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We study coherent backscattering (CBS) of light from a magnetoactive medium doped by Mie particles.
A novel version of the CBS diffusion theory is developed, which takes into account both the Faraday effect
and the effect of circular polarization memory specific to Mie scattering. The theory is based on a system of
coupled diffusion equations for two slowly decaying cooperon modes arising from interference of waves with
coinciding helicities. The impact of a magnetic field on CBS is shown to be controlled by the ratio of the
helicity-flip scattering cross section to the transport scattering one. If this ratio is small, the CBS can exhibit
unusual features first found experimentally by R. Lenke, R. Lehner, and G. Maret [Europhys. Lett. 52, 620
(2000)]. In the magnetic field parallel to the sample surface, the peak of coherent backscattering for circularly
polarized light is shifted from the exact backward direction, while, for linearly polarized light, it splits in two
ones for both co- and cross-polarization channels, and the backscattered waves acquire circular polarization.
Saturation of the magnetic field dependence of the CBS cone occurs in the magnetic field normal to the surface.
If the above ratio is close to unity (Rayleigh scattering) all these features disappear, and the effect of the magnetic
field on the CBS angular profile is reduced to the universal law studied previously. The results obtained are in
good quantitative agreement with the available Monte Carlo simulation and experimental data.
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I. INTRODUCTION

Magnetic field effects play a key role in mesoscopic
physics [1–4]. A magnetic field violates the time-reversal
symmetry and enables controlling the interference of waves
propagating in disordered structures. This reveals itself
in electron transport through solids where the Aharonov-
Bohm effect underlies the mechanism for manipulating
the interference of electronic waves [1–3,5,6], as well as
in propagation of electromagnetic waves in magnetoactive
materials [4,7–13].

In multiple scattering of light by disordered media, the
constructive interference of time-reversed waves causes the
effect of coherent enhancement of backscattering [3,4,14–
16]. In magnetoactive media, due to the Faraday effect,
waves with different helicity acquire phase shifts of the op-
posite sign, which leads to suppression of wave interference
and, as a result, smoothing of the peak in the CBS angu-
lar profile. The magnetic field effect on CBS was studied
in detail theoretically for Rayleigh scatterers embedded in
a magnetoactive medium [17–20] and was also observed in
experiments [21,22]. Another example of a system where
the Faraday effect affects wave propagation is a disordered
medium composed of magnetoactive particles [23–26].

Among the studies of the magnetic field effect on CBS,
experiment [27] on light scattering by Mie spheres in mag-
netoactive glass should be highlighted where a displacement

and splitting of the CBS peak were observed depending on the
polarization state of the incident light. Although a key role of
circular polarization memory has been noted in Ref. [27] (see
also Ref. [22]), no theoretical explanation for the experimental
data of Ref. [27] has yet been given.

It is commonly accepted that the magnetic field destroys
the CBS effect [4,17–26]. This conclusion was drawn for the
case of Rayleigh scattering, in which a change in the helicity
of light occurs virtually in every scattering event [4,17–19].
However, if depolarization is turned off (for example, under
conditions of the circular polarization memory effect, see,
e.g., Refs. [28–32]), the magnetic field does not destroy the
interference of waves with a given helicity, but only leads
to the appearance of an additional phase shift between two
time-reversed waves.

In a magnetic field, the Green’s function that describes
wave propagation between two scattering events can be writ-
ten as (see, e.g., Refs. [18,19])

〈Gik (r)〉 = 〈Gscal(r)〉[P(+)
ik (n)e− i

2 hr + P(−)
ik (n)e

i
2 hr], (1)

where 〈Gscal(r)〉 is the Green’s function for scalar waves
[3,15,16], the brackets 〈. . .〉 denote averaging over random
positions of scattering centers, n = r/|r|, and

P(±)
ik (n) = 1

2 (δik − nink ± ieik jn j ) (2)
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FIG. 1. Geometry of coherent backscattering. The wave field and
its time-reversed counterpart are shown with solid and dashed lines,
respectively. Magnetic field H is parallel to the surface.

are the projection operators on the states of light with a given
helicity (i.e., on the right-handed and left-handed circularly
polarized components of the field), eik j is the antisymmetric
Levi-Civita tensor. The far-field condition, k0r � 1 (k0 is the
wave number), is implied in Eq. (1). The vector h appearing
in Eq. (1) is equal to h = 2V H, where V is the Verdet constant
(see, e.g., Refs. [33,34]) and H is the magnetic field strength.
According to Eq. (1), if the helicity of waves remains un-
changed in multiple scattering, the constructive interference
of the waves with the same helicity occurs independently.

In coherent backscattering from a magnetoactive medium,
the shift between the phases of two time-reversed waves with
a given helicity (see Fig. 1) has the form

�ϕ(r, r′) = q · (r − r′) ± h · (r − r′), (3)

where q is the projection of the wave vector k f of the
backscattered light onto the medium surface, and the magnetic
field is assumed to be uniform. The first term appearing in the
right-hand side of Eq. (3) is the same phase shift as in the
scalar case [3] (see, also, Refs. [14–16]). The second term is
due to the Faraday effect. The sign before the second term is
determined by the circular polarization of the incident wave,
clockwise or counterclockwise (i.e., by the helicity).

The interference contribution to the backscattering inten-
sity is obtained by summing over all time-reversed wave
paths (see, e.g., Refs. [3,14]). While retaining helicity, in
accordance with Eq. (3), the magnetic field effect on the
interference contribution is reduced to the argument shift,

J (c)
± = J (c)

scal(q ± h‖), (4)

where J (c)
scal(q) is the interference contribution to the backscat-

tering intensity calculated in the scalar approximation with
no magnetic field [3,4,14–16], h‖ is the projection of the
vector h onto the sample surface. As follows from Eq. (4), the
magnetic field does not lead to suppression of interference,
but results in a displacement of the coherent backscattering

peak by the angle �ϑ = ±h/k0 from the backward direction.
A similar effect was found in CBS of electrons [35] where the
peak displacement is due to a nonzero average magnetic flux
through the loop formed by time-reversed electron trajectories
and is a consequence of the Aharonov-Bohm effect.

For linearly polarized light, which can be represented as su-
perposition of two fields with opposite circular polarizations,
the CBS intensity is determined by the relation

J (c)
L = 1

2

(
J (c)

scal(q + h‖) + J (c)
scal(q − h‖)

)
. (5)

According to Eq. (5), two peaks at ϑpeak = ±h/k0 appear in
the angular profile of the intensity. The fact that the displace-
ment and splitting of the CBS cone [see Eqs. (4) and (5),
respectively] occurs due to waves with retaining helicity was
first pointed out in Refs. [22,27].

Depolarization changes the simple results (4) and (5),
but the constructive interference is not completely destroyed.
In this paper we develop a two-mode diffusion theory of
wave interference in a multiply scattering magnetoactive
medium. Each mode corresponds to the interference contribu-
tion (cooperon) of time-reversed waves with a given helicity
to the density matrix of backscattered light and obeys a sys-
tem of coupled diffusion equations. An analytical solution to
these equations is obtained for different orientations of the
magnetic field relative to the sample surface. The magnetic
field effect on CBS is shown to be controlled by the ratio
of the helicity-flip scattering cross section to the transport
scattering one. If this ratio is small, the CBS exhibits spe-
cific features similar to those that follow from Eqs. (4) and
(5). In the magnetic field parallel to the sample surface, the
CBS peak for circularly polarized light is shifted from the
exact backward direction, while, for linearly polarized light,
it splits into two ones, wherein the backscattered waves ac-
quire circular polarization. In the field normal to the sample
surface, the magnetic field dependence of the CBS cone is
saturated. The difference between the CBS angular profiles
for linearly co- and cross-polarized waves disappears as the
field strength increases. If the helicity-flip scattering cross
section and the transport scattering one are of the same order
(e.g., for Rayleigh scattering) all these features vanish, and
the effect of the magnetic field on the CBS angular profile
is reduced to the universal law studied previously [17,19].
The results obtained are in good quantitative agreement
with the available experimental and Monte Carlo simulation
data [20,27].

II. THEORETICAL MODEL

Consider multiple scattering of a plane electromagnetic
wave incident on a nonabsorbing magnetoactive medium
along the inward normal n0 to the surface. The coher-
ent contribution to the intensity of backscattered waves
is governed by the sum of the most-crossed diagrams
〈Gik (r, r′|h)G∗

jl (r1, r′
1|h)〉C (see, e.g., Refs. [3,16–19]), which

can be expressed in terms of the sum of ladder diagrams (see
Fig. 2) by rearranging coordinates and indices and changing
the sign of the magnetic field [17,18],

〈Gik (r, r′|h)G∗
jl (r1, r′

1|h)〉C

= 〈Gik (r, r′|h)G∗
l j (r

′
1, r1| − h)〉L, (6)
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FIG. 2. Relation between most-crossed and ladder diagrams.

where the brackets 〈. . .〉 denote averaging over random po-
sitions of scattering centers. The sum of ladder diagrams
�(c) = 〈G(h)G∗(−h)〉L is subject to the integral equation (see
Fig. 11 and Appendix A).

The intensity and the polarization state of light in the CBS
cone are determined by the density matrix [19,36,37]

J (c)
i j (q) = �

(c)
il,k j (q| − n0, n0)|�ρ

(0)
kl , (7)

where summation over repeated indices is implied, �(c)|� =
�

(c)
il,k j (z = 0, z′ = 0, q| − n0, n0) is the value of the ladder

propagator at the surface of the medium in the exact back-
ward direction [38], ρ

(0)
kl is the density matrix of the incident

electromagnetic field.
When calculating the propagator �(c) we take advantage of

two approximations. We suppose that the condition of circular
polarization memory [28–32] is fulfilled (i.e., the helicity-
flip scattering cross section σdep [30] is much less then the
transport scattering cross-section σtr). Under this condition,
two modes corresponding to the interference of waves with
the same helicity, decay over path lengths much longer than
the transport mean-free path and make the main contribution
to the intensity of backscattered light [39]. In our calcula-
tions, we take into account only these two long-lived modes
[40]. Within the two-mode approximation the propagator �(c)

appearing in Eq. (7) can be represented in the form [see
Appendix A, Eqs. (A5) and (A6)]

�
(c)
il,k j (z, z′, q| − n0, n0)

=
∑

α,β=+,−
P(α)

il (−n0)�(c)
αβ

(z, z′, q| − n0, n0)P(β )
jk (n0), (8)

where the summation is performed over modes with a given
helicity, the projection operators P(±)

ik (n) are defined by
Eq. (2), the propagator �

(c)
αβ describes the interference of

waves with coinciding helicities. Then the density matrix (7)
of backscattered waves takes the form

J (c)
i j (q) =

∑
α,β

J (c)
αβ

(q)ρ (αβ )
i j , (9)

where

J (c)
αβ

(q) = �
(c)
αβ

(z = 0, z′ = 0, q| − n0, n0)

and

ρ
(αβ )
i j = P(α)

il (−n0)ρ (0)
kl P(β )

jk (n0). (10)

The density matrix ρ
(αβ )
i j can be expressed in terms of circular

components E (0)
± of the electric field [see also Appendix A,

Eq. (A4)] in the incident wave,

ρ
(±±)
i j = 1

2
|E (0)

± |2
(

1 ∓i
±i 1

)
, (11)

ρ
(+−)
i j = (ρ (c)−+

i j )∗ = 1

2
E (0)

− (E (0)
+ )∗

(
1 i
i −1

)
. (12)

Equations (11) and (12) refers to the Cartesian coordinate
system with the z axis directed along the inward normal to
the sample surface.

As the modes with a given helicity decay over path lengths
exceeding the transport mean-free path we can apply the
diffusion approximation to their calculations. Based on the
standard procedure for calculating the backscattering intensity
within the diffusion theory (see, e.g., Refs. [3,14–16,19,39])
we represent J (c)

αβ (q) in the form

J (c)
αβ

(q) = 1

4π

∫ L

0

dz

ltr

∫ L

0

dz′

ltr

× exp

[
− z + z′

ltr
− ihz(βz − αz′)

]
�

(c)
αβ

(z, z′|q),

(13)

where �
(c)
αβ (z, z′|q) is a density propagator (integral over an-

gles) for modes with a given helicity, �
(c)
αβ (z, z′|q) obeys two

coupled diffusion equations (see Appendix A)

((
i ∂
∂z + hz

)2 + (q − h‖)2 + 3/(2ltr ldep) −3/(2ltr ldep)

−3/(2ltr ldep)
(
i ∂
∂z − hz

)2 + (q + h‖)2 + 3/(2ltr ldep)

) (
�++(z, z′|q) �+−(z, z′|q)
�−+(z, z′|q) �−−(z, z′|q)

)

= 3

ltr

(
1 0
0 1

)
δ(z − z′), (14)

where hz = (hn0), ltr = (n0σtr )−1 is the transport mean-free
path, ldep = (n0σdep)−1 is the mean-free path with respect to
helicity-flip scattering, n0 is the number of particles per unit
volume. Formulas for calculating the cross sections σtr and
σdep are given in Appendix A [see Eqs. (A14) and (A15)].
It is assumed that the sample thickness L is much greater

than the transport mean-free path ltr , L � ltr . Equation (13)
satisfies the condition J (c)

αβ (q, h) = J (c)
−α−β (q,−h), which is a

consequence of time-reversal symmetry [3,43,44].
By definition, the elements of the density matrix J (c)

i j (q) are
directly related to the coherent contributions I (c), Q(c), U (c),
and V (c) into the Stokes parameters in the CBS cone (see, e.g.,
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Ref. [41]),

J (c)
i j (q) = 1

2

(
I (c)(q) + Q(c)(q) U (c)(q) + iV (c)(q)

U (c)(q) − iV (c)(q) I (c)(q) − Q(c)(q)

)
.

(15)

The multipliers before the matrices appearing in Eqs. (11) and
(12) can also be expressed in terms of the Stokes parameters of
the incident light, |E (0)

± |2 = (I (0) ∓ V (0) )/2 and E (0)
− (E (0)

+ )∗ =
(Q(0) − iU (0) )/2.

For the incident circularly polarized light (E+ = 1, E− =
0, helicity is +1 if the light is polarized clockwise or E+ = 0,
E− = 1, helicity is −1 if light is polarized counterclock-
wise [49]), matrices (12) are equal to zero. From Eqs. (9)
and (11) it follows that the coherent backscattering occurs
in this case only in the helicity-preserving channel. The in-
tensity of backscattered light is determined by the elements
J (c)
±±(q). In the considered approximation, the CBS intensity

in the opposite helicity channel is neglected, which agrees
with data of numerical calculations and experiments (see, e.g.,
Refs. [20,39,41] and references therein) for Mie scatterers.

For the incident linearly polarized beam, the values of
E+ and E− appearing in Eqs. (11) and (12) are equal to
each other, E+ = E− = 1/

√
2. The intensities of the co- and

cross-polarized components of the backscattered waves are
determined by the diagonal elements J (c)

xx (q) and J (c)
yy (q) of the

matrix (9) [or (15)], respectively, and, according to Eq. (9), are
equal to

J (c)
‖,⊥(q) = 1

4 (J (c)
++(q) ± J (c)

−+(q) ± J (c)
+−(q) + J (c)

−−(q)). (16)

The intensity of backscattered waves with a given helicity is
expressed in terms of the elements of the matrix (9) as

J (c)
± (q) = 1

2

[
J (c)

xx (q) + J (c)
yy (q) ± i

(
J (c)

xy (q) − J (c)
yx (q)

)]
(17)

or, with allowance for Eqs. (11) and (12), as

J (c)
± (q) = 1

2 J (c)
±±(q). (18)

In the diffusion regime, a magnetic field does not affect
the intensity and polarization state of incoherently scattered
light [17,19]. In this case, the phase shifts resulting from the
magnetic field in the Green’s functions (1) are canceled out.
In the backward direction, the density matrix is determined by
the relation (see, also, Ref. [39])

J (in)
i j =

∑
α,β

J (in)
αβ ρ̃

(αβ )
i j , (19)

where J (in)
αβ = J (c)

αβ (q = 0, h = 0), and ρ̃
(αβ )
i j =

P(α)
i j (−n0)P(β )

kl (n0)ρ (0)
kl , or ρ̃

(±±)
i j = ρ

(±±)
i j and ρ̃

(∓±)
i j =

(ρ (±±)
i j )∗. Matrix elements J (in)

αβ were calculated in Ref. [39].

III. RESULTS

For an arbitrary orientation of the magnetic field, a solution
of the diffusion equations for �αβ (z, z′|q) [see Eq. (14)] looks
rather cumbersome. Therefore we present here analytical so-
lutions of these equations and the corresponding CBS angular
profiles for the two important cases (see, e.g., Refs. [20,27])
where the magnetic field is directed, respectively, parallel and
perpendicular to the sample surface.

A. Angular profile of CBS in magnetic field
parallel to the surface

In the magnetic field parallel to the sample surface, hz = 0
(the Voigt geometry, see, e.g., Refs. [9,45]), Eq. (14) for
�αβ (z, z′|q) can be reduced to a diagonal form (e.g., in the
same way as it is done when going to normal coordinates
in the theory of harmonic oscillations [46]). As a result, the
matrix elements �αβ (z, z′|q) are expressed in terms of a linear
combination of two functions P±(z, z′|q)

�±±(z, z′|q) = M±
N P+(z, z′|q) + M∓

N P−(z, z′|q), (20)

�∓±(z, z′|q) = 3

2N ltr ldep
[P−(z, z′|q) − P+(z, z′|q)], (21)

where

M± = N
2

± 2(qh),

N = sign(qh)

√(
3

ltr ldep

)2

+ 16(qh)2 (22)

and the functions P±(z, z′|q) are subject to two independent
diffusion equations(

− ∂2

∂z2
+ γ 2

±

)
P±(z, z′|q) = 3

ltr
δ(z − z′) (23)

γ 2
± = q2 + h2 + 3

2ltr ldep
± N

2
(24)

with the boundary conditions

P±(z = −z0, z′|q) = P±(z = L + z0, z′|q) = 0, (25)

where L is the thickness of the sample, z0 = 0.71ltr is the
extrapolated length [16,47].

From Eqs. (9), (13), (20), and (21) it follows that the angu-
lar profile of CBS of polarized light from a Faraday medium
can be expressed in terms of the intensity found previously
in the scalar case [3,4,14–16]. Substituting Eqs. (20) and (21)
into Eqs. (9) and (13), we can present the angular profile of
CBS in the form

J (c)
i j (q) = 1

N
[[
M+J (c)

scal(γ+) + M−J (c)
scal(γ−)

]
ρ

(++)
i j

+ 3

2ltr ldep

[
J (c)

scal(γ−) − J (c)
scal(γ+)

]
[ρ (+−)

i j + ρ
(−+)
i j ]

+ [
M−J (c)

scal(γ+) + M+J (c)
scal(γ−)

]
ρ

(−−)
i j

]
, (26)

where J (c)
scal(γ ) is the angular profile of CBS within the scalar

theory. For example, in the case of backscattering from a
semi-infinite medium J (c)

scal(γ ) is given by the well-known
relation [3,4,14–16]

J (c)
scal(γ ) = 3

8π

1

(1 + γ ltr )2

[
1 + 1

γ ltr
(1 − e−2γ z0 )

]
, (27)

where γ = q for a medium with no absorption. The CBS
angular profile for a slab of finite thickness L is determined
by

J (c)
scal(γ ) = 1

8πγ ltr

1

sinh γ (L + 2z0)
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×
[

cosh γ (L + 2z0) − γ ltr sinh γ (L + 2z0)

1 − γ 2l2
tr

−
(
1 + γ 2l2

tr

)
cosh γ L − 2γ ltr sinh γ L(

1 − γ 2l2
tr

)2

]
. (28)

Equation (28) becomes Eq. (27) in the limit γ � 1/L.
In the most important cases of circularly and linearly po-

larized incident waves, Eq. (26) gives the following results.
For circularly polarized light, CBS occurs only in the helicity-
preserving channel, and the CBS intensity is determined by

J (c)
±±(q) = 1

N
[
M±J (c)

scal(γ+) + M∓J (c)
scal(γ−)

]
, (29)

where the upper signs refer to positive helicity, while the lower
ones to negative helicity. The CBS intensity in the opposite
helicity channel is governed by short wave paths [39] and is
always small for Mie scatterers (see, e.g., Refs. [20,39,41]).
In our two-mode approximation, it is equal to zero.

For linearly polarized light, the CBS signal can be observed
in both co- and cross-polarized channels. The intensities of
co- and cross-polarized light are determined by the first and
second diagonal elements of matrix (26), respectively,

J (c)
‖,⊥(q) = 1

4

[(
J (c)

scal(γ+) + J (c)
scal(γ−)

)

±
(

3

ltr ldep

)
1

N
(
J (c)

scal(γ−) − J (c)
scal(γ+)

)]
. (30)

From Eq. (30) it follows that the degree of linear polariza-
tion and the total intensity in the CBS cone are equal to

PL = J (c)
‖ − J (c)

⊥
J (c)
‖ + J (c)

⊥
=

(
3

ltr ldep

)
1

N
J (c)

scal(γ−) − J (c)
scal(γ+)

J (c)
scal(γ−) + J (c)

scal(γ+)
(31)

J (c)
tot (q) = 1

2

(
J (c)

scal(γ+) + J (c)
scal(γ−)

)
. (32)

In CBS from a Faraday medium, the incident linearly polar-
ized light acquires circular polarization. This is due to the
Faraday phase shift between interfering time-reversed waves.
The intensity of backscattered waves with a given helicity is
two times less than that given by Eq. (29),

J (c)
± (q) = 1

2N
[
M±J (c)

scal(γ+) + M∓J (c)
scal(γ−)

]
. (33)

The degree of circular polarization is determined by

PC = J (c)
+ − J (c)

−
J (c)
+ + J (c)

−
= M− − M+

N
J (c)

scal(γ−) − J (c)
scal(γ+)

J (c)
scal(γ−) + J (c)

scal(γ+)
(34)

and arises only in a magnetic field. In the absence of a mag-
netic field, Eqs. (29)–(33) are transformed into the results
obtained previously [39].

B. Angular profile of CBS in magnetic field
normal to the surface

In the case of the field directed along the z axis, h‖ = 0
(the Faraday geometry, see, e.g., Refs. [9,45]), Eq. (14) for
�αβ (z, z′|q), in contrast to the case considered in Sec. III A,
cannot be reduced to two independent equations for linear
combinations of the elements �αβ (z, z′|q). To solve Eq. (14)

we represent the solution as the sum of a particular solution of
the inhomogeneous equation and the general solution of the
homogeneous equation.

The particular solution of Eq. (14) has the form

�
(part)
±± (z, z′|q) = 3

4ltr

[
e−γ−|z−z′ |

γ−

(
1 + 4h2

γ 2+ − γ 2−

)

+ e−γ+|z−z′ |

γ+

(
1 − 4h2

γ 2+ − γ 2−

)

± 4ih sign(z − z′)
γ 2+ − γ 2−

× (e−γ−|z−z′ | − e−γ+|z−z′ |)
]

(35)

�
(part)
−+ (z, z′|q) = �

(part)
+− (z, z′|q)

= 9

4l2
tr ldep

1

(γ 2+ − γ 2−)

[
e−γ−|z−z′ |

γ−
− e−γ+|z−z′ |

γ+

]
, (36)

where

γ 2
± =

(
q2 + 3

2ltr ldep

)
− h2

±
√(

3

2ltr ldep

)2

− 4h2

(
q2 + 3

2ltr ldep

)
. (37)

For a slab of finite thickness, the general solution of
the corresponding homogeneous equation proves to be cum-
bersome. We present here a solution to the problem for a
semi-infinite medium. The general solution of the homo-
geneous equation [i.e., Eq. (14) without a source on the
right-hand side] can be written as

�
(gen)
±+ (z, z′|q) =A(−)

± e−γ−(z+z′+2z0 ) + A(+)
± e−γ+(z+z′+2z0 )

+ B(+)
± e−γ−z−γ+z′+(γ−+γ+ )z0

+ B(−)
± e−γ+z−γ−z′+(γ−+γ+ )z0 . (38)

The coefficients A(±)
± and B(±)

± appearing in Eq. (38) are
determined from the homogeneous equation itself and the
boundary condition

(�(part)
±+ (z, z′|q) + �

(gen)
±+ (z, z′|q))|z=−z0 = 0. (39)

The values of the coefficients are equal to

A(±)
+ = − (γ± − ih)2 − (γ∓ + ih)2

(γ± + ih)2 − (γ∓ + ih)2
R(±)

B(±)
+ = − 4ihγ±

(γ± + ih)2 − (γ∓ + ih)2
R(±), (40)

where

R(±) = 3

ltr

(
1

4γ±
+ ih

γ 2± − γ 2∓
− h2

γ±(γ 2± − γ 2∓)

)
(41)

and

A(±)
− = − 9

4l2
tr ldep

1

γ±(γ 2∓ − γ 2±)

(γ± + ih)2 − (γ∓ − ih)2

(γ± − ih)2 − (γ∓ − ih)2

B(±)
− = − 9

l2
tr ldep(γ 2± − γ 2∓)

ih

(γ± − ih)2 − (γ∓ − ih)2
. (42)
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FIG. 3. Intensity distribution in the CBS cone for circularly and linearly polarized light [hltr = 0 (a) and (d), 0.5 (b) and (e), 1.0 (c) and
(f), σdep/σtr = 0.1].

Substituting Eqs. (35), (36), and (38) into Eq. (9) we
find the expressions for the elements of J (c)

αβ (q) = J (part)
αβ (q) +

J (gen)
αβ (q), where

J (part)
++ (q) = 3

16π

×
[

1

γ−ltr

(
1 − 4h2

γ 2− − γ 2+

)
1 + γ−ltr

(1 + γ−ltr )2 + h2l2
tr

+ 1

γ+ltr

(
1 − 4h2

γ 2+ − γ 2−

)
1 + γ+ltr

(1 + γ+ltr )2 + h2l2
tr

− 4h2

γ 2− − γ 2+

1

(1 + γ−ltr )2 + h2l2
tr

− 4h2

γ 2+ − γ 2−

1

(1 + γ+ltr )2 + h2l2
tr

]
(43)

J (part)
−+ (q) = 9

16π l2
tr ldep(γ 2+ − γ 2−)

1

1 + ihltr

×
[

1

γ−

1

1 + γ−ltr + ihltr
− 1

γ+

1

1 + γ+ltr + ihltr

]
(44)

J (gen)
++ (q) = 1

4π

[ A(−)
+ e−2γ−z0

(1 + γ−ltr )2 + h2l2
tr

+ A(+)
+ e−2γ+z0

(1 + γ+ltr )2 + h2l2
tr

+ B(+)
+ e−(γ−+γ+ )z0

(1 + ihltr + γ−ltr )(1 − ihltr + γ+ltr )

+ B(−)
+ e−(γ−+γ+ )z0

(1 + ihltr + γ+ltr )(1 − ihltr + γ−ltr )

]
(45)

J (gen)
−+ (q) = 1

4π

[ A(−)
− e−2γ−z0

(1 + ihltr + γ−ltr )2

+ A(+)
− e−2γ+z0

(1 + ihltr + γ+ltr )2

+ (B(−)
− + B(+)

− )e−(γ−+γ+ )z0

(1 + ihltr + γ−ltr )(1 + ihltr + γ+ltr )

]
. (46)

The corresponding expressions for �
(gen)
∓− (z, z′|q) and J (c)

±−(q)
differ from those for �

(gen)
±+ (z, z′|q) and J (c)

±+(q) only by chang-
ing the sign of h.

IV. DISCUSSION AND COMPARISON WITH EXPERIMENT

The effects accompanying CBS in the magnetic field par-
allel to the sample surface H = (H, 0, 0) are illustrated in
Figs. 3–6 for two cases of the incident light polarization.
For a circularly polarized beam incident on the sample, the
CBS cone is shifted from the exact backward direction [see
Figs. 3(a)–3(c)] and blunted as the magnetic field increases.
The CBS angular profiles for q parallel to h are shown
in Fig. 4 depending on the magnetic field strength and the
ratio of the helicity-flip scattering cross section to the trans-
port scattering one, σdep/σtr . From the results presented it
follows that the greater the ratio σdep/σtr , the more the mag-
netic field suppresses the CBS. For q perpendicular to h, the
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FIG. 4. Angular profile of CBS intensity in the helicity-
preserving channel. The magnetic field is parallel to the sample
surface [from left curves to right ones hltr = 0, 0.5 and 1, σdep/σtr =
0.1 (solid curves) and 0.5 (dashed curves)].

magnetic field effect is reduced only to blunting the CBS
angular profile.

For high-order scattering events, the probability of scatter-
ing with helicity flip becomes great. In its turn, helicity-flip
scattering leads to the appearance of waves with opposite
helicity, the interference between which is destroyed by the
magnetic field. Therefore, the high-order scattering contribu-
tion to the CBS intensity is suppressed, resulting in the CBS
peak blunting in the magnetic field.

According to Eq. (29), in the strong magnetic field, h �
(ltr ldep)−1/2, the CBS angular profile tends to a universal form,

J (c)
±±(q) = J (c)

scal(
√

(q ∓ h)2 + 3/(2ltr ldep)). (47)

Note that a shift of the CBS peak similar to that discussed
above was predicted previously for electrons [35] where it
is a manifestation of the Aharonov-Bohm effect and is due
to a nonzero average phase shift between interfering electron
waves.

For a linearly polarized beam incident on the sample, the
CBS cone splits into two ones [see Figs. 3(d)–3(f)]. The peaks
move apart and smooth out as the magnetic field increases.
This is valid for both co- and cross-polarization channels (see
Fig. 5). In addition, the light within the CBS cone acquires
circular polarization [see Eq. (34)], the degree of which in-
creases with magnetic field strength. Aforesaid is illustrated
in Fig. 6. For q perpendicular to h, the CBS angular profile
is qualitatively the same as that obtained for the circularly
polarized beam.

In the strong magnetic field, the angular profiles for both
polarizations coincide with each other and, according to

FIG. 5. Angular profiles of CBS intensity for linearly copo-
larized (a) and cross-polarized (b) backscattered light, the total
intensity is shown in (c). The magnetic field is parallel to the sample
surface (from top curves to bottom ones, hltr = 0, 0.25, 0.5, 0.75, 1,
σdep/σtr = 0.1).
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FIG. 6. Degree of circular polarization in backscattering of
linearly polarized light. The magnetic field is parallel to the sam-
ple surface (from bottom curves to top ones for qh > 0, hltr =
0, 0.25, 0.5, 0.75, 1, σdep/σtr = 0.1).

Eq. (30), take the form

J (c)
‖,⊥(q) = 1

4

[
J (c)

scal(
√

(q − h)2 + 3/(2ltr ldep))

+ J (c)
scal(

√
(q + h)2 + 3/(2ltr ldep))

]
. (48)

From Eqs. (47) and (48) it follows that the strong mag-
netic field controls only the CBS peak position, while the
width of the angular profile is governed by the rate of light
depolarization.

In the magnetic field perpendicular to the sample surface,
the main effect is in blunting the CBS angular profile with
increasing field strength. Such a behavior is inherent in both
circular and linear initial polarization of light (see Fig. 7). Be-
sides, for linearly polarized light incident on the sample, both
circular polarization and turn of the initial polarization plane
should be observed in the CBS cone. The latter effect is deter-
mined by the third Stokes parameter U = Im (J (c)

−+ − J (c)
+−)/2

and is the result of the Faraday rotation along the part of a
wave path of the order of ltr .

In the limit of the strong magnetic field the values of γ±
[see Eq. (37)] tend to γ± = √

q2 + 3/(2ltr ldep) ± ih and the
CBS angular profile ceases to depend on the magnetic field.
In the case of circular initial polarization, the angular profile
is given by

J (c)
±±(q) = J (c)

scal(
√

q2 + 3/(2ltr ldep)). (49)

For a linearly polarized beam, the angular profiles of backscat-
tered light in co- and cross-polarized channels are coincident
with each other and equal to half the intensity (49). This cor-
relates well with the inference drawn previously from Monte
Carlo simulation [20]. Comparison of our results with Monte
Carlo simulation data [20] is illustrated in Fig. 8, which shows
the dependence of the CBS intensity in the exact backward
direction on the magnetic field strength.

FIG. 7. Angular profiles of CBS intensity for the helicity-
preserving channel (a) and for linearly copolarized (b) and cross-
polarized (c) backscattered light. The magnetic field is perpendicular
to the sample surface (from top to bottom curves in (a) and (b) and
vice versa in (c) hltr = 0, 0.25, 0.5, 0.75, 1, σdep/σtr = 0.1).
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FIG. 8. Interference contribution to intensity in the exact back-
ward direction for circularly polarized light (helicity preserving
channel, top solid curve) and for linearly co- and cross-polarized
light (two bottom curves, respectively) as a function of magnetic
field strength. The curves are normalized to unity at H = 0 (cross-
polarized contribution is normalized to the value of copolarized
one at H = 0). The results of Monte Carlo simulation [20] are
shown by symbols. The results presented refer to the samples
containing Mie spheres (the relative refractive index n = 0.858,
(a) size parameter ka = 2.32, σdep/σtr = 0.68 and (b) size parameter
ka = 23.2, σdep/σtr = 0.15), the sample transport optical thickness
is L/ltr = 15. The magnetic field is perpendicular to the sample
surface.

The asymptotic results (47)–(49) reflect the fact that the
magnetic field does not violate wave interference on paths
shorter than the mean-free path relative to helicity-flip colli-
sions. On such paths, the contribution from waves that change
their helicity [exactly these waves are responsible for the
difference between J (c)

‖ and J (c)
⊥ , see Eq. (16)] does not arise.

Note that in the absence of helicity-flip scattering, the mag-
netic field does not disturb the wave interference at all. Such a

FIG. 9. Comparison of the CBS angular profiles measured in
experiment [27] (solid curves) and calculated with Eq. (29) (dashed
curves) for the helicity-preserving channel. The magnetic field is
parallel to the surface, its values are shown in the legend to the
figure (the corresponding values of parameter hltr are 0, 0.14, 0.27,
0.41, 0.54, 0.68, 0.82, and 1.02). The angular profiles are normalized
to the intensity in the exact backward direction at h = 0. The calcu-
lations were performed for the same values of the sample thickness
L and the transport mean-free path ltr as in Ref. [27], L = 3.5 mm
and ltr = 445 μm, respectively, σdep/σtr = 0.47. The displacement
of the CBS peak from the backward direction as a function of the
magnetic field is shown in the inset (symbols are experimental data
[27], dashed curve is our result).

situation can be realized under the first Kerker condition [48]
(see also Refs. [31,32]), where the helicity-flip scattering cross
section is extremely small and the ratio σdep/σtr can achieve
values of the order of a few hundredths.

In the opposite case, where every scattering event is accom-
panied by a random change in the helicity of light, σdep/σtr ∼
1, the CBS features discussed above disappear, and the effect
of the magnetic field is reduced only to suppression of wave
interference [17–19]. For Rayleigh scattering, this is shown in
Appendix B.

The results obtained above [see, e.g., Eqs. (29) and (30)]
enable explaining the experimental data of Ref. [27]. In the
experiment [27] the dependence of the CBS angular profile on
the magnetic field strength were measured for circularly and
linearly polarized light backscattered from a porous magne-
toactive glass. The magnetic field was oriented parallel to the
sample surface. Comparison of the results of our calculations
with the data of Ref. [27] is shown in Figs. 9 and 10. When
comparing with the experimental data, we did not use any
fitting parameters. The ratio σdep/σtr was calculated with the
Mie theory for the optical characteristics of the magnetoactive
glass taken from Ref. [27]. The CBS angular profiles shown
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FIG. 10. Comparison of the CBS angular profiles measured in
experiment [27] (solid curves) and calculated with Eq. (30) (dashed
curves) for linearly polarized light. The polarization of backscattered
light is (a) coincident or (b) orthogonal to the polarization of the
incident light. The other parameters are the same as in the Fig. 9.

in Figs. 9 and 10(b) are normalized to the value of the corre-
sponding backscattering intensity I (q = 0, h = 0). In the case
of linear polarization of the incident beam, the CBS angular
profiles for copolarized light [see Fig. 10(a)] are normalized

to the backscattering intensity at magnetic field of 2 Tesla
(hltr = 0.27) [27], since the peak of the experimental angular
profile at H = 0 is rather smoothed, which makes it difficult
reproducing the H dependence of the intensity value. Good
agreement between our results and experiment [27] indicates
the key role of helicity-flip scattering process in manipulat-
ing the interference of time-reversed waves in a magnetic
field.

V. CONCLUSIONS

In conclusion, we have studied coherent backscattering
(CBS) of light from a disordered ensemble of Mie particles
embedded in a magnetoactive medium. We have shown that
the reason for suppression of coherent backscattering of light
in a magnetic field is not the Faraday effect itself, but the
helicity-flip scattering events leading to the appearance of
waves with opposite helicity. The Faraday effect suppresses
the interference of waves with opposite helicity, but does not
destroy the interference of time-reversed waves with identical
helicity.

We have developed the CBS diffusion theory, which takes
into account both the Faraday effect and the effect of circular
polarization memory specific to Mie scattering. The theory
is based on a system of coupled diffusion equations for two
cooperon modes responsible for the interference of waves
with identical helicity. The interaction between cooperons is
due to the helicity-flip scattering. Under conditions of the cir-
cular polarization memory effect, the ratio of the helicity-flip
scattering cross section to the transport scattering one is small.
Analytical expressions for the CBS angular profile have been
derived for the magnetic field oriented parallel and perpendic-
ular to the sample surface and for different polarization states
of the incident and backscattered light. The results obtained
have enabled explaining the unusual features found in Monte
Carlo simulation and in experiment on light scattering by
Mie spheres in magnetoactive glass [20,22,27], in particular, a
displacement and splitting of the CBS peak depending on the
polarization state of the incident light, as well as the saturation
of the magnetic field dependence of the CBS intensity. In the
limit of Rayleigh scattering, our results are transformed into
those derived in Refs. [17,19].

The results obtained above present a theoretical ground-
work for studies of the interaction of electromagnetic waves
with magnetoactive disordered materials, and can also be
of interest for the development of experimental methods
for quantifying their optical characteristics (e.g., the Verdet
constant [12,34]).
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APPENDIX A: SYSTEM OF DIFFUSION EQUATIONS FOR COOPERON

The sum of ladder diagrams 〈G(h)G∗(−h)〉L, via which the sum of the most-crossed diagrams 〈G(h)G∗(h)〉C is expressed
[see Eq. (6)], obeys the equation shown in Fig. 11 [17–19]. Following Ref. [18] we can transform this diagrammatic equation to
the transport equation in the integral form. Going to the fast and slow variables � = r − r′ and R = (r + r′)/2 and assuming
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FIG. 11. Integral equation for the sum of ladder diagrams 〈G(h)G∗(−h)〉L .

that the characteristic scales of their change differ greatly, � ∼ k−1
0 � R ∼ l (�/R ∼ 1/k0l � 1, l is the mean-free path), we

represent the product of the Green’s functions as follows:〈
Gik

(
R + �

2
, R′ + �′

2

∣∣∣∣h
)〉〈

G∗
lm

(
R − �

2
, R′ − �′

2

∣∣∣∣ − h
)〉

= e−|R−R′ |/l

|R − R′|2 eik0n�−ik0n′�′ ∑
α,β

P(α)
ik (n)P(β )

ml (n) exp

(
−ih · (R − R′)

(
α + β

2

))
, (A1)

where n = (R − R′)/|R − R′|, α and β denote the helicity and equal ±1 [see Eq. (1)]. Further performing the Fourier transform
with respect to � we obtain the transport equation for the sum of ladder diagrams �(c) = 〈G(h)G∗(−h)〉L in the Wigner
representation [18]

�
(c)
il,km( R, n|R′, n′) = �

(0)
il,km( R, n|R′, n′) +

∫
dR1

∫
dn1�

(0)
il,i′l ′ ( R, n|R1, n1)

∫
dn2 di′l ′,i′′l ′′ (n1, n2)�(c)

i′′l ′′,km( R1, n2|R′, n′),

(A2)

where �
(0)
il,km is expressed in terms of the product of the average Green’s functions (A1) in the Wigner representation [18]

�
(0)
il,km( R, n|R′, n′) = δ(n − n′)δ

(
n − R − R′

|R − R′|
)

· exp (−|R − R′|/l )

|R − R′|2 ·
∑
α,β

P(α)
ik (n)P(β )

ml (n) exp

(
−ih · (R − R′)

(
α + β

2

))
, (A3)

and dil,km(n, n′) is the scattering matrix [41], which describes single scattering in the medium. The scattering matrix can be
expressed in terms of the dielectric constant of scattering particles or the scattering amplitudes [41,49].

Equations (A1)–(A3) are written in the laboratory reference frame (the Cartesian coordinate system with the z axis
directed along the inward normal to the sample surface). It is convenient to additionally transform the equation (A2) by
going from the laboratory reference frame to the concomitant reference frame associated with the direction n of propagation
(see, e.g., Refs. [18,41]). To do this we take advantage of the basis of three unit vectors n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),
e(±) = (∂n/∂θ ∓ i[n × ∂n/∂θ ])/

√
2, which is known as a circular basis. In the system of the vectors e(±), the electric field can

be represented as a superposition of two circularly polarized waves with different helicity [41,50]

E = e(+)E+ + e(−)E−. (A4)

Following [50] we can rewrite this equation in the form Ei = ∑
α e(α)

i Eα where Latin and Greek indices take the values i = x, y, z
and α = +,−. The unit vectors e(±) are orthogonal to each other, e(α)

i e(β )
i = δαβ , and subject to the condition of completeness

e(+)
i e(+)

j + e(−)
i e(−)

j + nin j = δi j .

According to Eq. (A4) the matrix �
(c)
il,km(R, n|R′, n′) appearing in Eq. (A2) is transformed in going from the laboratory

reference frame to the concomitant one as follows:

�
(c)
il,km(R, n|R′, n′) =

∑
α,β,γ ,δ

e(α)
i (e(β )

l )∗�(c)
αβ,γ δ (R, n|R′, n′)e(γ )

k (e(δ)
m )∗. (A5)

In conditions of circular polarization (or helicity) memory (see, e.g., Refs. [28–32]), only two slowly decaying modes
propagate in the medium. These are the sum of intensities of the waves polarized clockwise and counterclockwise and the
difference between them (i.e., the first and fourth Stokes parameters, respectively). The length of attenuation for each of
these modes exceeds noticeably the transport mean-free path, which enables applying the diffusion approximation the their
calculation [30,39].
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Assuming that the helicity memory condition is fulfilled, we can keep in Eq. (A5) only the terms with pairwise coinciding
indices, i.e., �

(c)
αα,ββ ≡ �

(c)
αβ . Then Eq. (A5) reduces to

�
(c)
il,km( R, n|R′, n′) =

∑
α,β=+,−

P(α)
il (n)�(c)

αβ
( R, n|R′, n′)P(β )

mk (n′). (A6)

Substituting Eq. (A6) into Eq. (A2) we obtain the equation for the elements �
(c)
αβ . The scattering matrix dαβ (nn′) appearing in

this equation is related to dil,km(n, n′) by the formula

dαβ (nn′) = P(α)
il (n)dil,km(n, n′)P(β )

km (n′), (A7)

where summation over repeated indices is implied. In the case of weak (Born or Rayleigh-Gans [49]) scatterers, the elements
dαβ take the form

d±±(nn′) = 1
4 (1 + (nn′))2 n0|F (nn′)|2,

d+−(nn′) = d−+(nn′) = 1
4 (1 − (nn′))2 n0|F (nn′)|2, (A8)

where n0 is the number of particles per unit volume, and F (nn′) = (k2
0/4π )

∫
V dr eik0(n−n′ )r(ε − 1), integration is carried out over

the volume of the particle. In the case of a continuous random medium, the quantity n0|F (nn′)|2 appearing in Eq. (A8) should be
replaced by (k4

0/16π2)
∫

dr − r′) eik0(n−n′ )(r−r′ )〈δε(r)δε(r′)〉, where 〈δεδε〉 is the correlation function of the dielectric constant
(see, e.g., Ref. [51]). In the case of Mie particles, the matrix dαβ (nn′) is expressed in terms of the scattering amplitudes for the
field components polarized parallel and perpendicularly to the scattering plane, A‖ and A⊥, [49]

dαβ (nn′) = n0aαβ (nn′), (A9)

where a±±(nn′) = a+(nn′), a±∓(nn′) = a−(nn′), and a±(nn′) = |A‖ ± A⊥|2/4 (see also Ref. [42]). The elements aαβ (nn′) can
also be represented as linear combinations of elements a1(nn′) and a2(nn′) of the conventional scattering matrix used in the
radiative transfer theory [41,42,47], a±(nn′) = [a1(nn′) ± a2(nn′)]/2.

Acting on both sides of the integral equation for �
(c)
αβ (R, n|R′, n′) by the operator[{

n
∂

∂R
+ 1

l

}
δαβ + i(nh)(σ̂z )αβ

]
(A10)

we arrive at the following equation:{[
n

∂

∂R
+ 1

l

]
δαγ + i(nh)(σ̂z )αγ

}
�

(c)
γ β (R, n|R′, n′) =

∫
dn′′dαγ (n, n′′)�(c)

γ β (R, n′′|R′, n′) + δαβδ(R − R′)δ(n − n′), (A11)

where σ̂z entering into Eqs. (A10) and (A11) is the Pauli matrix.
Further we perform the Fourier transform with respect to variable R‖ − R′

‖ and expand �
(c)
αβ matrix in spherical harmonics

(see, e.g., Refs. [3,47]), keeping only the first two terms,

�
(c)
αβ

( z, z′, q|n, n′) = 1

4π
[�(c)

αβ
( z, z′|q) + 3(n − n′)J(c)

αβ
( z, z′|q)], (A12)

where �
(c)
αβ (z, z′|q) is the density propagator (integral over directions) and J(c)

αβ (z, z′|q) is the corresponding current density.

Substituting (A12) into (A11), we obtain the following system of diffusion equations for �
(c)
αβ (z, z′|q):([(

i ∂
∂z + hz

)2 + (q − h‖)2
] + 3

2 n2
0σtrσdep(1 − χ ) − 3

2 n2
0σtrσdep(1 − χ ) − χ

( − ∂2

∂z2 + q2 − h2
)

− 3
2 n2

0σtrσdep(1 − χ ) − χ
( − ∂2

∂z2 + q2 − h2
) [(

i ∂
∂z − hz

)2 + (q + h‖)2
] + 3

2 n2
0σtrσdep(1 − χ )

)

×
(

�
(c)
++(z, z′|q) �

(c)
+−(z, z′|q)

�
(c)
−+(z, z′|q) �

(c)
−−(z, z′|q)

)
= 3n0σtr (1 − χ )

(
1 0
0 1

)
δ(z − z′), (A13)

where h‖ and hz are the components of h parallel and perpendicular to the sample surface,

σtr =
∫

dn′ [1 − (nn′)]a1(nn′) (A14)

is the transport scattering cross section,

σdep =
∫

dn′ [a1(nn′) − a2(nn′)] (A15)
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is the helicity-flip scattering cross section (see, e.g., Refs. [30,42]),

χ = σtr − σ
(2)
tr − σdep

σtr + σ
(2)
tr + σdep

, (A16)

σ
(2)
tr = ∫

dn′ (1 − (nn′))a2(nn′) is the transport scattering cross section [42] appearing in the transport equation for the difference
between the intensities of waves with opposite helicity (i.e., for the fourth Stokes parameter [47]).

Under conditions of circular polarization (or helicity) memory [28–32], the difference between the differential scattering
cross sections a1(nn′) and a2(nn′) is small and, as a consequence, σdep � σtr and σtr − σ

(2)
tr � σtr . The parameter χ appearing

in Eq. (A13) is also small, χ � 1 (e.g., for the Faraday active glass with air bubbles used in experiment [27] the parameter χ

calculated with the Mie theory is χ = −0.02). Neglecting the terms proportional to χ in Eq. (A13), we arrive at the diffusion
equation (14).

APPENDIX B: CASE OF RAYLEIGH SCATTERING

For the Rayleigh particles Eq. (A8) takes the form

d±±(nn′) = 3

32π
n0σ [1 + (nn′)]2

,

d∓±(nn′) = 3

32π
n0σ [1 − (nn′)]2 (B1)

where σ = ∫
dn′ a1(nn′) is the scattering cross section. This result can be obtained from Eq. (A9) based on the expressions for

the scattering matrix elements a1 and a2 (see, e.g., Refs. [47,49]),

a1(nn′) = k4
0a6

18
(ε − 1)2 [1 + (nn′)2],

a2(nn′) = k4
0a6

9
(ε − 1)2 (nn′). (B2)

In this case σtr = σdep = σ , σ
(2)
tr = −σ/2 and χ = 1/3, and Eq. (A13) takes the form([(
i ∂
∂z + hz

)2 + (q − h‖)2
] + n2

0σ
2 −n2

0σ
2 − ( − ∂2

∂z2 + q2 − h2
)
/3

−n2
0σ

2 − ( − ∂2

∂z2 + q2 − h2
)
/3

[(
i ∂
∂z − hz

)2 + (q + h‖)2
] + n2

0σ
2

)
·

×
(

�
(c)
++(z, z′|q) �

(c)
+−(z, z′|q)

�
(c)
−+(z, z′|q) �

(c)
−−(z, z′|q)

)
= 2n0σ

(
1 0
0 1

)
δ(z − z′). (B3)

In the absence of the magnetic field, Eq. (B3) can be decoupled into two independent equations for the sum and difference
of the elements, �

(c)
±± + �

(c)
∓± and �

(c)
±± − �

(c)
∓±. The sum �

(c)
±± + �

(c)
∓± decays over great distances of the order of 1/q while the

difference �
(c)
±± − �

(c)
∓± decays rapidly over distances of the order of the mean-free path. In the diffusion regime the value of

�
(c)
±± − �

(c)
∓± should be neglected and therefore all elements �

(c)
αβ proves to be equal to each other. They decay over distances of

the order of 1/q [17].
In the presence of the magnetic field, the qualitative picture remains the same, but the specific expressions for �

(c)
αβ begin to

depend on the magnetic field. In particular, in the case of the magnetic field parallel to the sample surface, the values of �
(c)
αβ are

determined by the relations

�±±(z, z′|q) = 1
2 P(z, z′|q) (1 ∓ 2(qh)l2),

�∓±(z, z′|q) = 1
2 P(z, z′|q), (B4)

where l = (n0σ )−1 is the mean-free path. The function P(z, z′|q) is subject to Eq. (23) with γ =
√

q2 + 2h2 [17] and it is
assumed that q and h � 1/l .

The CBS angular profile [see Eq. (9)] that corresponds to Eq. (B4) is also expressed in terms of J (c)
scal(γ ). For example, the

CBS intensity in the helicity-preserving channel has the form

J (c)
±±(q) = 1

2 J (c)
scal(

√
q2 + 2h2)[1 ∓ 2(qh)l2]. (B5)

The total intensity for coherent backscattering of linearly polarized light is

J (c)
tot (q) = J (c)

scal(
√

q2 + 2h2). (B6)

The results (B5) and (B6) remain valid also for the magnetic field perpendicular to the sample surface (in this case qh = 0).
Equation (B6) coincides with the principal (i.e., diffusion) contribution to the result obtained in Refs. [17,19].
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