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Dynamic spin polarization in organic semiconductors with intermolecular exchange interaction
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It is shown that in organic semiconductors where organic magnetoresistance (OMAR) is observed, the
exchange interaction between electrons and holes localized at different molecules leads to dynamic spin
polarization in the direction of the applied magnetic field. The polarization appears even at room temperature due
to the nonequilibrium conditions. The strong spin polarization requires the exchange energy to be comparable to
the Zeeman energy in the external field and to be larger than or comparable to the energy of hyperfine interaction
of electron and nuclear spins. The exchange interaction also modifies the shape of OMAR.
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I. INTRODUCTION

Organic semiconductors represent a novel class of materi-
als that attracts significant interest nowadays. They are widely
applied as light-emitting diodes [1,2]. Other possible applica-
tions are organic solar cells [3–5] and organic transistors [6,7].
These semiconductors are promising materials for spintronics
due to the long spin relaxation times and spin diffusion lengths
that can reach dozens of nanometers [8–10]. In addition, the
spin transport in organic semiconductors is related to several
intriguing phenomena that are not always well understood.

The organic spin valves are unexpectedly easy to pro-
duce [11]. The conductivity of organic semiconductors is
usually much smaller than that of magnetic contacts. It
should exclude spin-valve magnetoresistance due to the spin
injection [12]. The thickness of the devices often exceeds
100 nm and does not allow the tunneling through the organic
layer [13]. However, spin-valve magnetoresistance of the or-
der of 10% is measured in numerous experiments. Although
an explanation related to exchange interaction between carri-
ers localized on different molecules was provided by Yu [14],
the reason for strong spin-valve magnetoresistance in organic
devices is still under discussion. While some groups report
spin injection from magnetic contacts to organic semiconduc-
tors, other groups consider this injection to be impossible [15].
In this situation the nontransport detection of spin polarization
in organics can be important. Such a detection was made
with muon spin rotation and showed the existence of spin
polarization in a working organic spin-valve device [10].

Another interesting property of spin transport in organic
semiconductors is the so-called organic magnetoresistance
(OMAR) [16,17]. This is the strong magnetoresistance ob-
served in magnetic fields of 10–100 mT both at low and
room temperature. In contrast to the strong organic spin-
valve effect this phenomenon is generally understood. Several
mechanisms of OMAR were proposed [18–20]. The magne-
toresistance appears because out of equilibrium the interaction
between electrons and holes leads to correlations of elec-
tron and hole spins. These correlations can affect transport

in organic semiconductors. Different mechanisms of OMAR
are related to different nonequilibrium processes including
exciton generation [18] and electric current combined with the
possibility of double occupation of molecular orbitals [19].
The applied magnetic field suppresses the relaxation of spin
correlations that is caused by the hyperfine interaction of
electron and nuclear spins [21]. This modifies the statistics
of spin correlations and leads to magnetoresistance.

The general understanding of OMAR requires only the
interplay of nonequilibrium carrier statistics and the hyperfine
interaction of electron and nuclear spins. However, in some
cases the exchange interaction between electrons localized on
neighbor molecules is invoked to describe the properties of
OMAR in particular materials [22,23].

In this paper it is shown that the interplay of the ex-
change interaction, hyperfine interaction of electron and
nuclear spins, and nonequilibrium phenomena in organic
semiconductors leads to the polarization of electron spins. The
polarization occurs when the Zeeman energy is comparable
to the energies of hyperfine and exchange interactions. The
temperature is considered to be much larger than all these
energies. To the best of the author’s knowledge, this phe-
nomenon has never been discussed in organic semiconductors.
However, a similar effect was recently observed in inorganic
semiconductor quantum dots [24,25], where the spin polariza-
tion can reach dozens of percents, and theoretically predicted
in transition-metal dichalcogenides bilayers [26]. The effect
was called the dynamic spin polarization, in contrast to the
thermal spin polarization that requires the Zeeman energy to
be larger than or comparable to the temperature.

The paper is organized as follows. In Sec. II the model
of organic semiconductor is introduced. This model includes
the mechanisms of OMAR that are also responsible for the
dynamic spin polarization when the exchange interaction is
taken into account. In Sec. III the master equations are derived
that describe the spin dynamics due to hopping, hyperfine in-
teraction, and exchange interaction. In Sec. IV the effect of the
exchange interaction on conductivity and exciton generation
rate is described. In Sec. V the dynamic spin polarization is
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obtained by the numeric solution of equations derived before.
In Sec. VI the specific “resonance” case is treated analytically.
In Sec. VII the general discussion and conclusion of the results
of this paper are given.

II. MODEL

Organic semiconductors are amorphous materials com-
posed of single molecules or short polymers. The transport
in these materials is due to the hopping of electron and hole
polarons over molecular orbitals [27,28]. Typically, organic
semiconductors are strongly disordered due to the distribution
of the energies of molecular orbitals with the width exceeding
0.1 eV [29,30], which is large in comparison to the room
temperature. Also the overlap integrals between neighbor
molecules differ in orders of magnitude [31] enhancing the
disorder in organic semiconductors.

The following model of an organic semiconductor is
adopted in this paper. Two molecular orbitals in each
molecule are considered: the highest occupied molecular or-
bital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). The charge transport is due to the hopping of elec-
tron polarons over the LUMO, due to the hopping of hole
polarons over the HOMO, and in the case of bipolar devices
due to the generation of excitons from electron-hole pairs and
their subsequent recombination.

The strong disorder localizes the current in a rather sparse
percolation cluster, and the resistivity is controlled by rare bot-
tlenecks in this cluster [32,33]. These bottlenecks are pairs of
molecular orbitals with a relatively slow hopping rate between
them. In the case of bipolar devices the bottlenecks can also
be pairs of a HOMO and a LUMO where electrons and holes
recombine or form excitons.

The dynamic spin polarization is related to the same
phenomena that lead to OMAR. The two most known mecha-
nisms of OMAR are the electron-hole (or exciton) mechanism
and the bipolaron mechanism. The electron-hole mechanism
exists only in bipolar devices and is related to the different
rates of singlet and triplet exciton generation or to the differ-
ent rates of recombination of electrons and holes composing
singlet or triplet exciplets [18]. The bipolaron mechanism can
also exist in unipolar devices but requires the possibility of
double occupation of molecular orbitals. It is assumed that
double occupation is possible only for electrons or holes in
the spin-singlet state [19]. To describe OMAR and dynamic
polarization, the theory of hopping transport that includes
correlation of spins and occupation numbers should be used.
Such a theory developed in Refs. [34–37] is applied in this
paper.

Both electron-hole and bipolaron mechanisms of OMAR
are considered, and the unified description for both the mech-
anisms is given when possible.

In the case of the electron-hole mechanism the bottlenecks
that control conductivity are considered to be pairs of trap-
ping sites for an electron and a hole (see Fig. 1). In such a
pair the singlet exciton can be composed with the rate γs,
and the triplet one can be composed with the rate γt . After
its generation the strong exchange interaction prevents the
exciton from changing its type. The singlet excitons then
recombine radiatively. Triplet excitons recombine either due
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FIG. 1. Electron-hole mechanism of OMAR. LUMO of
molecules including the electron trapping site 1 are shown in blue.
HOMO including the hole trapping site 2 are shown in red. Black
arrows correspond to the rates of hopping to or from trapping sites.
γs and γt are the rates of singlet and triplet exciton formation. The
excitons recombine either radiatively or nonradiatively but never
dissociate.

to phosphorescence [38,39] or due to nonradiative processes.
In the studied model the existing excitons do not affect the
charge transport or formation of new excitons. The current J
through the bottleneck is proportional to the rate of exciton
generation

J = eγs
n1n2 − 4s(α)

1 s(α)
2

4
+ eγt

3n1n2 + 4s(α)
1 s(α)

2

4
. (1)

Here, n1n2 is the probability of the joint occupation of LUMO

site 1 with an electron and HOMO site 2 with a hole. s(α)
1 s(β )

2
is the averaged product of spin polarization on site 1 along
Cartesian direction α and spin polarization on site 2 along the
direction β. The sum over the repeating index α is assumed in
Eq. (1).

Without average spin polarizations, s(α)
1 s(β )

2 describe the
correlations of spin directions. They can be expressed in terms
of spin density matrix ρs as follows:

s(α)
1 s(β )

2 = 1
4 Tr[σ (α)

1 σ
(β )
2 ρs]. (2)

Here, σ
(α)
1 is the Pauli matrix related to direction α and acting

on the spin of trapping site 1. σ
(β )
2 is a similar matrix for

site 2.
s(α)

1 s(β )
2 are equal to zero in equilibrium because the tem-

perature is large and ρs is proportional to the identity matrix.

It will be shown in Sec. III that s(α)
1 s(β )

2 is proportional to J and
the current can be expressed as follows:

J = eγeh(B)n1n2. (3)

Here, γeh(B) is the effective exciton generation rate that de-
pends on the applied magnetic field B.

Sites 1 and 2 are connected to other parts of the perco-
lation cluster. The electron can be trapped on molecule 1
with the rate W (in)

1 and be released with rate W (out)
1 . W (in)

2

and W (out)
2 are similar rates for a hole to be trapped on site

2 and leave it, respectively (see Fig. 1 for the directions of
hops corresponding to these rates). W (in)

1,2 and W (out)
1,2 are con-

sidered not to depend on the magnetic field. This allows one to
express the magnetoresistance as a function of γeh. The corre-
sponding derivations are provided in Appendix A. When the
magnetoresistance is relatively small, it can be expressed as
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FIG. 2. Bipolaron mechanism of OMAR. A-type LUMOs are
shown with blue color, and B-type LUMOs are shown with green
color. Black arrows correspond to the rates of hopping to or from the
bottleneck.

follows:

R(B) − R(0)

R(0)
= −

〈
Ceh

γeh(B) − γeh(0)

γeh(0)

〉
. (4)

Here, R(B) is the sample resistance, and 〈· · · 〉 describes the
averaging over bottlenecks where exciton generation occurs.
Ceh is the constant that is derived in Appendix A.

The bipolaron mechanism of OMAR exists both in bipolar
and unipolar devices. In this paper it is discussed for unipolar
devices with conductivity provided by electrons. It is assumed
that the LUMO can be double occupied by two electrons in the
spin-singlet state. The energy of double occupation is larger
than the energy of single occupation by the Hubbard energy
EH � T . In this case all the molecular orbitals participating
in hopping transport can be divided into the two types. The
A-type orbitals can be unoccupied or single occupied but are
never double occupied due to the large Hubbard energy. The
B-type orbitals have very low energy of single occupation
and therefore are always occupied by at least one (resident)
electron. Sometimes they are double occupied by an electron
pair in the spin-singlet state. Note that both types of orbitals
are LUMOs.

The bottlenecks in the unipolar transport are the pairs of
orbitals with the slowest hopping rates that are included into
the percolation cluster. Only the pairs of LUMOs with dif-
ferent types are important for the bipolaron mechanism of
OMAR. Such a pair is shown in Fig. 2. I call the LUMO
in the bottleneck the hopping sites 1 and 2 with analogy
to the trapping sites in the electron-hole mechanism. Site 1
corresponds to the A-type molecular orbital, and site 2 has
type B for definiteness.

The current in the bottleneck can be expressed as follows:

J = eW21

2
(n1 − 4s(α)

A s(α)
B − n1n2) − 2eW12n2(1 − n1). (5)

Here, n1n2 is the probability of joint occupation. W12 and W21

are the rates of hops inside the bottleneck as shown in Fig. 2.
Similarly to the electron-hole mechanism, it will be shown

that s(α)
1 s(α)

2 is proportional to the current J . This allows one to
express J as follows:

J = κbp(B)J0, (6)

J0 = eW21

2
n1(1 − n2) − 2eW12n2(1 − n1). (7)

Here, κbp(B) is the probability of the electron to be transferred
through the critical pair. It depends on the applied magnetic

field leading to OMAR. When |κbp(B) − κbp(0)| � κbp(0),
the magnetoresistance can be expressed as follows:

R(B) − R(0)

R(0)
= −

〈
κbp(B) − κbp(0)

κbp(0)

〉
. (8)

III. SPIN DYNAMICS

In this section the dynamic of spin and spin correlations
in the bottlenecks is described. The temperature is consid-
ered to be large compared with the Zeeman energy of the
electron spins, the energy of the hyperfine interaction, and
the exchange energy; therefore in equilibrium there is no spin
polarization or correlations of spin directions. The spin corre-
lations appear in the nonequilibrium processes. For example,
if OMAR is controlled by the electron-hole mechanism and
the singlet exciton formation is more probable than the forma-
tion of the triplet exciton, the triplet state of the electron-hole
pair in the bottleneck would be more probable than the sin-
glet state. I assume that when electrons and holes leave the
bottleneck sites and go to the percolation cluster, they mix
with other electrons and holes and the spin correlation is
forgotten. This leads to an effective spin relaxation. Finally,
the spin correlations have coherent dynamics in the bottleneck
due to hyperfine interaction with atomic nuclei and exchange
interaction.

The kinetics of spin correlations can be expressed as
follows:

ds(α)
1 s(β )

2

dt
= i

h̄
[H, s(α)

1 s(β )
2 ] + Gδαβ − Rαβ;α′β ′s(α′ )

1 s(β ′ )
2 . (9)

Here, the first term on the right-hand side describes the coher-
ent spin dynamics due to hyperfine interaction with atomic
nuclei, the external magnetic field, and the exchange inter-
action. H is the Hamiltonian that includes all these energies.
Gδαβ stands for the generation of spin correlations due to the
nonequilibrium processes. Rαβ;α′β ′ describes the relaxation of
spin correlations due to electron transfer between the bottle-
neck and other parts of the percolation cluster. Rαβ;α′β ′ also
includes some contribution to the relaxation of spin correla-
tions due to the incoherent processes inside the bottleneck.

In the bipolaron mechanism the generation of spin correla-
tions is proportional to the current

G = J

4e
, (10)

and the relaxation is described with the expression

Rαβ;α′β ′ = (
W (out)

1 + W (in)
2

)
δαα′δββ ′

+ W21

2
(δαα′δββ ′ − δαβ ′δβα′ ). (11)

This expression shows that spin correlation is forgotten when
the electron leaves the A-type site 1 and goes to the percola-
tion cluster. The existence of the correlation assumes that the
B-type site 2 is single occupied. It cannot lose its last electron.
However, the correlation is forgotten when the second electron
comes to site 2 from the percolation cluster while the site 1 is
occupied. The hops from site 1 to site 2 are possible only in
the singlet state of the spins. Even without net current this
leads to the relaxation of the coherent combination of singlet
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and triplet states [37]. This is shown by the second term on
the right-hand side of Eq. (11).

In the electron-hole mechanism of OMAR the spin corre-
lations appear due to the different rates of singlet and triplet
exciton formation

G = (γs − γt )
n1n2 − 4s(γ )

1 s(γ )
2

16
. (12)

Note that the probability of exciton decomposition is ne-
glected and therefore the formation of the exciton is possible
only out of equilibrium. The relaxation of correlations for
the electron-hole mechanism of OMAR can be described as
follows:

Rαβ;α′β ′ = (
W (out)

1 + W (out)
2 + γt

)
δαα′δββ ′

+ γs(δαα′δββ ′ − δαβ ′δβα′ ). (13)

This expression shows that the correlation is forgotten when
the electron leaves site 1 or the hole leaves site 2 and goes
to the percolation cluster. It is also transferred to the exciton
in the process of triplet exciton formation. The singlet exci-
ton formation is similar to the hop from the A-type site to
the B-type site in the bipolaron mechanism and leads to the
relaxation of the coherent combinations of singlet and triplet
states.

The Hamiltonian H can be expressed with the same equa-
tion for both the OMAR mechanisms.

H = HB + Eexs1s2. (14)

Here, Eex is the energy of exchange interaction of electron (or
hole) spins on sites 1 and 2. HB describes the spin interaction
with external magnetic field and atomic nuclei

HB = μbg
(
B + B(1)

h f

)
s1 + μbg

(
B + B(2)

h f

)
s2. (15)

Here, B is the external magnetic field. B(1)
h f and B(2)

h f are the
so-called hyperfine fields that describe hyperfine interaction
with atomic nuclei on sites 1 and 2, respectively. It is pre-
sumed that on different sites the carrier spins interact with
different nuclei; therefore B(1)

h f and B(2)
h f are independent. The

distribution density of hyperfine fields is

F
(
B(1,2)

h f

) = 1

(
√

2π
h f )3
exp

(
−

∣∣B(1,2)
h f

∣∣2

2
2
h f

)
. (16)

Here, 
h f ∼ 10 mT is the typical hyperfine field.
Equation (16) describes the vector normal distribution,
i.e., it is the product of three normal distribution densities of
Cartesian components of B(1,2)

h f . The description of hyperfine
interaction with static hyperfine field corresponds to the limit
of many nuclear spins interacting with a single electron spin.

The interaction with external and hyperfine fields leads to
precession of electron and hole spins with frequencies �1,2 =
μbg(B + B(1,2)

h f )/h̄ related to sites 1 and 2

i

h̄
[HB, s(α)

1 s(β )
2 ] = εαγα′�

(γ )
1 s(α′ )

1 s(β )
2 + εβγβ ′�

(γ )
2 s(α)

1 s(β ′ )
2 .

(17)

The spin dynamics due to the exchange interaction can be
described with the expression

i

h̄
Eex[s1s2, s(α)

1 s(β )
2 ] = 1

4

Eex

h̄
εαβγ

(
s(γ )

1 s(0)
2 − s(0)

1 s(γ )
2

)
. (18)

Here, s(0)
1 s(γ )

2 describes the polarization of site 2 in the direc-
tion γ while site 1 is single occupied.

s(0)
1 s(γ )

2 = 1
2 Tr

[
σ

(0)
1 σ

(γ )
2 ρs

]
, (19)

which is similar to Eq. (2). σ
(0)
1 is the unit matrix that acts on

single-occupied states of site 1. Therefore s(0)
1 and s(0)

2 are the
operators of single occupation of sites 1 and 2, respectively.

For the electron-hole mechanism or for A-type sites in the
bipolaron mechanism the “single occupation” and “occupa-
tion” are the same, and s(0)

1,2 = n1,2. In the considered model
of the bipolaron mechanism, site 2 is a B-type site, and in
this case s(0)

2 = 1 − n2 because it is single occupied when the
second electron is absent. In what follows the notation s(0)

1,2 is
used when single occupation is important for spin degrees of
freedom, and n1,2 is used for the description of current.

It is often assumed that due to the time-reversal symmetry
the statistics of spins should be conserved when all the spin

directions are reversed. If this were the case, s(γ )
1 s(0)

2 and

s(0)
1 s(γ )

2 should be equal to zero. However, it will be shown
that due to the exchange interaction, even a small external
field of 10–100 mT breaks the time-reversal symmetry and
leads to spin polarization in nonequilibrium conditions. To

show this, the kinetic equations for s(γ )
1 s(0)

2 , s(0)
1 s(γ )

2 and the
spin polarizations s(α)

1 , s(α)
1 should be given.

I start from the expressions for spin polarizations in the
electron-hole mechanism

d

dt
s(α)

1 = −Eex

h̄
εαβγ s(β )

1 s(γ )
2 + εαβγ �

(β )
1 s(γ )

1 − W (out)
1 s(α)

1

− γt s
(α)
1 s(0)

2 + γs
(
s(0)

1 s(α)
2 − s(α)

1 s(0)
2

)
, (20)

d

dt
s(α)

2 = Eex

h̄
εαβγ s(β )

1 s(γ )
2 + εαβγ �

(β )
2 s(γ )

2 − W (out)
2 s(α)

2

− γt s
(0)
1 s(α)

2 + γs
(
s(α)

1 s(0)
2 − s(0)

1 s(α)
2

)
. (21)

The first term on the right-hand side of Eqs. (20) and (21)
describes the mutual precession of spins with frequency
Eex/h̄. The second term stands for the spin precession in local
fields. The third one shows that the spin polarization is lost
when the electron or hole leaves the critical pair. The electron
and hole spins can also be lost due to the formation of a
spin-polarized triplet exciton with the rate γt . Note that the
recombination of the spin on site 1 requires a hole on site 2
and therefore the relaxation of spin on site 1 is proportional

to s(α)
1 s(0)

2 . The singlet exciton formation cannot relax the total
spin but leads to redistribution of spin polarization between
the sites with the rate γs.

When the bipolaron mechanism is considered, 1 → 2 hop
is an analog of the singlet exciton formation, and γs should
be substituted with W21/2. There is no analog of triplet exci-
ton formation in the bipolaron mechanism, and γt should be
substituted with zero in Eqs. (20) and (21). Also W (out)

2 should
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step 1: correlations

step 2: hyperfine fields

Bhf

or

Bhf

step 3:  exchange interaction

or

Eex Eex

OMAR
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x
y

or

o

B

o
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Eex
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z
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FIG. 3. The three steps that lead to spin polarization of electrons
and holes on the trapping sites. In the first step, the spins become
correlated due to the different rates of singlet and triplet exciton
formation. In the second step, the correlations are modified due
to spin precession in effective on-site fields. It is shown with 90◦

rotation of the hole spin around the x axis. The modified correlations
correspond to the coherent combination of singlet and triplet states.
In the third step, the spin polarization precesses around the direction
of the total spin. Initial rotation directions and the spin directions
after 90◦ rotation are shown. Spin polarization along the x axis of
both electron and hole (averaged over the left and right sides of the
picture) appears.

be substituted with W (in)
2 in Eq. (21) because the B-type site

cannot lose it last electron but loses its spin polarization when
it becomes double occupied.

Note that the exchange interaction leads to spin polar-

ization only when s(α)
1 s(β )

2 − s(β )
1 s(α)

2 �= 0. Such correlations
correspond to the coherent combination of singlet and triplet
states of the electron-hole pair. Therefore the overall picture
of dynamic spin polarizations can be described with the three
steps that are shown in Fig. 3. In the first step, the probabilities
of singlet and triplet states of the polaron pair are no longer
in equilibrium due to the different rates of singlet and triplet
exciton formation or due to the current and double occupation
possibility. This means that spins of the carriers become corre-
lated. In Fig. 3 this is schematically shown with both the spins
directed either up or down. It is important that electron and
hole spin polarizations averaged over the left and right sides
of the figure are zero.

In the second step, the spin precession with different fre-
quencies �1 and �2 leads to a coherent combination of

singlet and triplet states and to the correlations with s(α)
1 s(β )

2 −
s(β )

1 s(α)
2 �= 0. In Fig. 3 this is schematically shown with 90◦

rotation of hole spin on site 2 around the x axis. These two
steps are common for the theory of OMAR.

In the third step, exchange interaction leads to mutual
precession of spins, or, which is the same, to precession of
spins s1 and s2 around the direction of s1 + s2. In Fig. 3 the
initial direction of this precession is shown together with the
result of such a precession over angle π/2. The electron has
negative polarization in the x direction both on the left and on
the right side of the figure. This means that averaged electron
spin polarization appears.

At this point the polarizations of electron and hole are
opposite because the first terms on the right-hand side of
Eqs. (20) and (21) have equal absolute values and different
signs. However, other terms on the right-hand side of Eqs. (20)
and (21) are different, and the precession of spins with differ-
ent frequencies �1 and �2 and different rates of electron and
hole spin relaxation lead to nonzero averaged spin s1 + s2. It
appears that usually after the averaging over hyperfine fields
the spin polarizations on sites 1 and 2 have the same direction.

The kinetic equations for s(α)
1 s(0)

2 and s(0)
1 s(α)

2 are similar to
the equations for s(α)

1 and s(α)
1 . However, the terms describing

the transitions of electrons and holes between the bottleneck
and other parts of the percolation cluster are different,

d

dt
s(α)

1 s(0)
2 = −Eex

h̄
εαβγ s(β )

1 s(γ )
2 + εαβγ �

(β )
1 s(γ )

1 s(0)
2

− (
W (out)

1 + W (out)
2 + W (in)

2 + γt
)
s(α)

1 s(0)
2

+ W (in)
2 s(α)

1 + γs
(
s(0)

1 s(α)
2 − s(α)

1 s(0)
2

)
, (22)

d

dt
s(0)

1 s(α)
2 = Eex

h̄
εαβγ s(β )

1 s(γ )
2 + εαβγ �

(β )
2 s(0)

1 s(γ )
2

− (
W (out)

2 + W (in)
1 + W (out)

1 + γt
)
s(0)

1 s(α)
2

+ W (in)
1 s(α)

2 + γs
(
s(α)

1 s(0)
2 − s(0)

1 s(α)
2

)
. (23)

To consider the bipolaron mechanism, one should substitute
γs with W21/2, substitute γt with zero, and mutually exchange
W (in)

2 and W (out)
2 .

Equations (9)–(23) compose a system of 21 linear equa-
tions that should be solved under stationary conditions
together with Eqs. (1)–(5), which describe electric current
and exciton generation. However, in any case all the spin
correlations and polarizations are proportional to G. Therefore
it is possible to express

∑
α sα

1 sα
2 = TsG, where Ts has the

dimensionality of time. This allows one to use Eqs. (3) and (6).
In the electron-hole mechanism the rate G of generation of

spin correlation can be expressed in terms of Ts as follows:

G = 1

16

(γs − γt )n1n2

1 + Ts(γs − γt )/4
. (24)

Its substitution into Eq. (1) leads to Eq. (3) with

γeh = γt + (γs − γt )

4 + Ts(γs − γt )
. (25)
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FIG. 4. The shape of γeh(B) dependence with different exchange
fields Bex shown in the legend.

In the bipolaron mechanism, similar arguments lead to the
expression

κbp = 1

1 + W21Ts/2
. (26)

IV. EXCITON FORMATION RATE AND ORGANIC
MAGNETORESISTANCE

Exchange interaction modifies the shape of OMAR and
the dependence of the exciton formation rate γeh on applied
magnetic field B. This can help to identify situations where
dynamic spin polarization occurs in an organic semiconduc-
tor. Magnetoresistance and γeh(B) dependence are related in
the considered model in the electron-hole mechanism due to
Eq. (4). The shape of OMAR in the bipolaron mechanism
has similar properties. Therefore only the shape of γeh(B)
dependence is considered in this section for definiteness.

The exciton formation rate is calculated with the numeric
solution of Eqs. (9)–(23). The typical value of hyperfine field

B = 10 mT is considered. The exchange interaction signif-
icantly modifies OMAR when the “exchange field” Bex =
Eex/gμb is larger than or comparable to the hyperfine field
Bex � 
B. Therefore values of Bex from 10 to 100 mT are
discussed in this section.

In Fig. 4 the calculated dependence γeh(B) is shown. It is
compared to the value γeh(∞) in high magnetic fields where
the exciton generation rate is saturated. The singlet and triplet
exciton formation rates are considered to be γs = 20 μs−1 and
γt = 4 μs−1, respectively. These rates are ∼10 times slower
than the spin precession in the hyperfine field. The transitions
of electrons and holes between sites 1 and 2 and the rest of
the percolation cluster are described with the rates W (in)

1 =
30 μs−1, W (in)

2 = 100 μs−1, W (out)
1 = 5 μs−1, and W (out)

2 =
1 μs−1. The relatively small values W (out)

1 and W (out)
2 show

that sites 1 and 2 are efficient traps for an electron and hole,
respectively. These parameters were considered to be the same
for all the bottlenecks that control the transport. The averaging
was made over 104 random values of hyperfine fields B(1)

h f

and B(2)
h f .

The exchange interaction splits the zero-field peak of
γeh(B) dependence. This splitting is small when Bex � 
B.
This result qualitatively agrees with the calculations made

bgB

E

s

t+
t0

t-

bgBhfEex

FIG. 5. Energies of the triplet and singlet spin states in a mag-
netic field. The circle shows where the hyperfine interaction can
efficiently mix the states.

in Ref. [23], where it was compared with the magnetore-
sistance measured in tris(8-hydroxyquinolinato)aluminium
(Alq3). When the exchange interaction is strong (Bex �
10
B), the γeh(B) shape consists of two peaks at B = ±Bex.
This can be explained with the following model (Fig. 5).
At zero magnetic field the exchange interaction prevents the
hyperfine interaction from mixing singlet and triplet states. In
this case the hyperfine interaction does not affect the exciton
formation and current. However, the energy of the singlet
state Es does not depend on the magnetic field, while the
energy of one of the triplet states Et− decreases with B. When
|B − Bex| � 
h f , the singlet-triplet mixing due to the hyper-
fine field becomes efficient. This leads to the peak in γeh(B)
dependence.

To the best of the author’s knowledge, such a resonance
OMAR shape has never been observed in organic semicon-
ductors. However, similar resonances in magnetoresistance
were predicted for spin-polarized scanning tunneling mi-
croscopy with a single nonmagnetic dopant [40].

The resonances are sharp in Fig. 5 because the exchange
interaction was described with a single phenomenological
constant Eex. In principle the exchange interaction can be
calculated in organic semiconductors with ab initio simula-
tion [41]. It is important, however, that it depends on the
overlap integrals between molecules that have an exponen-
tially broad distribution [31]. Therefore one can expect a
broad distribution of exchange energies. In real materials it
should be determined with numeric simulation. Here, I con-
sider only a simplified model that shows that exchange energy
Eex in the bottleneck can vary in order of magnitude

Bex = B(0)
ex exp(−ξ ), (27a)

Fξ (ξ ) = 1

ξmax
, ξ ∈ (0, ξmax). (27b)

The exchange field is always smaller than B(0)
ex . The value

ξ describes its suppression due to the small overlap integral
between sites 1 and 2. The distribution density Fξ of the
suppression factor is flat between zero and ξmax, which is
the maximum suppression that still allows efficient exciton
generation. The shapes of γeh(B) dependence for B(0)

ex = 1 T
and ξmax = 4 and 8 are shown in Fig. 6. The splitting of the
peak is controlled by the smallest possible exchange ener-
gies. When B(0)

ex exp(−ξmax) is large compared with 
B, the
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FIG. 6. γeh(B) dependence with the distribution of exchange
fields described by Eqs. (27a) and (27b) with different ξmax described
in the legend. The inset shows the comparison between the results
for ξmax = 8 (green curve) and Lorentz function γeh(∞) − γeh(B) ∝
B2/(B2 + B2

0 ) with B0 = 45 mT (black dashed curve).

splitting is clearly observable, while for B(0)
ex exp(−ξmax) <


B it is suppressed and the γeh(B) dependence has a
Lorentzian shape.

V. DYNAMIC SPIN POLARIZATION

In the presence of exchange interaction the nonequilibrium
phenomena that lead to OMAR also yield the spin polariza-
tions of electrons and holes in the bottleneck. This can be
understood from the nonzero values of ds(α)

1 /dt and ds(α)
2 /dt

in Eqs. (20) and (21). The relative polarizations on sites 1 and
2 are defined as P1 and P2, respectively.

P1 = 2s(z)
1

s(0)
1

, P2 = 2s(z)
2

s(0)
2

. (28)

The polarizations are normalized to the single-occupation
probabilities of sites 1 and 2. The averaged polarization is
always directed along the axis of the applied magnetic field.

In the electron-hole mechanism of OMAR the produced
triplet excitons are also spin polarized, and their polarization
is

Pex = s(z)
1 s(0)

2 + s(0)
1 s(z)

2

n1n2
. (29)

In both of the OMAR mechanisms, spin current appears.
It is different for the two parts of the percolation cluster
connected to sites 1 and 2 because the spin is not conserved
in the bottleneck. I assume that the electrons that come from
the percolation cluster to the bottleneck are not spin polarized.
This leads to the following expressions for spin currents J (1)

s
and J (2)

s in the bipolaron mechanism:

J (1)
s = W (out)

1 s(z)
1 , J (2)

s = −W (in)
2 s(z)

2 . (30)

Similar expressions for the spin currents in the electron-hole
mechanism are

J (1)
s = W (out)

1 s(z)
1 , J (2)

s = −W (out)
2 s(z)

2 . (31)

Because the spin currents are directly related to spin po-
larizations, I discuss only P1, P2, and Pex. In this section the

(a)

(b)

FIG. 7. Dynamic spin polarization calculated numerically and
averaged over 104 hyperfine fields. (a) The spin polarization of elec-
trons on site 1, holes on site 2, and triplet excitons for the exchange
field Bex = 30 mT. The inset shows the typical spin polarizations
without averaging over hyperfine fields. (b) The triplet exciton spin
polarization at different exchange fields shown in the legend.

spin polarizations are calculated numerically under stationary
conditions for the systems described in Sec. IV. In Fig. 7(a)
the magnetic field dependence of P1, P2, and Pex is shown
for the exchange field Bex = 30 mT and the other conditions
corresponding to Fig. 4. The polarizations almost coincide
in this situation. Some details about their coincidence are
given in Sec. VI. Note that although the signs of ds(α)

1 /dt
and ds(α)

2 /dt in Eqs. (20) and (21) are different when spin
polarizations are zero, the resulting polarizations that take into
account the spin transfer between molecules and (most impor-
tantly) the averaging over the hyperfine fields have the same
sign. The inset in Fig. 7(a) shows the typical spin polarizations
P1 and P2 without the averaging over hyperfine fields. They
have the same sign when B is close to ±Bex and different signs
otherwise.

Figure 7(b) shows the triplet exciton polarization at dif-
ferent exchange fields. The shape of the dependence Pex(B)
is almost independent of Bex when Bex � 
h f , while its am-
plitude grows with Bex. For large exchange energy the shape
of the dependence contains the two peaks at B = ±Bex in
agreement with Fig. 5.

The results for the broad distribution of exchange energies
described with Eqs. (27a) and (27b) are shown in Fig. 8.

104206-7



A. V. SHUMILIN PHYSICAL REVIEW B 105, 104206 (2022)

FIG. 8. Dynamic polarization with the broad distribution of ex-
change fields described by Eqs. (27a) and (27b) with ξmax shown in
the legend.

Similarly to the γeh(B) dependence shown in Fig. 6, the peaks
in the dependence of polarization on the applied field are
smeared due to the distribution of the exchange energies.
However, even when the splitting of the zero-field peak in
γeh(B) dependence is hardly observable (as it is in the case of
ξmax = 8), the spin polarization is not completely suppressed.
The splitting of the zero-field peak depends on the minimal
possible exchange energy, while the spin polarization in mag-
netic field B depends on the probability for the exchange field
Bex to be comparable to B.

VI. SPIN POLARIZATION IN RESONANCE

The results of numeric simulation provided in Sec. V show
that spin polarization is the strongest in the “resonance situa-
tion” when B = Bex � Bh f . This situation is studied in detail
in this section. The electron-hole mechanism of OMAR is
considered for definiteness.

To further simplify the theory, I assume that the singlet
exciton formation rate is fast (γs � W (in)

1 + W (out)
1 + W (in)

2 +
W (out)

2 ) and the triplet exciton formation rate is very slow
(γt � W (out)

1 + W (out)
2 ). The spin precession in the hyperfine

field is fast compared with hops and exciton formation rates
(μbgBh f � h̄γs).

The singlet electron-hole pair forms an exciton almost
immediately after it appears. The electron-hole pair in the
state t− can easily change its state to singlet and also form
a singlet exciton. However, the pairs in states t+ and t0 usually
dissociate due to the electron and hole leaving sites 1 and
2. Sometimes, however, such a pair forms a triplet exciton
due to the finite rate γt . Even at this point it is clear that
the triplet excitons are strongly spin polarized because no t−
triplet excitons appear.

These assumptions allow one to reduce the system (9)–(23)
for 21 “spin variables” and the joint equations for “charge”
variables n1, n2, and n1n2 to a system of six linear equa-
tions. The new equations describe the system in terms of the
following variables. p+ and p0 are the probabilities for the
bottleneck to be occupied by the electron-hole pair in t+ and
t0 states, respectively. The probabilities of the bottleneck to
be occupied by electrons and holes in singlet or t− states are

neglected due to the fast singlet exciton generation rate and
efficient coupling between the singlet state and the t− state. p1

and p2 are the probabilities for the occupation of sites 1 and
2, respectively, while the second site is unoccupied. p1s is the
difference between the probabilities for site 1 to be occupied
by a spin-up and a spin-down electron while site 2 is empty.
p2s is a similar quantity for site 2.

Polarizations P1, P2, and Pex are expressed in these
notations as follows:

Pex = p+
p+ + p0

, (32a)

P1 = p+ + p1s

p+ + p0 + p1
, P2 = p+ + p2s

p+ + p0 + p2
. (32b)

Equations (32a) and (32b) show that triplet exciton polar-
ization is related only to the states when both sites of the
bottleneck are occupied, while the polarizations P1 and P2 are
also affected by states when only one of the sites is occupied.

The system of equations for pζ , where ζ =
+, 0, 1, 2, 1s, 2s, follows from the stationary conditions
d pζ /dt = 0. The stationary conditions for p+ yield

p1 + p1s

4
W (in)

2 + p2 + p2s

4
W (in)

1 = (
W (out)

1 + W (out)
2

)
p+.

(33)
The electron-hole pair in the t+ state can appear when an
electron or hole is trapped on the corresponding site of the bot-
tleneck while the second site is occupied. When the occupied
site is not spin polarized (for example, when p1 = 1, p1s = 0
and the hole becomes trapped on site 2), any of the four spin
states of the electron-hole pair appears with equal probabil-
ity. When the site is fully spin polarized (p1 = p1s = 1), the
probability of a t+ state after the hole trapping is 1/2. The
electron-hole pair dissociates when the electron or hole leaves
the bottleneck. The probability of triplet exciton formation γt

is neglected in comparison to W (out)
1 + W (out)

2 .
The probability of appearance of the t0 state is not affected

by spin polarization of trapping sites leading to the stationary
condition for p0

p1

4
W (in)

2 + p2

4
W (in)

1 = (
W (out)

1 + W (out)
2

)
p0. (34)

The stationary conditions for the probabilities p1 and p2

lead to the equations

W (out)
2 (p+ + p0) + W (in)

1 (1 − p1 − p2 − p+ − p0)

= (
W (out)

1 + W (in)
2

)
p1, (35a)

W (out)
1 (p+ + p0) + W (in)

2 (1 − p1 − p2 − p+ − p0)

= (
W (out)

2 + W (in)
1

)
p2. (35b)

The stationary conditions for p1s and p2s read

W (out)
2 p+ = (

W (out)
1 + W (in)

2

)
p1s, (36a)

W (out)
1 p+ = (

W (out)
2 + W (in)

1

)
p2s. (36b)

The system of equations (33), (34), (35a), (35b), (36a),
and (36b) can be solved analytically, but the solution is quite
cumbersome. Here, it is given for the specific “symmetrical”
case W (in)

1 = W (in)
2 = W (in), W (out)

1 = W (out)
2 = W (out). In this
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FIG. 9. Exciton spin polarization Pex and electron or hole spin
polarization P1 = P2 under the resonance conditions.

case, p1 = p2 and p1s = ps2. All pζ are functions of the ratio
w = W (out)/W (in).

The spin polarization p1s of site 1 is related to the triplet
occupation number p+ as follows:

p1s = wp+
w + 1

. (37)

The triplet occupation probabilities are proportional to the
probability p1 of the occupation of a single site.

p0 = p1

4w
, p+ = p1

4w

1 + w

3/4 + w
. (38)

The analytical expression for p1 is

p1 = 4w(4w + 3)

16w3 + 52w2 + 37w + 7
. (39)

The spin polarizations P1, P2, and Pex then should be
calculated from Eqs. (32a) and (32b). The result of such
a calculation is shown in Fig. 9. When W (in) � W (out), the
polarizations P1 = P2 and Pex coincide. Both of the trapping
sites are almost always occupied, and p1 can be neglected
in comparison to p0 and p+. p+ is equal to 4p0/3 in this
case leading to Pex = P1 = P2 = 4/7. This is the largest spin
polarization possible in the discussed model. Note that in
Sec. V, W (in)

1 � W (out)
2 and W (in)

2 � W (out)
2 were considered.

Figure 7 shows that polarizations P1, P2, and Pex coincide in
this case even for the nonresonance situation.

In the opposite limit W (out) � W (in) the probabilities of the
t+ and t0 states are equal leading to Pex = 1/2. Polarizations
P1 and P2 are small in this limit.

VII. DISCUSSION

Dynamic spin polarization was observed in nonorganic
GaAs quantum dots due to the circular polarization of pho-
toluminescence. It was possible due to the strong spin-orbit
interaction in GaAs that allows radiative recombination of
excitons with angular momentum equal to unity. In organic
semiconductors such a detection is not an easy task be-
cause usually only singlet excitons recombine radiatively.
The radiative recombination of triplets in organics is called
phosphorescence and can be achieved by the introduction of

certain impurities (the so-called phosphors) to organic semi-
conductors. It makes the optical detection of dynamic spin
polarization in organics possible at least in theory. However,
such a detection is related to additional restrictions that are
out of the scope of the provided model: The spin of a triplet
exciton should be conserved during the transition to such a
phosphor and the following recombination process.

However, organic semiconductors also have advantages
over quantum dots when dynamic spin polarization is consid-
ered. Spin-phonon interaction in nonorganic semiconductors
leads to fast spin relaxation that suppresses circular polar-
ization of luminescence in quantum dots at temperatures
T � 10 K [24]. However, OMAR and a strong spin-valve
effect exist both at low and room temperatures due to the
weak spin-orbit interaction in organic materials. This makes
it possible for dynamic spin polarization to also exist at room
temperature.

The long spin diffusion length measured in some organic
semiconductors gives hope that the spin polarization can be
detected in transport measurements in hybrid devices with
ferromagnetic contacts. Another possibility is the muon spin
rotation experiments that were able to detect spin polarization
in working spin-valve devices. Actually, the author believes
that it may be relevant to revisit organic spin-valve experi-
ments in view of the results of this paper. Usually, only two
possibilities were considered for an organic spin valve: The
spin is injected from the first ferromagnetic contact and is
detected by the second one, or the spin valve is due to the
tunneling through pinholes in the organic layer. Now a third
assumption should be added: The spin can be generated inside
the organic layer. The external fields of ∼100 mT required for
such a generation can be related, for example, to fringe fields
of magnetic contacts [42].

A significant dynamic spin polarization requires the en-
ergies of exchange between electrons and holes on different
molecules in the bottleneck to be larger than or comparable
to the energy of hyperfine interaction of electron and nuclear
spins. The existing estimates of the exchange energies are
quite controversial. In Ref. [23] the value Bex = 0.2 mT was
extracted from the comparison of measured OMAR shape
with theory. Such a value is clearly insufficient for the sig-
nificant spin polarization. However, such an estimate of the
exchange energy can be complicated if Bex has broad distribu-
tion, as follows from Fig. 6. The exchange interaction between
electrons localized on different molecules was also invoked in
Ref. [14] to describe the absence of the Hanle effect in organic
spin valves. Exchange energies corresponding to Bex � 0.1 T
were considered to be possible. Perhaps the typical exchange
energies in an organic semiconductor can be very different
in different samples and depend not only on chemical struc-
ture but also on the concentration of injected charge carriers.
Strong dynamic spin polarization can occur in samples where
the condition B ∼ Bex � Bh f is satisfied.

In this paper the minimal model for dynamical spin po-
larization is considered. Several generalizations of this model
may be relevant for some organic materials. For example, the
difference in the electron and hole g factor can significantly
modify the magnetoresistance shape [43]. The exchange en-
ergies and intermolecular hopping rates can be correlated,
which was not considered. In the applied model the electrons
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and holes that come to the bottleneck from the percolation
cluster are presumed not to be spin polarized. However, if
the electron and hole spin relaxation is not very efficient, the
spin accumulation will result in the initial spin polarization
of electrons and holes trapped at the bottleneck. This may
increase spin polarization and make it larger than 4/7, which
is the limiting value of the considered model.

The description of hyperfine interaction was made with the
static “hyperfine fields.” This stands for the theoretical limit
of a large number Nn of nuclear spins interacting with a single
electron spin. In particular, in real materials with finite Nn the
momentum conservation law should lead to the polarization of
nuclear spins when electron and hole spins become polarized.
However, the averaged polarization of nuclear spins is pro-
portional to 1/Nn. Also the polarization of nuclear spins in a
molecule occurs only when its HOMO or LUMO is occupied
by an electron or hole, respectively. The concentrations of
electrons and holes are small in many organic semiconduc-
tors. This allows one to presume that even slow nuclear spin
relaxation can effectively depolarize the nuclei and consider
the direction of hyperfine fields to be random.

In materials with small Nn and relatively large electron and
hole concentrations the nuclear spin relaxation can be ineffi-
cient, and nuclear spin polarization may occur. In this case it
can be detected in nuclear magnetic resonance measurements.

In conclusion, it was shown that exchange interaction be-
tween electrons and holes localized on different molecules
leads to spin polarization in organic semiconductors where
OMAR is observed. For the polarization to be significant
the exchange interaction should be comparable to or larger
than hyperfine interaction of electron and nuclear spins. The
exchange interaction also modifies the shape of OMAR.
However, such a modification can be masked by a broad
distribution of exchange energies. This broad distribution does
not completely suppress the spin polarization.
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APPENDIX: MAGNETORESISTANCE IN THE
ELECTRON-HOLE MECHANISM

To calculate the magnetoresistance in the electron-hole
mechanism, the current should be expressed as the rate of

trapping on sites 1 and 2

J = e(1 − n1)W (in)
1 − eW (out)

1 n1, (A1)

J = e(1 − n2)W (in)
2 − eW (out)

2 n2. (A2)

Equation (A1) shows that the electron cannot be trapped on
site 1 if it is already occupied and that all the electrons that are
trapped and do not leave site 1 contribute to exciton generation
and current. Equation (A2) is a similar expression for site 2.

The current given by Eqs. (A1) and (A2) is equal to the
current given by (3). This system of equations should be
complemented by the master equation for joined occupation
probability n1n2

d

dt
n1n2 = 0 = W (in)

1 n2 + W (in)
2 n1 − [W̃12 + γeh(B)]n1n2.

(A3)
Here, W̃12 = W (in)

1 + W (out)
1 + W (in)

2 + W (out)
2 .

The solution of Eqs. (3) and (A1)–(A3) yields the follow-
ing expressions for n1 and n2:

n1 = W (in)
1 − γ̃ n1n2

W C
1

, (A4)

n2 = W (in)
2 − γ̃ n1n2

W C
2

. (A5)

Here, W C
1 = W (in)

1 + W (out)
1 , and W C

2 = W (in)
2 + W (out)

2 .
The current J and joined occupation probability n1n2 are

expressed as follows:

J = eγehW (in)
1 W (in)

2 W̃12

W C
1 W C

2 W̃12 + γehW
, (A6)

n1n2 = W (in)
1 W (in)

2 W̃12

W C
1 W C

2 W̃12 + γehW
. (A7)

Here, W = W C
1 W C

2 + W C
1 W (in)

1 + W C
2 W (in)

2 .
The magnetoresistance can be expressed as (J (0) −

J (B))/J (B). When the effect of spin correlations on conduc-
tivity is small, the magnetoresistance is also small [|J (0) −
J (B)| � J (0)], and Eq. (4) can be derived from Eq. (A6) with
Ceh equal to

Ceh = W C
1 W C

2 W̃12

W C
1 W C

2 W̃12 + γeh(0)W
. (A8)

Here, γeh(0) is calculated in zero magnetic field.
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