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We consider the isotropic spin-% Heisenberg spin chain weakly perturbed by a local translationally and
SU(2)-invariant perturbation. Starting from the local integrals of motion of the unperturbed model, we modify
them in order to obtain quasiconserved integrals of motion (charges) for the perturbed model. Such quasicon-
served quantities are believed to be responsible for the existence of the prethermalization phase at intermediate
timescales. We find that for a sufficiently local perturbation the quasiconserved quantities indeed exist, and we

construct an explicit form for the first few of them.
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I. INTRODUCTION

In classical mechanics there is a well understood distinc-
tion between integrable and nonintegrable systems, as well as
between their long-time dynamics. Namely, a generic nonin-
tegrable system typically exhibits an ergodic behavior, leading
to a chaos, whereas integrable systems are nonergodic and
their phase space trajectories are confined to some subregions
of the phase space due to the existence of many conserved
quantities. Moreover, there is a result of tremendous im-
portance, the Kolmogorov-Arnold-Moser (KAM) theorem,
which ensures that classical integrable systems under a weak
integrability-breaking perturbation are stable for a sufficiently
long time [1-5].

Extending the KAM theorem to the quantum case is a
long-standing problem. Although recent findings demonstrate
some progress in this direction [6], a complete understanding
is missing and there are numerous open questions. In part
this is due to the fact that in the quantum case even the very
definition of integrability is subtle [7].

A widely accepted criterion for quantum integrability is
that a Hamiltonian Hj is integrable, if there exists a large
number of extensive, functionally independent, and mutually
commuting conserved quantities (charges):

[Ho, Qj1 = [Qx, ;1 =0. ey

Importantly, the conserved charges Q; are assumed to be
local, in a sense that they are given by the sums of operators
with a finite support.

Just like in the classical case, the long time dynamics
is very different for integrable and nonintegrable systems
(to be precise, we do not consider here systems that ex-
hibit Anderson or many-body localization). Nonintegrable
systems thermalize according to the eigenstate thermalization
hypothesis (ETH), which (at least according to one of the
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interpretations) means that the total isolated system acts as
a heath bath for its own subsystems. This leads to the spread
of entanglement over the whole system, such that in the long
time limit it is impossible to retrieve any information about
the initial state using only local measurements [8,9]. On the
contrary, in integrable systems, thermalization is very differ-
ent. It is described by the generalized Gibbs ensemble (GGE),
which takes into account that there are many other conserved
quantities apart from the total energy and the number of
particles, as it is for the standard grand-canonical ensemble
[10-12]. Moreover, it has been shown that to accurately de-
scribe thermalization of integrable systems one should extend
the GGE by including not only the local conserved charges, as
in Eq. (1), but also the quasilocal ones [13-16].

Then, in the spirit of the KAM theorem, one may ask
what will happen if a quantum integrable system is slightly
perturbed away from integrability. What kind of thermaliza-
tion will it exhibit? Naively, one would expect that nearly
integrable quantum systems simply thermalize following the
ETH. However, it is widely believed that such systems also
exhibit a different, the so-called prethermal, behavior at in-
termediate times [17-19]. Different studies [20-22] suggest
that the eventual thermalization occurs at much later times
tin ~ A 72, where A < 1 is the strength of the perturbation, and
the scaling can be understood from the golden rule. Moreover,
it is believed that this prethermal phase should be described by
some effective GGE [23]. Therefore, it is natural to ask what
are the charges that define this effective GGE in the prethermal
phase. Clearly, since this effective description is only valid at
times 1 < A2, these charges can only be quasiconserved with
the accuracy O(2?). In other words, since the exact conserva-
tion laws of the unperturbed system constrain the dynamics of
an integrable system, one can expect that the dynamics of a
perturbed system should be restricted by the quasiconserved
charges.

This idea is also supported by the developments in the con-
text of the slowest operators [24,25]. Indeed, for an operator
O that commutes with a Hamiltonian H, the time evolution
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e"0e=M" is trivial. In terms of the quantum information
language this means that the information encoded in O(0)
does not spread. On the contrary, if [O(0), H] # 0, the typical
timescale of information spreading is inversely proportional to
the norm of [0(0), H], as follows from the Baker-Campbell-
Hausdorff formula. Thus, to slow down the spread of the
quantum information one needs to suppress (at least) the first
order term in the Baker-Campbell-Hausdorff expansion.

Let us mention that the search for quasiconserved charges
can be linked with an old problem in functional analysis,
related to almost commuting matrices [26] and explicitly
stated by Halmos in [27]. This long-standing question “when
two almost commuting matrices are close to matrices that
exactly commute” was answered eventually by Lin [28]. More
precisely, Lin showed that given € > O there exists § > 0
such that if N x N matrices A, B are Hermitian, with || AB —
BA||<é and || A ||, || B |I< 1, then there exists commuting
Hermitian N x N matrices X, Y suchthat || A—X || + || B —
Y ||< €, where || - || is a matrix norm. Importantly, § = §(¢)
does not depend on the dimension N. Recently, Hastings
obtained an explicit estimate €(8) ~ 8'/°, where the exponent
may depend on the choice of the operator norm [29]. Quite re-
markably, the question whether one can find triples of almost
commuting matrices has generically a negative answer [30]. A
similar story about unitary matrices is more involved [31,32].
There, the existence of almost commuting unitary matrices
have some topological obstructions given by the so-called
Bott indices. There is an extensive mathematical literature
on the subject, see, e.g., Ref. [33]. Finally, we would like to
mention that there is a somewhat related research direction in
the context of AdS/CFT correspondence, which deals with
the so-called long-range deformed spin chains [34,35] and
TT deformations [36,37]. However, these studies deal with
the deformations that preserve integrability to all orders in the
perturbation strength and thus differ from the present work.

This paper is devoted to the search for quasiconserved
quantities in a quantum spin chain weakly perturbed away
from integrability. The rest of the paper is organized as fol-
lows. In Sec. II we describe the model and discuss some
general properties of the exact conserved charges that are
present in the absence of the perturbation. In Sec. III we
present an ansatz for the quasiconserved charges and dis-
cuss the requirements that the ansatz must satisfy. Finally, in
Sec. IV we demonstrate our findings, conclude, and formulate
some open questions for future research. The paper is sup-
plemented by several technical Appendixes which clarify our
derivations using algebraic tools. Similar techniques can also
be used for other spin systems.

II. THE MODEL AND CONSERVED CHARGES OF
THE INTEGRABLE PART

Let us start by describing the specific model that we are
going to deal with. Consider a Hamiltonian

H, = Hy + AH|, (2)

where Hy is an integrable part, H, is an integrability-breaking
perturbation, and A > 0 is a numerical parameter character-
izing the perturbation strength. We assume A < 1, such that
the perturbation is weak. For the unperturbed system, we take

a spin—% isotropic Heisenberg spin chain (XXX model) on a
one-dimensional lattice:

H0=JZO']'~GJ'+1, (3)
J

where o; is the vector of Pauli matrices and J is an exchange
constant. It is well known that Hy is integrable, the exact spec-
trum and the eigenstates can be found using the Bethe ansatz
[38,39], and one has a large number of conserved charges.
Let us now break the integrability by a perturbation of the
following form:

HIZJZUj'Uj+Za 4
J

which is nothing other than the next-to-nearest neighbor
Heisenberg interaction. In what follows we put J =1 and
assume that the system is in the thermodynamic limit. Let
us mention that both the unperturbed Hamiltonian Hy and
the perturbation H; are translationally and SU(2) invariant.
Also, both are the sums of local operators with the sup-
port on two and three sites (for Hy and H), respectively).
Many facts are known about the low-energy properties of
this model [40]: when A < A. &~ 0.241, the model is gapless
and is described by a marginally perturbed SU(2); Wess-
Zumino-Witten model, while for A, < A < 1/2 the ground
state is dimerized (with exactly known Majumdar-Ghosh state
at A = 1/2) with a gap in the spectrum. Spontaneous incom-
mensurate order appears for A > 1/2. In the limit A — oo the
Hamiltonian (2) is equivalent to a pair of decoupled XXX
models (on even and odd sites), and integrability is restored.
However, we do not consider the case of large A and re-
strict ourselves to A < 1. Before we turn to the problem of
constructing the quasiconserved quantities for the perturbed
Hamiltonian (2), let us briefly summarize the most important
properties of the charges conserved by the integrable Hamil-
tonian H,.

Local conserved charges [as those given in Eq. (1)] can be
generated iteratively starting from Q, = H, [by convention,
Q) is the total magnetization] and using the following relation
[41-43]:

Qui1 = [B, O], 5)

where B is the so-called boost operator, which reads
1 .
BZZ_in:JO’j.O’j-H. (6)

Thus, the boost operator acts as a ladder operator in the space
of conserved charges of the model. Importantly, every next
charge has a larger support as compared to the previous one.
For the XXX model, the nth charge Q, is a sum of operators
with a support up to n sites. As discussed in Ref. [41], the
conserved charges with n > 3 generated as in Eq. (6) contain
terms from the charges with smaller n. For the sake of sim-
plicity we work with a different basis {Q,} in which every
next charge does not contain any terms that are present in the
previous ones. The first two charges coincide in both bases,
i.e., Oy = Oy for k = 1, 2. For completeness, here we present
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expressions for the few higher charges in this basis:

03 = Z(Uj X 0j11) 042,
J

04 = Z{((Uj X 0j11) X 0j42) 043
J

+0;-0j12}

05 =) {(((6) X 0j11) X 0j12) X 6j43) - 014
j @)

+(0; X 0jpp+0; X0j41) 043},

Q6=Z{(0j'0j+2+0j'0j+3)

j
+ (0 X 0j11 40 X0j42) X 0j43)- 014,

+ ((((0; X 0j41) X 0j42) X 0j43) X Oj44) - Ojys5
+((0j X 0j41) X 0j12) - 044},

and the general form of Q, can be found in Ref. [41]. We em-
phasize once again that B can only generate the local charges,
whereas the Hamiltonian (3) also possesses the quasilocal
ones [13]. To our knowledge, a corresponding boost operator
that can generate quasilocal charges has not been found.

Let us now turn on the perturbation (4), such that the
total Hamiltonian is H, as given by Eq. (2), and A < 1.
The quantities Q, are no longer conserved, since they do
not commute with H,. Neither they are quasiconserved, since
I[H,., O,]]l o< A. Hence, they change significantly over times
much shorter than #y, ~ A~2 and can not govern the dynamics
in the prethermal phase.

III. QUASICONSERVED CHARGES

We now proceed with looking for the quasiconserved quan-
tities that survive during the pre-thermal phase up to times
~)~2. This simply means that we are looking for a set of
operators 0, that satisfy

I[H;., Ol oc A2 ®)

and commute with each other with the accuracy O(A?).

First of all, the Hamiltonian H, has the translational
and SU(2) symmetries, therefore we require that the qua-
siconserved charges 0, possess these symmetries as well.
In analogy with the integrable case, we identify the second
charge with the Hamiltonian, i.e., O, = H; (note that Q; =
01, as the total magnetization is conserved by H, ). This gives
us the relation

0> = Q) + AH,. )

Since the perturbation is weak, it is natural to expect that simi-
lar relations should hold for higher charges as well. Therefore,
we make an ansatz

M

On=0,+1) 807, (10)
where §Q'¥) is a local operator consisting of terms having the
support on s sites. The values of m and M will be specified
below, at the moment we can only expect that M > n, i.e.,

the maximal support of O, is larger than that of Q,. This is
a reasonable assumption because the perturbed Hamiltonian
H, itself has a greater support than Hy. Let us emphasize
that the ansatz (10) fully determines the A dependence of
the quasiconserved charge Q,. This is simply because the
perturbed Hamiltonian H; has terms at most linear in A, and
thus keeping in O, any higher order terms results in the excess
of precision. Thus, taking into account Eq. (10), one can
clearly see that in order to fulfill the requirement in Eq. (8),
the commutator [H,, O,] should not contain terms linear in A,
i.e., the following condition must be fulfilled:

M
[Hy, Q]+ Y _[Ho, 80"] = 0. (11)

S=m

In this case the commutator of Qn and H, reads

M
[Hy, 0 =37 [H1, 800 (12)

s=m

and Eq. (8) is clearly satisfied.

Let us now discuss the structure of 8Q§f) from Eq. (10) in
more detail. First of all, translational invariance allows us to
express it in the following form:

509 =3 Y et Y 0y, (13)

k=2 £(s) J

where ¢, (£;(s)) are real numerical coefficients, and the local
operator O;(£,(s)) has a support on s sites and acts nontriv-
ially on & sites (2 < k < s), specified by the components ¢; of
the vector £;(s):

J+l, o j+ L, (14)

where ¢; take values from {0, ..., s — 1}. Importantly, all ¢;
are distinct and not necessarily ordered. Note that £, (s) always
has £, = 0 and £, = s — 1 for some indices p, g € {1, ..., k}.

Due to the SU(2) symmetry, O;(£x(s)) in Eq. (13) can be
expressed in the basis of SU(2)-invariant tensor products of
k spin-% operators. As shown in Refs. [44,45], this basis has
dimension

M Gr—k+1)

D= 2 k=20 + D

s)

where [x] is the integer part of x.

To construct this basis we follow Refs. [41-43] and in-
troduce nested cross products of the Pauli vectors, with the
nesting going toward the left:

M
V., =01,

)
Vi =010 X 04,

3 (16)
Vil =(0jre, X 0j1e,) X 0y,

k k—1
Vj):V5 )X6j+lk-

Then we consider the following scalar [and hence SU(2) in-
variant] spin polynomials:

il ) = [ =V o, 17
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For instance, for the two-spin polynomial we have f;(0,[) =
0, -0;4, for the three-spin polynomial f;(0,[, m) = (o; x
0j+1) - 0jym, and for the four-spin polynomial the definition
yields fi(l,m,n, p) = [(0j+1 X 6 j4m) X O jin] - 0 jsp.

Let us now comment on the size of the space V; spanned
by the k-spin polynomials (17) and its relation to the dimen-
sionality of the complete basis given by Eq. (15). Taking into
account that the mixed product (A; X Az) X ...A,—1) - A,
can be written in a number of equivalent ways [41-43], it is
clear that some permutations of the set {¢, ..., £;} result in
the same polynomial f;(£y, ..., £;) up to a sign. Moreover,
not all polynomials are linearly independent. For instance, for
k =2 and 3 there is clearly only one unique polynomial, in
agreement with Eq. (15). Likewise, for k = 4 there are three
inequivalent permutations of {¢;, ..., ¢4} = {0, [, m, n}, and
only two of the resulting polynomials are linearly indepen-
dent. Namely, we have

£i€0,1,m,n) — f;(0,m,l,n)+ f;(0,n,1,m) =0, (18)

which one can easily check by a direct calculation using
Egs. (20) and (21). Thus, for k = 4 the basis is two di-
mensional. However, this differs from Eq. (15) that yields
D4 = 3. The reason is that for even k > 2, the basis of
SU(2)-invariant operators also contains elements of the form
(046, - Ojgey) - (0j4g, - 0jrg ). Interestingly, it turns out
that the latter are not needed for our purposes. At the same
time, for odd k the number of linearly independent k-spin
polynomials equals Dy and they form a complete basis.

We thus see that the operator O;(£(s)) in Eq. (13) can be
taken as

0;(t(9)) = filr, ... &)

=[((Ojre, X Ojyg,) X -2 ) X Ojp ] Oy,
(19)

where £; are the same as those discussed after Eq. (14).
Obviously the charges Q, of the unperturbed model H, can
also be expressed in terms of f;(£y,..., ) from Eq. (17).
Let us note that the corrections 5Q§f) in Eq. (10) are allowed
to have terms that are present in the unperturbed charge Q,.
Explicitly, the spin polynomial in Eqgs. (17) and (19) can be
written as

k
By
[ttt =) cﬁl...ﬂk(g)p:lawp, (20)
ﬁﬂk

where the coefficients Cg, g, arise from expanding the scalar
product in the spin polynomial f;(£y, ..., £;). For k =2 and
3, one obviously has Cgg, = 1 and Cg,g,5, = €p,,p,, COITE-
spondingly, where ¢;j; is the Levi-Civita symbol. For k > 3
the coefficients are given by

k—4
Coype = Z €ay i1 Brlar s B B l_[ Cayagq1 Pig1- 21
g=1

o) Qg3

Thus, to fully understand the operator content of the
quasiconserved charges Q,,, it remains to determine the sup-
port of the corrections 6fo>, i.e., the range of summation
over s in Eq. (10). Let us consider the the spin polynomial
fitmy, ..., my) with the support on s sites, i.e., for some

p and g we have m, = 0 and m; = s — 1. Then, as shown

in Appendix A, the commutator [f;(0,[), fi(mi, ..., my)]
contains terms with the support up to s + /. Thus, since in
general the unperturbed charge O, may contain K terms with
the support on {ny, ..., ng_1, n} sites, with n; < --- < n, the
commutator [H;, Q,] consists of terms with the support {n; +
2,...,ng_1 +2,n+ 2}. Therefore, we immediately see that
in order to satisfy Eq. (11) the correction Z?’im SQEIS) must in-
clude terms having the supporton {n; + 1,...,nx_; + 1,n+
1} sites, such that the maximal support of the commutator
[Ho, Z?iin §Q9] matches that of [H, Q,] and the two com-
mutators cancel each other. Therefore, for the quasiconserved
charges we finally have

n+1

On=0n+1) 50, (22)

sS=n;

where n; and n are, correspondingly, the smallest and the
largest support of the terms in Q,,. Note that some of the terms
in Eq. (22) may have zero coefficient. For instance, as shown
in the next section, in Q3 the only corrections that are present
have the support s = n 4+ 1 = 4. With this, we now proceed to
investigating the possibility of satisfying Eqs. (8) and (11).

IV. RESULTS AND DISCUSSION

Taking into account Egs. (10), (13), (17), and (19) to con-
struct the ansatz for the quasiconserved charges Q,, we fix the
coefficients ¢, (£x(s)) in Eq. (13) such that the criterion (11)
is satisfied, which guarantees the required scaling behavior
of the commutator norm in Eq. (8). In order to evaluate the
commutators in Eq. (11) we used the results of Appendix
B. Then, for the lowest order quasiconserved charge Q3 we
obtain

03 = 03 + 1805,

4
SQg ) = Z(Gj X011 +0;X0j12) 0jy3.
J

(23)

From Egs. (7) and (23) we see that the correction 8Q§4) has
a structure resembling that of Qs, i.e., every term in 8Q§4)
has the same number of spins, but the support is increased
by one site. Let us now look at the norm of [0s, H,]. For
computational convenience we use Frobenius norm defined as

IXNF = Vir(XTX). (24)

Then, from Egs. (12) and (24) we have

1 -
———|[[Hy, O31llF = 8%, (25)
AR I[H:., O3lllr

where ||Holl = ~/3N 2"/? is introduced for normalization.
One can try to further minimize the commutator norm (25) by
adding to the quasiconserved charge Q3 a term aAQ3, where a
is an arbitrary real constant. Since [Hy, Q3] = 0, this does not
affect the condition (11). However, the new term contributes
to the right-hand side of Eq. (12). Consequently, Eq. (25)
transforms into

I[H,., O3 +arOs]lF — 4202 m’ (26)

1 Holl
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which is minimal at a = —1/2 and equals 214 ~ 7.48,
which differs from the value at a=0 by &= 0.6%.
Naively, one could think that the norm in Eq. (26) can
be made zero if we allow for complex a (which would
mean (3 is non-Hermitian). This is not the case since in
the latter case the right-hand side of Eq. (26) becomes
44/2)2/2 + Re(a) + al>.

Repeating the steps from the beginning of this section, we
obtained the quasiconserved charges 0, with n =4, 5, and
6. The latter two, Qs and O, contain a large number of terms
and for the sake of readability, we present their explicit form in
Appendix C. Here we only give the expression for Q4, which
reads

0i=0 +AZ(SQ<”
0 = _22 ;0
(4) Z {Uj

8Q(5)

((0j X 0j12) X040} 013, (27)

Z{((a/ X 0j41) X 0j42) 044
J

+((0; X 0j41) X0j13) 044
+ (0 X 0j42) X 0j43) - 014}

Then, similarly to the case of 03, we calculate the commutator
norm

|[Hy, Q4 + arQ4]llF

=422 (4d> + a+10)'2. (28)
| Hollr

Equation (28) is minimal at @ = —1/8 and equals /31812,
whereas for a = 0 the squared norm (28) becomes V32022,
The difference is approximately 6 = 0.6%, just like for the
previous quasiconserved charge. However, the minimization
procedure gives much better results for higher order charges.

J

As we show in Appendix C, for n =5 and 6 one has § =
6% and & =~ 19%, correspondingly. Thus, the role of the
correction arQ, to the quasiconserved charge 0, is more
pronounced for larger values of n and increases rapidly.

One can check by a lengthy but straightforward direct
calculation that the commutator of the quasiconserved charges
[O,, O,n] does not contain terms linear in A. We expect that
this is correct for any n and m and have checked this explicitly
for Qn with 3 > n > 6. It is also straightforward to see that
any linear combination of the quasiconserved charges is a
quasiconserved charge itself.

To summarize, in this paper we have shown that an
isotropic Heisenberg spin chain, weakly perturbed away from
integrability by a next to nearest neighbor interaction of
strength A, possesses quasiconserved charges O, with 3 <
n < 6, which are approximately conserved up to times of the
order 2. We conjecture that the perturbed model H, from
Eq. (2) has as many quasiconserved charges 0, as there are
conserved charges Q, for the integrable model (3), but the
proof of our conjecture is beyond the scope of the present pa-
per. We also expect that our results can be extended to the case
of other perturbations and open boundary conditions, as well
as to other one-dimensional models with SU(2) symmetry,
e.g., the Hubbard model, which we leave for future studies.
The presence of these quasiconserved charges could affect
some transport properties, see, e.g., [46,47].
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APPENDIX A
Let us consider the commutator of f;(0, /) and fj(my, ..., my):
L£50. D), filmy,com)] =D > Z Cp,. ﬁk[ o ;;l,(g)a,m} (A1)
ij o BB

where the polynomial f;(my, ...,

k
} : ﬁp
Gz o‘lJrl ’ j+m,,

ij p=1 Jj p=l1

ZZ(A P+ A =68m) []

my) contains terms with k£ Pauli matrices and is assumed to have the support on s sites. Then
we rewrite the commutator on the right-hand side of Eq. (A1) as

k
(1 - 8l,m,,mq)8j(]7)>, (AZ)

q=1 q#p

where A;(p) and B;(p) arise from the terms in Eq. (A1) with i = j +mj, and i + ] = j + m,,, correspondingly. Explicitly, we

have

Aj(m:[ o510, ®

g=1 q#p

a By Br
]+mt, m,,j| B; (p) - G [ ]+l’ ]+l] Uj+l+m,—mp'

k
(A3)
r=1 r#p
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It is straightforward to see that

k k
1 2
Aoy =Y Sim-m A P+ [ (1= 8m-m,) AP ), (A4)
q=1 q#p q=1 q#p
where
k k
(1) By (2) ﬂ,
'A (p.q)= [ J+l’ J[ /+l ® J+m, mp’ ‘A (p) = [ 9j> Jl J+l ® Gj+m, —mp* (AS)
r=1 r#p,q r=1 r#p
Thus, we obtain
k
(1) _ Yq Br
A (p’ q) 2i a Bq Z €a, Bp. V[ra "+ 80‘ Bp Z Ea, Ba:Yq j«ll»l O‘j+mr7m,,’
"’ g Bl
’ (A6)
(2) 9 Yp
-Aj (p) =2i Z gﬂtﬁp,l/p jI ja-&-l ®Uj+m, —m,’ B (p) =2i U ZS‘Y Bp-¥p j+l ®Oj+l+i11,—in,,
i r#p i r;ﬁp

It is now easy to see that the commutator in Eq. (A1) consists of terms with the support not greater than s + /. Indeed, let us

consider, e.g., B;(p) from Eq. (A6) and take m,, = 0. Then, for some r = r, we have m,, = s — 1 and the Pauli matrix with the

Bre

largest index is Ot

whereas the Pauli matrix with the smallest index is o}'. Clearly such a term has a support on s + [ sites.

APPENDIX B

In this Appendix we explicitly calculate the commutator of 2-spin polynomial f;(0, /) with n-spin polynomials for2 < n < 4.
We use the following identities:

[A-X,A-Y]=2i(X xY)-A

[A-B,(BxL) Rl =—2i((A xB)xL)-R,
[A-B,(AxB)-Rl=4iB-R—A-R),
[A-B,(LxA)xB)-R|=2i((LxB)-R—(LxA)-R),

(BI)

c:},B= {07

where A = {a aj] iy Jz

can show that

> 1£5(0. D). £i(0. m)] —2;2(]3(0 Lym)+ f;(0,m, [ +m)— f;(0, 1,1 +m)— f;(0,m—1,m)), [#m, (B2

J.k

N o}, and L, R are arbitrary tensor products that commute with both A and B. Then one

and zero if [ = m.
D L0 1), fuOm m)] =20y (1= 81 = 81,050 L m, ) + 281, [f50, n — 1) = f5(0, m)]
J.k J
- zal,n[fj(ov m — l) - fj(os m)] - (l - al,nfm)fj(ms l + m, 07 n)
+ 281 p—mlfj0, I +m) — f;(0,m)] + fi(n, I +n,0,m) — f;(0,1,1 +m, 1 +n)
+ A =8mfi0, 0,1 —m Il —m4+n)— 1 =8, =38 ,-m)fi0, 1, =n,l +m—n)} (B3)
and
D 150, D), film, n, p, @) = 2i Y {K(,m,n, p,q) — K(I,n,m, p,q) + K(, p, g, m,n) — K(L, q, p, m, m)}, (B4)
Jk J
where we denoted
K(lvm7 n,p, C]) :451,n7m[f(0s _l _m+p1 _l _m+q) —f(O,p—m, q _m)]
=28 pemlf(=l —m+n,0,—l —m+q)— f(n—m,0,q — m)]
— 28 g-mlf(=l —m+p,0,— —m+n)— f(p—m,0,n —m)]
+ 2(1 - 3l,n—m - 8l,p—m - Sl,q—m)f(()’ lv n—m,p—m,q— m)
—2(1 = 81,m)(A = 81 m=n)(X = 81 u—p)(I = 8y u—) f (O, L, —m+n,l —m+p,l —m+q). (B5)
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APPENDIX C

In this Appendix we present the explicit forms of the quasiconserved charges Qs and Qg. We also calculate the norms of the

commutators [H;, O, + arQs], in the same way it is done for n = 3 and 4 in Sec. IV of the main text. We then minimize the
commutator norm with respect to a.

1. Explicit form of Qs

The basis of SU(2)-invariant operators for k = 5 spins is six dimensional [see Eq. (15) in the main text] and one has the
following relations between linearly dependent 5-spin polynomials:

fill, p.q.m,n) 0 0 1 1 0 0

f;(l,p»m,n,q) 1 0 -1 -1 0 0 }”{Svnzvz,q;

fid,n, q,m, p) o 1 0 0 1 0 fj»(lqu ’m’f;)

fltnpma =100 00000 LS | 1
fill,n,m, p,q) O U B I A 1 e ’Z’I;’CI)

fi,m, q,n,p) 0 1 -1 0 0 -1 f]'(m’p’l’n’q)

fj(l’m’P»”’CI) 1 0 -1 —1 —1 0 jun,q,t,n, p

fil,m,n, p,q) 1 -1 0 -1 -1 1

For the quasiconserved charge 05 we have

05 = 05 +AZ£Q“>

s=5

0 =Y 1£5(0.1,4) + 2£;(0,2,4) + f;(0,3,4) + f;(1,3,0,2,4) + £;(0.4,3,1,2) — £;(0,3,2, 1,4)],
J
0 =Y 1£;(0.3,2,1,5) — £;(0,5.2,1,3) — £;(1.2,0,3.5) — £;(1,3,0.2,5) + £;(1,5.0,2,3)]
i (C2)
+ ) 160,42, 1,5) — £;(0,5,2,1,4) — £;(1,2,0,4,5) — f;(1,4,0,2,5) + £;(1,5,0,2,4)]
J
+ ) 1£(0.4,3.1,5) = £;(0.5,3,1,4) — £;(1,3,0,4,5) — f;(1,4,0,3,5) + £;(1,5.0,3,4)]
J
+ ) 1£1(0,4,3,2,5) — £;(0,5.3,2,4) — £1(2,3,0,4,5) — £;(2,4,0.3,5) + £;(2,5,0,3, 4)].

J

Using Eq. (24) for the norm of [H;, Os] we obtain

TP I[Hs, Os + arOs]llr = 8 A% (5a*> — Ta + 20)/2. (C3)
0

At a = 0.7 the norm is minimal and the right-hand side of Eq. (C3) becomes ~33.5A2, whereas at a = 0 it is equal to 16+/502 ~
35.81% and the difference is around 6%.

2. Explicit form of O

According to Eq. (15) in the main text, the basis of SU(2)-invariant operators for k = 6 spins is 15 dimensional. We find that
only its 14-dimensional subspace Vg spanned by the 6-spin polynomials is needed. The latter can be chosen as

V6={fj(27410531175)7fj(27411701375)3fj(274’1337035)1‘](_}(274’3105115)"}(_‘]'(23473117015)’
fi(3,4,0,1,2,5), f;(3,4,0,2, 1,5), /;(3,4,1,0,2,5), £;3,4, 1,2,0,5), ;(3,4,2,0, 1, 5),
fj(3147 21 17015)’ f_‘]'(]5473527 015)’ fj(]’493709 2’5)5 f](oa 473527 155)}' (C4)
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The quasiconserved charge Qg has the following form:

Qs = Qs + 1 Z 505,

s=3

05 = Zf](O 2), 5Qé4)=32fj(0,3),

oY Z{f](o 4)+2f(0,3,1,4) — £;(0,4,1,2) — 2;(0,4,1,3) — £;(0,4,2,3)}, (C5)

ow Z{f,(o 2,1,5)+2£;(0,3,1,5) +2£(0,3,2,5) + £;(0,4,1,5) + 2;(0,4,2,5) + £(0,4,3,5)

J

- £(0,5,1,2) = 2£;(0,5, 1, 3)

— f(0,5,1,4) —

2£(0,5,2,3) —2f£;(0,5,2,4) — £;(0,5,3,4)

= fi0,4,3,2,1,5) + f;(1,4,3,2,0,5) + f;(3,4,0,2,1,5) — f;(3,4,2,1,0,5)},
8Q<7> Z {f;(0,4, 3,2,1,6) + £;(0,5,3,2,1,6) + £;(0,5,4,2,1,6) + £;(0,5,4,3,1,6) + £;(0,5,4,3,2,6)

J

_f](154337032s5)_‘f](1’43 37 230’ 6)_.](‘](1’533721 0’ 6)_.ﬁ(1’ 5147 230’ 6)_.](‘](1’5347 3107 6)
+ £1(2,4,0,3,1,5) — f;(2,4,1,3,0,5) + f(2,4,3,1,0,5) — f(2,5,4,3,0,6)

1 1 1 1 1
~ 5/3.4.0.1.2.6) = 2 fj(3.4.0.2.1.6) + - f;(3.4.1.0.2.6) + 5 f;(3.4.1.2,0.6) + 5 £;(3.4.2.0. 1.6)

1 1
~5/7(3.4.2.1.0.6) — £ f(3.5.0.1.2.6) -

2

1 1 1
Efj(3, 5,0,2,1,6) + Efj(3’ 5,1,0,2,6) + Ef(3’ 5,1,2,0,6)

1 1 1 1 1
+-/@3,5,2,0,1,6) — 5]‘(3,5,2, 1,0,6) — Ef(4,5,0, 1,2,6) — Ef(4,5,0, 1,3,6) — 5f(4,5,0, 2,1,6)

1 1 1 1 1
— 5f(4,5,0, 2,3,6) — Ef(4,5,0,3, 1,6) — Ef(4,5,0,3,2, 6) + 5f(4,5, 1,0,2,6) + 5f(4,5, 1,0,3,6)

1 1 1 1 1
+Ef(4’15»1729016)+Ef(41571s390a6)+§f(41572107116)+§f(4957290a396)_zf(4»5a2»1a036)

1 1 1 1
+§f(45572’370’6)+Ef(45573’07176)+§f(45573707256)_Ef(475735 17056)_

1
Ef(45573’27 05 6)}'

(C6)
Then, using Eq. (24), for the commutator norm we obtain
1
AP ———[H;., Qs + arQsllr = 8 A% (664> + 102a + 113)!/2, (C7)
0
the minimum is achieved at a = —17/22 = 0.77 and we have ~68.612, whereas for a = 0 we have ~85A2, and the difference

is close to 19%.
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