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Chiral phonons in lattices with C4 symmetry
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Chiral phonons were initially proposed and further verified experimentally in two-dimensional (2D) hexagonal
crystal lattices. Many intriguing features brought about by chiral phonons are attributed to the pseudoangular
momenta which are associated with the threefold rotational symmetry of hexagonal lattices. Here, we go
beyond the hexagonal crystals and investigate the chiral phonons in systems with fourfold rotational symmetry.
We clarify the symmetry requirements for the emergence of chiral phonons in both 2D square lattices and
three-dimensional tetragonal lattices. For two dimensions, the realization of C4 chiral phonons requires the
breaking of time-reversal symmetry; while for three dimensions, they can exist on the C4-invariant path in a
chiral tetragonal lattice. These phonons have the advantage that they can be more readily coupled with optical
transitions, which facilitates their experimental detection. We demonstrate our idea via model analysis and
first-principles calculations of concrete materials, including the MnAs monolayer and the α-cristobalite. Our
work reveals chiral phonons beyond the hexagonal lattices and paves the way for further exploration of chiral
phonon physics in square/tetragonal materials and metamaterials.
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I. INTRODUCTION

As collective vibrations of crystal lattices, phonons play
an important role in solid-state physics, underpinning many
fundamental phenomena ranging from specific heat to su-
perconductivity. In 2015, the concept of chiral phonons was
proposed, for which the vibration modes acquire a defi-
nite sense of chirality, either right-handed or left-handed
[1]. Chiral phonons naturally exhibit selective coupling with
other chiral quantities/excitations, such as circularly polar-
ized light [1–5], magnetization [6], phonon Berry curvature
[7,8], and chiral structures [9], which are expected to generate
novel physical effects. As a result, chiral phonons have at-
tracted great interest in recent years. Combined theoretical and
experimental efforts revealed their important contributions
to various optical and excitonic effects in two-dimensional
(2D) semiconductors [2,10,11], magnetooptical response in
topological semimetals [12], electronic or structural phase
transitions [13,14], valley phonon Hall effect [15], and so
on [16–22].

In studying chiral phonons, the focus is on the phonon
modes at high-symmetry points of the Brillouin zone (BZ).
This is because, besides the sizable intrinsic angular momenta
due to symmetry, these modes also possess well-defined
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pseudoangular momenta (PAM) [1], which can enable their
selective coupling to optical transitions and other excitations.
Indeed, the first experimental confirmation of chiral phonons
in 2018 was based on the infrared circular dichroism in
monolayer WSe2 [2], where the chiral phonons at K and K ′
high-symmetry points of the hexagonal BZ selectively partic-
ipate in the intervalley optical transitions.

It follows that the properties of chiral phonons should
depend on the type of the crystal lattice since different lattices
have different high-symmetry points with different constraints
on the phonon modes. Previous studies on chiral phonons
covered a variety of lattice models, such as the honeycomb
lattice [1], Kekule lattice [23], kagome lattice [24],

√
3 ×√

3 honeycomb superlattice [25], and also realistic materials
and heterostructures, such as graphene/BN [26], 2D transi-
tion metal dichalcogendies [2], WN2 [5], and α-quartz [9].
However, one notes that all those works are limited to the
hexagonal crystal system, there the PAM of chiral phonons
were associated with the threefold rotational symmetry C3.

As a result a question naturally arises: Can chiral phonons
be extended beyond the hexagonal crystal system?

In this work we address the above question. Since the
translational symmetry of a lattice is compatible with only
two, three, four, and sixfold rotational axes, it appears that
a natural candidate is a system with a fourfold rotational
axis. We clarify the underlying symmetry condition for the
emergence of chiral phonons with C4 symmetry. In two di-
mensions, since the C4-invariant points in the BZ are all
time-reversal-invariant momentum (TRIM) points, we show
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FIG. 1. Brillouin zones for (a) a square lattice and (b) a hexago-
nal lattice.

that chiral phonons there can only appear when the time-
reversal symmetry T is broken. We demonstrate the idea
explicitly by a model calculation. We show that, different
from previous cases, here, chiral phonons can appear at the
� point for which the chirality connected with nonzero PAM
of ±1 under the C4 rotation. Importantly, for chiral phonons
at �, they can directly couple with optical transitions either
by resonant excitation or by Raman scattering, rather than
the intervalley transition required before. We perform a rough
estimation for the effect in a realistic material, the 2D ferro-
magnetic MnAs monolayer and find that the effect is typically
weak due to the usually weak spin-lattice coupling. The situa-
tion is different for three-dimensional (3D) systems. We show
that in 3D, chiral phonons with C4 symmetry can appear on the
high-symmetry path. In this case, T breaking is not needed,
but the lattice has to be chiral. The idea is demonstrated by
our first-principles calculation on α-cristobalite. Our work
extends the concept of chiral phonons beyond the hexagonal
crystal system, which offers platforms for studying chiral
phonons with novel properties and potential applications.

II. GENERAL ANALYSIS FOR TWO DIMENSIONS

Let us first give a general consideration for C4 chiral
phonons in two dimensions. As discussed, our interest is on
the possible chiral phonons at the high-symmetry points in
BZ which respect the C4 symmetry. These points are marked
in Fig. 1(a), which include the � point and the M (π, π ) point.
The points X and Y are also high-symmetry points, but they
generally retain only the C2 symmetry. A crucial observation
is that all the high-symmetry points of the square lattice are
TRIM points, i.e., T is a symmetry at these points. It then
follows that phonon modes at these points cannot have a net
chirality. This is because the T operation flips the chirality of a
phonon mode. Hence, a left-handed phonon mode must have a
right-handed time-reversal partner, and they are degenerate at
the same energy, annihilating the net chirality (the degenerate
pair can always be decomposed into nonchiral linear modes).

In comparison, for hexagonal class lattices studied before,
their BZ is a hexagon [see Fig. 1(b)]. There are high-
symmetry points, namely the K and K ′ points, which are not
TRIM points. Therefore, we are allowed to have chiral phonon
modes at K and K ′. Under T , K goes to K ′ and vice versa. As
a result, a left-handed mode at K has its right-handed time-
reversal partner at K ′. The separation in momentum space
ensures their well-defined chirality.

From this analysis, we see that a necessary condition
to have chiral phonons in a square lattice is to break the

FIG. 2. (a) Schematic illustration of the square lattice model.
There are two basis sites A and B in a unit cell (marked by the
shaded square). The couplings between AB, AA, and BB sites are
considered in the model. (b) Phonon dispersion of the model. In the
calculation, we set the force constants {kβ

L , kβ

Ti, kβ

To} for a bond β =
AB, AA, and AB as AB: {20, 12, 10}, AA: {8, 2, 1}, and BB: {6, 1, 0.4},
respectively.

T symmetry. Then chiral phonons may emerge at the � and M
points of the square BZ. Chiral phonons at � are of particular
interest because they can be directly coupled with light, with-
out worrying about the crystal momentum mismatch. In the
following we shall explore these ideas, first in a simple model
and then in a realistic material.

III. 2D SQUARE-LATTICE MODEL

Let us consider the simple 2D square lattice model illus-
trated in Fig. 2(a). Since we are interested in the chiral phonon
modes in the optical branches, we need at least two atomic
sites in a unit cell: A is at the corner of a square and B is at the
center. The structure clearly preserves the C4 symmetry.

The harmonic oscillations of the square lattice is described
by the standard Hamiltonian

H0 = 1
2 pT p + 1

2 uT Ku, (1)

where u is a column vector of displacements from lattice equi-
librium positions for each atom, multiplied with the square
root of atomic mass mA/B for the A/B site; p is the conju-
gate momentum vector, and K is the force constant matrix.
For simplicity, in the model, we keep the couplings up to
the second neighbors. These include the coupling through
the AB, AA, and BB bonds, as indicated in Fig. 2(a). Each
bond β is characterized by a longitudinal force constant kβ

L

and two transverse force constants kβ
Ti (in-plane) and kβ

To
(out-of-plane). Since our target feature is dictated by sym-
metry, including more neighbors or variation in model
parameters will not change the qualitative result.

The phonon modes uk,σ and the spectrum ωk,σ are solved
from the eigenvalue problem

D(k)uk,σ = ω2
k,σ uk,σ , (2)

where the dynamic matrix D is the spatial Fourier transform
of K and the index σ labels the phonon branches.

A representative spectrum of the model is shown in
Fig. 2(b). There are totally six phonon branches: three acoustic
branches and three optical branches, in accordance with the
two sites in a unit cell. Let us focus on the modes at the
� point. The three acoustic modes are degenerate at zero
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energy, as expected. As for the three optical modes, one is
nondegenerate (the fourth branch), and the other two (the fifth
and the sixth branches) form a degenerate pair.

To check the possible chirality of these phonons, we eval-
uate their circulation polarization [1]. For a 2D system, we
are interested in the circulation polarization along the out-of-
plane (z) direction, which is given by

sk,σ = u†
k,σ

Ŝzuk,σ , (3)

where

Ŝz =
∑

α

(|Rα〉〈Rα| − |Lα〉〈Lα|) (4)

is the circular polarization operator, the summation is over all
the sites in a unit cell, |Rα〉 (|Lα〉) is the right (left) circularly
polarized vibration basis at site α. Hence, sk,σ > 0 (< 0) will
indicate that the mode uk,σ is right (left) handed, and it was
shown that the value h̄sk,σ gives the angular momentum of the
phonon along z.

Straightforward evaluation confirms that the optical modes
at �, including the nondegenerate mode and the doubly degen-
erate pair, have a vanishing chirality. This is consistent with
our general analysis. The degenerate pair can be decomposed
into a right-handed phonon and its left-handed time-reversal
partner, so they together have a zero net chirality. The similar
discussion applies also to the other high-symmetry points.

Next, we break the T symmetry in this model and show
that chiral phonons with C4 symmetry can appear. Follow-
ing Refs. [7,27,28], we add a T -breaking perturbation to the
model, such that the Hamiltonian takes the form of

H = 1
2 (p − Ãu)T (p − Ãu) + 1

2 uT Ku, (5)

where Ã is an antisymmetric real matrix. Clearly, the term
pÃu breaks the T symmetry. Physically, such a perturbation
may result from different origins, such as the Lorentz force on
charged ions [27], Raman-type spin-phonon interaction [7], or
Coriolis force [29,30]. Ã is block diagonal in the site indices
α, with each 3 × 3 block �α corresponding to the site α being
given by

�i =
⎛
⎝

0 λα 0
−λα 0 0

0 0 1

⎞
⎠, (6)

with some constants λα signaling the strength of T breaking.
Intuitively, this resembles the effect of a Lorentz force acting
on moving ions from an out-of-plane magnetic field, where λα

would be proportional to the field strength.
After adding the perturbation, the phonon spectrum is

changed to that in Fig. 3(a). Compared to Fig. 2(b), one
finds that several degeneracies in the spectrum are lifted by
the perturbation. At the � point, one acoustic mode splits
from the other two and acquires a finite gap, which was
noted in a recent work [28]. More importantly, for the optical
modes, the original doubly degenerate pair gets separated. By
evaluating their circular polarization, we find that the mode
u�,5 of the fifth branch is left-handed, whereas u�,6 is right-
handed. Their chirality would flip when Ã changes sign, as it
should be.

The phonon chirality can be directly visualized from the
vibration pattern, as plotted in Fig. 3(b) for the three optical

FIG. 3. (a) Phonon dispersion of the square lattice model with
T -breaking perturbation. The arrows mark the two C4 chiral optical
phonon modes at �. (b) Vibration patterns for the three optical
phonon modes u�,4, u�,5, and u�,6.

modes at �. One can see that the mode u�,4 is nonchiral
as vibrations of the two sites are linear and along the z di-
rection. For u�,5, the two sites perform left-handed circular
rotation around their equilibrium positions, consistent with
the left-handed chirality. Meanwhile, u�,6 has similar circu-
lar vibration pattern as u�,5, except that the orientation is
right-handed. The two are connected by the T operation,
hence they are degenerate when T is preserved. These re-
sults confirm that by breaking the time-reversal symmetry,
we can indeed have chiral phonons in a square lattice with
C4 symmetry.

As mentioned, due to C4, the modes at � have a well-
defined PAM. The PAM is determined by the C4 eigenvalue
of the phonon mode. Explicitly, we have

Rz(π/2)uk,σ = e−i(π/2)
k,σ uk,σ , (7)

where Rz(π/2) is the C4 operator acting on the phonon wave
function, k ∈ {�, M} here is restricted to the C4 invariant
points, and the PAM 
 ∈ {0,±1, 2}. In Table I, we show the

TABLE I. Results for optical phonon modes at � and M points
in Fig. 3(a). Here the columns with “C4” and “
ph” give the C4 eigen-
values and phonon PAM, respectively. R/L indicates the right/left
handed chirality.

� M

C4 
ph chirality C4 
ph chirality

�,6 −i 1 R −i 1 R
�,5 i −1 L i −1 L
�,4 1 0 - 1 0 -
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PAM values for the three optical modes at �. One observes
that the right-handed (left-handed) chiral phonon has PAM
of +1 (−1). For this simple lattice, the PAM is directly con-
nected to the chirality.

To better understand the PAM, we note that, as discussed in
Ref. [1], the phase factor on the right-hand side of Eq. (7) has
two contributions: an intracell contribution from the vibration
at a site i and an intercell contribution from the Bloch phase
factor eik·r when site α is moved to a neighboring cell under
rotation. Regarding their contributions to the total PAM 
, the
first is termed as the spin PAM (
s) and the second is termed
as the orbital PAM (
o). The relation 
 = 
α

s + 
α
o holds for

each site α. Now, at the � point, the orbital PAM vanishes
identically because k = 0. Hence, the PAM is completely
contributed to by the spin PAM, which is determined by the
vibration pattern at any C4 invariant site (A or B here). It
then follows that PAM of ±1 corresponds to left/right-handed
phonon in our square lattice model.

We also investigated chiral phonons at the other
C4-symmetric point M. The results are shown in Table I.

Chiral phonons at � point have the advantage that they
can directly couple with light. Because the wavelength of
light in the infrared to visible range is much larger than the
crystal lattice scale, its momentum can only match the phonon
modes at very small k, i.e., around the � point. In previous
experiments, to probe chiral phonons at K and K ′ points of
the hexagonal 2D transition metal dichalcogendies materials,
one has to invoke an intervalley scattering process, where the
momentum mismatch is compensated by an electron. Now, if
we have chiral phonons at the � point, they may be resonantly
excited by an infrared circularly polarized light, which follows
the selection rule


ph = m, (8)

where 
ph is the PAM of the target chiral phonon mode
and m = ±1 for right/left circularly polarized light. In ad-
dition, for chiral modes that are Raman active (not in this
simple model), they can also be probed in the Raman
spectrum.

IV. CALCULATION FOR A REAL 2D MATERIAL

We showed that it is possible to have chiral phonons in a
2D square lattice with C4 symmetry. A necessary condition is
that the T symmetry must be broken. In solid materials, T
may be broken by external magnetic field or by internal mag-
netic ordering. Here, we perform a calculation on a realistic
material, the monolayer MnAs. The details of the calculation
are presented in Appendix A.

The structure of monolayer MnAs is shown in Fig. 4(a).
It adopts the FeSe-type structure with space group P4/nmm
(No. 129) and point group D4h. The Mn atoms form a hori-
zontal plane, and the As atoms are located on the two sides of
this plane. Each Mn is sitting inside a tetrahedron formed by
four neighboring As atoms. A unit cell contains two Mn and
two As atoms. As proposed by Wang et al. [31], monolayer
MnAs is intrinsically a half metal with out-of-plane magneti-
zation. Our first-principles calculations (see Appendix A for
details) confirm this ferromagnetic ground state. The local
moment is mainly from the Mn 3d orbitals and is about

FIG. 4. (a) Top and side views of MnAs monolayer. (b) Calcu-
lated phonon dispersion of MnAs monolayer without T breaking.
(c) The corresponding dispersion by taking a T -breaking perturba-
tion with B = 105 T. One notes the splitting of the original double
degeneracy at � in (b). The resulting split modes are chiral. The
arrows indicate two such split modes (corresponding to 11th and 12th
branches), and their vibration patterns are illustrated in (d).

4μB per Mn site. Notably, the out-of-plane magnetization
preserves the C4 symmetry of the system and breaks the
T symmetry.

In Fig. 4(b), we plot the calculated phonon spectrum of
the system without considering the T -breaking effects. There
are 12 phonon branches, corresponding to the four atoms
in a unit cell. Focusing on the optical phonon modes at
the � point, we see that these modes are either nondegenerate
or doubly degenerate. Each doubly degenerate pair corre-
sponds to a 2D irreducible representation (Eg or Eu) of the
D4h group. As expected from our general analysis, it can be re-
garded as consisting of a right-handed mode and a left-handed
mode, which are connected by the time-reversal operation,
so the net chirality vanishes. The nondegenerate modes cor-
respond to out-of-plane vibrations, which are also nonchiral.
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TABLE II. Results for optical phonon modes at the � point in
MnAs monolayer. The frequency ω is in unit of THz, IRR shows
the irreducible representation of the modes, and sph is the phonon
circular polarization. R/L indicates the right/left-handed chirality.
The left panel is for the results without T breaking [Fig. 4(b)], where
the modes do not have a net chirality. The right panel is for the case
with T breaking perturbation from a B field of 105 T [Fig. 4(c)].

Without T breaking B = 105 T

ω IRR 
ph ω 
ph sph

6.644 Eg (1,−1) 6.696 1 L
6.593 −1 R

6.261 Eu (1,−1) 6.283 −1 L
6.240 1 R

5.482 A2u 0 5.482 0 -
4.034 A1g 0 4.034 0 -
3.325 B1g 2 3.325 2 -
2.598 Eg (1,−1) 2.642 1 R

2.554 −1 L

These points are explicitly verified by the calculation of the
phonon circular polarization sph for these modes, as shown in
Table II.

Next, we try to include T breaking effects on phonons. We
note that currently there is no established method to include
such effects in first-principles calculations. A recent work by
Sun et al. [32] proposed an attempt to include magnetic-field
effects on phonons, based on adding the spin-phonon inter-
action term as in model (5). The block �α for site α in the
Ã matrix is expressed by

�α = e

4mα

(
ZT

α × B + B × Zα

)
, (9)

where mα is the mass of the ion at site α, Zα is its Born effec-
tive charge dyadic, B is the magnetic field, and here the matrix
�α is also expressed in the dyadic form � = ∑

i j �i jeie j with
ei the Cartesian basis vectors. For the special case when the
field is along z and the Born effective charge tensor is given
by the simple product of some charge qα and the identity
matrix, �α would reduce to the form in Eq. (6) with λα =
−qαB/(2mα ).

We follow this approach and perform the calculation for
monolayer MnAs. We first consider the effect from an external
B field. Figure 4(c) shows the obtained phonon spectrum for
a B field of 105 T along the +z direction. Consistent with our
expectation, one observes that, by breaking the T symmetry,
the double degeneracies in Fig. 4(c) for the optical modes at
� are lifted. Then, each split mode from the original degener-
acy carries a net chirality and well-defined PAM. These values
are presented in Table II. For example, the top two modes at �

evolve from the original degeneracy at ω = 6.644 THz. They
are left- and right-handed, respectively. The in-plane vibra-
tion patterns of these two modes are illustrated in Fig. 4(d).
Similar analysis can be done also for the phonon modes at M,
and the results are consistent with our general consideration
in Sec. III.

Clearly, the splitting between the chiral modes scales
linearly with the field strength. We note that, from our cal-
culation, sizable splitting of the degeneracy only occurs at

FIG. 5. (a) Top view of the α-cristobalite lattice, which has
tetragonal symmetry. (b) A chain of SiO4 tetrahedra along the z direc-
tion, showing the pattern of a left-handed spiral. (c) Brillouin Zone.
Here, the high-symmetry path �-Z with kz > 0 and kz < 0 are la-
beled with (+) and (−) signs since they are not equivalent regarding
the properties of phonon modes. (d) Calculated phonon dispersion
for α-cristobalite. Here we focus on the two phonon branches within
the range of 17–22 THz. The red/blue color indicates the mode is
right/left handed. The values ±1 indicate the PAM.

very large field strength. For example, in Fig. 4(c), the split-
ting is on the order of 0.1 THz at the B field of 105 T.
Similar behavior was also observed in Ref. [32]. Evidently,
such huge magnetic field cannot be achieved under current
laboratory conditions. Since monolayer MnAs is a ferro-
magnetic material, the internal magnetization breaks T and
should also produce a splitting. However, there is, so far, no
developed approach to capture this effect in first-principles
calculations. Here, we may do a very rough estimation by
attributing the spin splitting in the material (splitting between
two spin channels) to an “internal” B field and taking this
field in Eq. (9). From the calculated band structure (see
Appendix B), the spin splitting is found to be � ∼ 2 eV, hence
B ∼ �/μMn ∼ 104 T. As a result, the splitting in the phonon
spectrum is at least one order of magnitude smaller than that
in Fig. 4(c).

V. C4 CHIRAL PHONONS IN THREE DIMENSIONS

From the above discussion, we see that C4 chiral phonons
in two dimensions necessarily requires the condition of the
T symmetry breaking. The situation changes when we go
to three dimensions. Inspired by the insight gained from the
study of chiral phonons in 3D crystals with C3 symmetry
[9], here we consider a 3D lattice with C4 symmetry, i.e., a
tetragonal lattice. The C4 symmetry is preserved on the whole
path �-Z of the BZ, not just the high-symmetry points, as
shown in Fig. 5(c). Note that T is not a symmetry for a
generic point on the path, so there is no degeneracy caused
by T for chiral modes at such a point and hence no need to
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break T . In other words, chiral phonons can appear on C4

invariant paths for 3D lattices that preserve the time-reversal
symmetry. Nevertheless, for such cases, some crystal symme-
tries must be broken. In particular, a necessary condition is
that the system cannot preserve any mirror symmetry. This
can be easily understood by noting that any vertical mirror
(like Mx) or the combined symmetry T Mz would enforce
degeneracy between left- and right-handed phonons on the
C4 invariant paths. In retrospect, this condition should also
be met in 2D systems, and indeed, in our previous examples,
these symmetries are automatically broken by the B field
or magnetization.

To demonstrate our idea, we perform the calculation for a
3D material α-cristobalite that satisfies the above condition.
α-cristobalite is a well-known polymorph of silica (SiO2)
[33]. Note that a crystal that lacks any mirror symmetry be-
long to the chiral space group. α-cristobalite crystallizes in a
pair of enantiomorphic tetragonal chiral space groups P41212
(No. 92) and P43212 (No. 96). Figures 5(a) and 5(b) show the
structure of α-cristobalite in the space group No. 92. Here,
each Si atom stays in a tetrahedron of four nearby O atoms
and has a tetrahedral coordination, and two nearby tetrahedra
are connected at a corner O atom. From Fig. 5(b), one can
see that the SiO4 tetrahedra form a left-handed spiral chains
along z. As for the enantiomorphic structure in space group
No. 96, the handedness of the spiral would be the opposite.
Importantly, the structure preserves a fourfold screw rotation
along z, which allows us to discuss C4 chiral phonons with
well-defined PAM.

The calculated phonon dispersion of α-cristobalite is plot-
ted in Fig. 5(d) (see Appendix A for computational details).
There are 36 phonon branches, corresponding to the four
formula units in a primitive cell. As discussed, our target here
is on the phonon modes on the �-Z path. The little group
on this path is C4. The modes on these paths are generally
nondegenerate, except for some accidental crossing points.
We checked that they indeed have nonzero phonon circular
polarization (along z) and well-defined PAM. For example,
let’s focus on the two branches from about 17 to 22 THz since
they are well separated from other branches. In Fig. 5(d), we
mark their chirality by colors: red for right-handed modes
and blue for left-handed modes. The PAM values for these
modes are also labeled in the figure. One observes that, as
expected, the C4 phonons on this paths are chiral and have
PAM of ±1. Moreover, as noted in Ref. [9], for a chiral crystal,
the phonon chirality is tied with its propagation direction.
Here, the blue-colored branch is propagating in the +z di-
rection, whereas the red-colored branch goes in the opposite
direction.

VI. DISCUSSION AND CONCLUSION

In this work, we extended chiral phonons to crys-
tal systems with fourfold rotational symmetry. In two
dimensions, to have C4 phonons with net chirality, a neces-
sary condition is to break the time-reversal symmetry. Our
estimation shows that the phonon splitting due to symme-
try breaking effects from applied magnetic field or magnetic
ordering could be rather weak for realistic materials under cur-
rently achievable laboratory conditions. For example, recent

experiments on hexagonal magnets did not resolve the phonon
splitting due to magnetic ordering [12,34]. Nevertheless, we
have to stress that the estimation is very crude. So far, we
do not have a good microscopic theory to account for the
T breaking effects on phonons, and to capture such effects
in first-principles calculations is an important open problem
to be explored in future research. We hope our current work
provides an additional stimulus for the development.

We showed that in three dimensions, C4 chiral phonons
can appear on the high-symmetry path of a chiral tetragonal
crystal, without the need to break T . For these chiral phonons,
the optical selection rule in Eq. (8) still holds. For example,
consider the chiral phonons in Fig. 5(d) for α-cristobalite and
an incident light along +z. If the light peaks around 18 THz,
it will primarily interact with the two colored optical phonon
branches. Then, the light with left (right) circular polarization
can only resonantly excite left (right)-handed phonon branch.
Since the phonon chirality is tied to the propagation direction,
this selectivity can be detected experimentally by the different
heat flow direction.

For polar materials, the long-range Coulomb interac-
tion from the polarization density associated with the
longitudinal optical (LO) phonon modes can produce the well-
known LO/transverse optical (LO/TO) splitting. This effect
does not affect our discussion in 3D systems because it mainly
affects the spectrum near the � point, whereas the chiral
phonons we studied in Sec. V are on the high-symmetry path
away from �. [In fact, the result in Fig. 5(d) already includes
the correction.] In 2D systems, LO/TO splitting exhibits a
qualitatively different behavior [35–39]. It was shown that
it does not lift the degeneracy at �; rather, it modifies the
dispersion of the LO branch to be linear around �. Following
Sohier et al. [39], the LO/TO splitting in 2D systems can be
captured by the following correction to the dynamic matrix:

Dαi,α′ j (q → 0) = e2

�

2π

|q|
(q · Zα )i(q · Zα′ ) j√

mαmα′
, (10)

where q is momentum, i, j are the Cartesian coordinates, α

and α′ label the atoms, and � is the area of the 2D unit cell.
We apply this correction to the 2D square lattice model studied
in Sec. III. The results are summarized in Fig. 6. Figures 6(a)
and 6(b) are the results in the absence of B field, without
and with LO/TO splitting, respectively. One observes that the
LO/TO splitting does not lift the degeneracy at � [which is
also evident from Eq. (10)], but it changes the dispersion of the
LO branch to be linear around �. These are consistent with the
previous finding [39]. The corresponding results with B field
are shown in Figs. 6(c) and 6(d). One can see that the splitting
of degeneracy at � is solely due to the B field. It follows that
the two split modes at � are still chiral and maintain the same
handedness as those without considering the LO/TO splitting.
Meanwhile, for modes at finite momentum around �, their
circular polarizations are decreased by the LO/TO splitting,
as can be seen from Figs. 6(e) and 6(f). Therefore, the results
indicate a competition between B field and LO/TO splitting
on the circular polarization for phonon modes around the
zone center.

Finally, although our discussion is mainly on phonons in
solid materials, the analysis from a symmetry perspective is

104301-6



CHIRAL PHONONS IN LATTICES WITH C4 … PHYSICAL REVIEW B 105, 104301 (2022)

FIG. 6. Comparison of phonon spectra of optical modes near the
� point for the 2D square-lattice model: (a) zero magnetic field (B =
0) and without LO/TO splitting; (b) zero B field and with LO/TO
splitting; (c) finite B field and without LO/TO splitting; and (d) finite
B field and with LO/TO splitting. (e) and (f) show the variation of
phonon circular polarization versus B field strength for the LO mode
(the upper branch) at the momentum A ( π

50 , π

50 , 0) near �, with and
without the LO/TO splitting, respectively. The model parameters are
the same as in Fig. 2. The Born effective charge is set to be diagonal:
ZA = diag[1, 1, 0] and ZB = diag[2, 2, 0].

general and also applies to artificial systems such as acoustic
crystals and mechanical networks. Some effects may be more
pronounced and more easily realized in artificial systems. For
example, the T breaking may be achieved in artificial systems
by other means, such as Coriolis force or optomechanical
coupling [40].

In conclusion, we explore chiral phonons beyond the
hexagonal lattice systems. We show that C4 chiral phonons
can, in principle, exist. We clarify the required symmetry
conditions for both 2D and 3D systems. For 2D, C4 chiral
phonons require broken T , which could be stringent for real
materials. For 3D, the condition is less stringent but requires
a chiral tetragonal crystal structure. These phonons have the
advantage that they can directly couple with light, which
would facilitate the experimental study. Our work enriches the
fundamental understanding of chiral phonons in a new crystal
system and offers a foundation for further investigating their
interesting physical properties.
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APPENDIX A: FIRST-PRINCIPLES COMPUTATION
METHOD

We performed first-principles calculations to study
the electronic and phononic properties of MnAs and
α-cristobalite. The calculations were done based on the den-
sity functional theory (DFT) as implemented in the Vienna
ab initio simulation package (VASP) [41,42]. The exchange-
correlation functional was modeled within the generalized
gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof realization [43]. The projector-augmented wave
method [44] was adopted. The plane-wave cutoff energy was
set to 500 eV. The energy and the force convergence criteria
were set to be 10−7 eV and 10−2 eV/Å, respectively. The
phonon spectra were obtained by using the density functional
perturbation theory (DFPT) method and the PHONOPY code
[45]. For MnAs, the GGA + U method [46] with Ueff = 4 eV
was applied for the d orbitals of Mn atoms to describe the
strong correlated interaction of d electrons. The 3 × 3 × 1 su-
percell and a size of 3 × 3 × 1 �-centered k mesh [47] in the
BZ were used for the phononic calculation. For α-cristobalite,
to obtain the phonon spectra, the 2 × 2 × 2 supercell was
used with a 3 × 3 × 3 �-centered k mesh [47] in the BZ.
The method of nonanalytical term correction (NAC) [48] was
applied to get the dynamical matrix for α-cristobalite.

APPENDIX B: ELECTRONIC BAND STRUCTURE FOR
MNAS MONOLAYER

The electronic band structure for monolayer MnAs ob-
tained from our DFT calculation is shown in Fig. 7. From
the spin-resolved density of states, the spin splitting in the
material is found to be ∼2 eV.

FIG. 7. Electronic band structure and spin-resolved density of
states for MnAs monolayer.
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