. For the square pulse
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FIG. 5. Top left panel: Plot of the exact numerical Floquet energy (black solid line) and its derivative (blue dot-dashed line) as a function
of k, for γ1 = 1, γ2 = −1, a = 6, and ω = ωc, where ωc = 4a/μ1. Top right panel: Log-log plot of δCn computed from exact numerics
(for φ = 0 for the initial state) showing n−1/3 to n−1/2 crossover at ω = 4a/(μ1 + 0.1). Bottom left panel: Same as top right panel but for
ω = 4a/(μ1 − 0.1) showing crossover from n−1/3 to n−3/2 behavior. Bottom right panel: Same as top right panel but for ω = ωc showing n−1/3

decay.

protocol which we focus on in this paper, we find


(k) = 2 arccos(Mk/T ),

Mk = cos �i(k) cos � f (k)

−N̂i(k) · N̂ f (k) sin �i(k) sin � f (k),

�i( f )(k) = (T/2)
√

(gi( f ) − cos k)2 + sin2 k,

Ni( f )(k) = (sin k, 0, (gi( f ) − cos k))T/(2�i( f )(k)). (74)

The square pulse protocol allows for analytic expressions
for Uk . From Eqs. (71), the stationary points d
(k)/dk = 0
in k ∈ [0, π ] determine the behavior of the relaxation of local
quantities. As shown in Ref. [46], the number of stationary
points in k ∈ (0, π ) is 0 for ω = 2π/T → ∞ while it scales
as 1/ω as ω → 0. Importantly, f1,2,3(k) in Eqs. (72) vanish at
k = 0 and k = π for any (gi, g f , T ) while these are generally
nonzero when k �= 0, π . Lastly, keeping gi, g f , T fixed, a se-
ries expansion of 
(k) around k = 0 and k = π , respectively,
yields only even powers.

For the rest of this section, we focus on δCii(n), which
also equals (1 − 〈τ x

i 〉)/2 from Eqs. (66) (since the initial state
and the drive protocol are both translationally invariant, the
dependence on site index i can be dropped) with the other
local fermionic correlators also showing similar decays in
time. Let us quickly recapitulate the relaxation behavior in the

two dynamical phases that are distinguished by whether the
stationary points occur only at k = 0, π versus the appearance
of extra stationary points in k ∈ (0, π ). We denote the number
of stationary points in k ∈ (0, π ) by Nb. First, α = 2 (α = 0)
for stationary points with k = 0 or π (k �= 0, π ) from the
behavior of f1(k). Second, β = 2 in both cases. This immedi-
ately gives a relaxation of n−3/2 (n−1/2) when Nb = 0 (Nb �= 0)
from Eq. (1).

We now focus on the relaxation behavior exactly at the dy-
namical critical points. As discussed in Ref. [46], these come
in two varieties—critical points where Nb changes by 1 (e.g.,
from Nb = 0 to Nb = 1) and critical points where Nb changes
by two (e.g., from Nb = 2 to Nb = 0). The former class arises
due to an extra stationary point entering from either k = 0 or
π [where fi(k) = 0 for i = 1, 2, 3] [46], and the latter class
arises due to two stationary points in k ∈ (0, π ), coalescing to
one at the critical point [Fig. 6 (top left)] as the drive frequency
is tuned, keeping gi, g f fixed. The first dynamical transition
as ω is reduced from very large values always belongs to the
first category, while some other dynamical transitions may
belong to the second category as ω is lowered further. For the
first category, α = 2 since the extra stationary point emerges
from either k = 0 or π . Here β = 4 since although the critical
point requires that d2
(k)/dk2 = 0 at k = 0 or π , we also
have d3
(k)/dk3 = 0 at these two momenta. These two facts
imply a critical relaxation of n−3/4 from Eq. (1). For the
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FIG. 6. Top left panel: 
(k) (solid lines) and d
(k)/dk (dotted lines) as a function of k for various values of ω. The dynamical critical
point of the second type is characterized by Nb = 1 with this stationary point also being a minimum of d
(k)/dk as the drive frequency is
tuned. Top right and bottom left panels: Relaxation of a local quantity δCii(n) shown as a function of n for a dynamical critical point of the first
type and second type (bottom left), respectively. Bottom right panel: The behavior of the crossover timescale, nc, as the drive frequency ω is
tuned to ωc ≈ 3.63821 from both sides.

second category, the single stationary point in k ∈ (0, π ) also
becomes a minimum of d
(k)/dk [Fig. 6 (top left)]. Thus,
α = 0 and β = 3 for this point since k �= 0, π and f1(k) �= 0
generically for k ∈ (0, π ). This gives a critical relaxation of
n−1/3 from Eq. (1) for these critical points.

We now show results for gi = 2 and g f = 0, where both
types of dynamical critical points can be accessed by tuning
the drive frequency ω by using a system size of L = 8 × 105 to
minimize finite-size effects. For ω ≈ 3.63821, we encounter
the first dynamical critical transition where Nb changes from 0
to 1 across the transition while for ω ≈ 1.49853, we encounter
a dynamical transition where Nb changes from 2 to 0. Fig. 6
(top right) shows the relaxation to be n−3/4 for the former
case and Fig. 6 (bottom left) shows the relaxation to be n−1/3

for the latter case, completely in accord with our theoretical
expectation. Furthermore, we expect a diverging dynamical
crossover timescale nc in the vicinity of the critical points
in both the dynamical phases where the relaxation of local
quantities scale as n−3/4 (n−1/3) for n 
 nc before crossing
over to n−3/2 or n−1/2 for n � nc. We extract nc from our
numerical data and show its behavior in the vicinity of the first
dynamical phase transition in Fig. 6 (bottom right). Expect-

edly, nc shows a divergence as the critical point is approached
from both sides. The crossover scale nc is determined by
fitting the early (late) time data for δCii(n) to n−3/4 (n−3/2 or
n−1/2) and extracting the crossing point of the fitted lines in a
log-log plot [see Fig. 7 (left and right panels)].

We now discuss how nc diverges near the first dynamical
phase transition as ω approaches ωc from above. Referring
to Eq. (17), we see that here β0 = 4 and a0 = 2 since the
extra stationary point enters from k = π for the square pulse
protocol [46] where only even powers contribute. Thus, nc ∼
(c2/c1)2 and the divergence occurs since c1 = 0 exactly at the
critical point. Furthermore, c1 changes sign as ω is changed
from above to below the critical frequency, which implies that
c1 ∼ ω − ωc near the transition. This fixes nc ∼ (ω − ωc)−2

as one approaches the dynamical critical point from above. In
contrast, for approaching the point from below, we need to
take into account the fact that there are two stationary points
(at k = π and π − k0 where k0 ∼ √

ωc − ω) which approach
each other as one nears the critical point. Numerically, c1

is small and |c1| is of the same order for both stationary
points. The characteristic around this stationary point controls
nc and numerically we find that the same scaling (as the one
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FIG. 7. The behavior of δCii(n) for ω > ωc (left panel) and ω < ωc (right panel) in the vicinity of the first dynamical critical point (ωc ≈
3.63821) with gi = 2, gf = 0 shows the presence of a dynamical crossover from critical scaling (n−3/4) to noncritical scaling (n−3/2 in the left
panel and n−1/2 in the right panel).

when the critical point is approached from above) holds in
this case. This is shown in the right panel of Fig. 7. A plot
of the correlation function for two representative values of
ω < ωc is shown in the left panel of Fig. 8. The plot reveals
a long-time oscillation of the correlation function, similar to
that identified for the SSH model in the previous section,
with 
n = 1400(260) for ω = 3.6361(3.63505). The time
period 
n of these oscillations diverges as ω approaches ωc

in accordance with that found for the SSH model in Sec. III.
An analysis along the same line as in the SSH model predicts
1/k4

0 divergence, where k0 ∼ √|ω − ωc| is the distance be-
tween the extrema (at k = π and k = π − k0) in the Floquet
Brillouin zone. This fits the data for large k0; however, it
breaks down when k0 is small where a much faster divergence
is encountered; this is probably due to the proximity of the two
symmetry-unrelated stationary points in the Brillouin zone as
well as the small value of d
(k)/dk near them. These features
probably invalidate an analysis based on the premise that the
contribution to the correlation function comes only from the
two stationary points.

V. DISCUSSION

In this paper, we have studied the dynamical relaxation of
correlation functions to their steady-state values in driven 1D
integrable quantum models as a function of the number of
drive cycles n. We summarize the generic behavior of such
relaxation by identifying a general power law in terms of
two positive integers α and β. The exponents corresponding
to β = 2 and different α characterizes different dynamical
phases; this was identified in Ref. [46]. Here we find the
presence of other possible exponents characterized by β = 3
and β = 4. These anomalous exponents typically occur at the
dynamical transition between two dynamical phases; how-
ever, they may also occur at special points within a dynamical
phase. We provide a general analysis of the behavior of such
correlation functions in terms of the Floquet spectrum of the
driven model and show that their occurrence is tied to points
of inflections in the Floquet spectrum. At these points, for a
Floquet spectrum which is odd under k → −k, the correlation
functions decay with β = 3; for an even spectrum, we find a
decay with β = 4.
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FIG. 8. Left panel: The behavior of δCii(n) for two representative values of ω < ωc � 3.638 showing long-time coherent oscillations
corresponding to 
n � 1400 (ω = 3.6361) and 
n � 260 (ω = 3.63505). For both plots gi = 2 and gf = 0, and ωc corresponds to the
first transition frequency. Right panel: A plot of the oscillation period 
n to the distance k0 between the two extrema of HF (at k = π and
k = π − k0) in the Floquet Brillouin zone showing 1/k4

0 (the dashed blue line corresponds to 0.0135/k4
0 ) behavior at larger k0.
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This analysis also points to the absence of such anomalous
powers (β �= 2) for dynamical transitions in higher dimen-
sional integrable models. The presence of the anomalous
exponent requires the existence of a point of inflection in the
Floquet spectrum; for d > 1, this requires vanishing of multi-
ple derivatives ∂2
/∂ki∂k j at such a point. Since the transition
can be reached by tuning a single parameter, namely, the drive
frequency, multiple derivatives cannot generically vanish at
the transition. Thus we expect such anomalous exponents to
be realized only for 1D models.

We have studied two concrete models to show the existence
of such anomalous decay. The first one involves the SSH
model driven by a continuous protocol; this model realizes
decay of correlations with β = 3 leading to a n−1/3 behavior.
We analyze the driven SSH model within first-order FPT to
gain analytical insight into the problem; the results of the
first-order FPT agrees almost identically with the exact nu-
merical study. We also study the correlation functions of the
1D transverse field Ising model. The model shows a reentrant
transition between two dynamical phases at several drive fre-
quencies. We show that the correlation function decays with
β = 4 at the first (highest frequency) transition, leading to a
n−3/4 behavior. In contrast, the subsequent transitions at lower
drive frequency exhibit n−1/3 decay and correspond to β = 3.

Near these transitions which host relaxation with anoma-
lous power laws, we find a crossover scale, nc, after which
the correlators decay to their steady-state values with expo-
nents corresponding to β = 2. Such crossover scales can be
identified at both sides of the transition. It was found that
nc ∼ (ω − ωc)−β0/(β0−a0 ); thus it exhibits a power-law diver-
gence at the transition. This behavior has been confirmed
from exact numerics for both the Ising and the SSH model.
The former model exhibits β0 = 4 and a0 = 2, leading to
nc ∼ (ω − ωc)−2 at the first dynamical transition, while the
second model corresponds to β0 = 3 and a0 = 1 leading to
nc ∼ |ω − ωc|−3/2.

Finally, our analysis shows a long-time oscillatory behav-
ior of the correlation functions near the transition at ωc. Such

behavior is seen when the transition is approached from below
ωc and is seen in both models. Our FPT analysis for the
SSH model shows that such an oscillation results from the
presence of two stationary points (at k = ±k0) and provides an
analytical estimate of the time period of such oscillations. This
estimate shows a near-exact match with results from exact
numerics. However, for the Ising model, a similar analysis
fails to capture the time period when the two stationary points
are close to each other (small k0); this failure could be due to
proximity of symmetry-unrelated stationary points and the flat
nature of 
(k) around k = π near the transition. This leads to
near-zero values of d
(k)/dk for several values of k between
the two stationary points (at k = π and π − k0); as a result,
the correlators receive contributions from all these momenta.
This may invalidate an analysis based on contributions from
only the two stationary points; we leave a further study of this
issue for future work.

In conclusion, we have studied the dynamical relaxation of
correlation function of driven 1D quantum integrable models.
We have identified anomalous power laws characterizing the
decay of these correlators to their steady-state value as a func-
tion of the number of drive cycles and a diverging crossover
timescale as the dynamical transition is approached from both
sides. Our analysis also reveals a long-time oscillatory behav-
ior of these correlation functions near a dynamical transition
when the transition is approached from the low-frequency
side.

Note added: Recently, we came to know about a similar
work unraveling anomalous power laws by Makki et al. [60].
Our results agree wherever a comparison is possible.
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