
PHYSICAL REVIEW B 105, 104204 (2022)

Dynamics of position-disordered Ising spins with a soft-core potential
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We theoretically study the magnetization relaxation of Ising spins distributed randomly in a d-dimension
homogeneous and Gaussian profile under a soft-core two-body interaction potential ∝ 1/[1 + (r/Rc )α] (α � d),
where r is the interspin distance and Rc is the soft-core radius. The dynamics starts with all spins polarized
in the transverse direction. In the homogeneous case, an analytic expression is derived at the thermodynamic
limit, which starts as ∝ exp(−kt2) with a constant k and follows a stretched-exponential law at long time with
an exponent β = d/α. In between an oscillating behavior is observed with a damping amplitude. For Gaussian
samples, the degree of disorder in the system can be controlled by the ratio lρ/Rc, with lρ the mean interspin
distance and the magnetization dynamics is investigated numerically. In the limit of lρ/Rc � 1, a coherent many-
body dynamics is recovered for the total magnetization despite the position disorder of spins. In the opposite
limit of lρ/Rc � 1, a similar dynamics as that in the homogeneous case emerges at a later time after a initial
fast decay of the magnetization. We obtain a stretched exponent of β ≈ 0.18 for the asymptotic evolution with
d = 3, α = 6, which is different from that in the homogeneous case (β = 0.5).
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I. INTRODUCTION

Disorder plays an essential role in determining both
equilibrium and nonequilibrium properties of a many-body
system, e.g., glassy phase and dynamics in spin glasses [1], lo-
calization phenomenon of transports [2], and novel materials
by disorder engineering [3–5]. While knowing microscopic
details of a disordered system is difficult and not necessary,
understanding its universal behavior, starting from a micro-
scopic Hamiltonian, is important to pin down the underlying
physics. For example, many relaxations in glassy materials
(normal or spin type) follow a simple stretched-exponential
law (∝ exp[−(γ t )β], β < 1) [1,6]. Klafter and Shlesinger
found that a scale-invariant distribution of relaxation times
was the common underlying structure for three different phys-
ical models showing a stretched-exponential decay [7], which
was generalized to closed quantum systems by Schultzen and
co-workers recently [8] (see also relevant phenomena in clas-
sical spin systems [9]).

For a disordered spin-1/2 system, recent studies con-
firmed a stretched-exponential decay of magnetization in both
Ising [8] and Heisenberg [10,11] models, where the pair-
wise spin-spin interaction exhibits a power-law dependence
on the interspin distance r, J (r) ∝ 1/rα with α � d in the
d dimensions. The scale invariance is guaranteed, since a
pairwise contribution to the relaxation dynamics is determined
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by J (r)t , which is invariant under the following rescaling of
space and time: r → λr and t → λαt .

In this work we consider a specific type of pairwise inter-
actions in an Ising Hamiltonian, namely, a soft-core potential
J (r) ∝ 1/[1 + (r/Rc)α] with α � d and Rc the soft-core ra-
dius, reducing to the power-law behavior at large r. Soft-core
potentials explicitly break the spatial scale invariance and
have been investigated a lot in both classical [12–14] and
quantum [15–23] regimes, focusing on the formation of
particle clusters and crystals. Recently, it was shown that
particles interacting via soft-core potentials in one dimen-
sion can feature an Ising criticality for both quantum [21]
and classical [24] systems. The specific form of soft-core
potential considered here is most relevant to Rydberg dress-
ing in cold-atom experiments, where various spin models
have been investigated both experimentally [25–29] and the-
oretically [30–33]. Moreover, we will show that the degree
of interaction disorder with the considered soft-core poten-
tial can be tuned from a fully ordered case to a strongly
disordered one via tuning the effective size of an inhomoge-
neously distributed spin sample, which is now experimentally
feasible [34].

Here we have studied two different situations for Ising
spins interacting via the soft-core potential: (i) For homo-
geneously distributed spins, an analytical formula is derived
for the magnetization relaxation at the thermodynamic limit,
which features three different regions in the time axis: the
dynamics starts as ∝ exp(−kt2), followed by an oscillat-
ing decay, and eventually obeys a stretched-exponential law.
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FIG. 1. Soft-core interaction potential between two spin-up par-
ticles. The soft-core potential in Eq. (2) is plotted as a function of
interspin distance r with α = 3 and 6 (solid curves). As a compari-
son, the power-law interactions J0/(r/Rc )α are also shown.

(ii) For a spatially inhomogeneous sample, e.g., Gaussian
distributed, we observe the crossover from a fully ordered
dynamics to a disorder-dominated one by changing the size
of the spatial distribution of spins. A coherent many-body
dynamics is observed in a small-spatial-size system, while
disorder-induced relaxation is recovered for large spatial
sizes.

The article is organized as follows: We derive and discuss
the analytical result for homogeneous samples in Sec. II B.
The inhomogeneous situation is numerically investigated in
Sec. II C, and Sec. III concludes the paper.

II. DISORDERED ISING MODEL WITH A SOFT-CORE
POTENTIAL

A. The Ising Hamiltonian and its dynamics

A general Ising Hamiltonian for N spin-1/2 particles reads

ĤIsing = 1

2

N∑
i, j

Ji j σ̂
z
i σ̂ z

j , (1)

where σ̂ z
i( j) is the Pauli z operator and Ji j is the coupling

strength between spins i and j. Ji j takes a form of the soft-core
potential

Ji j ≡ J (ri j ) = J0

1 + ( ri j

Rc

)α , (2)

where the long-range part (ri j � Rc) has a power-law form
(∝ 1/rα

i j) and the short-range (ri j � Rc) interaction is almost
a constant J0, as seen in Fig. 1. Such a potential is not in-
variant under the spatial scaling r → λr in general, while it is
approximately invariant at large r � Rc. We will see later that
this leads to a stretched-exponential relaxation for long-time
dynamics, both in the analytic solution of a homogeneous
sample and the numerical results of a Gaussian one.

We focus on dynamics of the mean magnetization
〈Ŝx(t )〉 = 〈∑N

i=0 σ̂ i
x (t )〉 /N with an initial state that all

spins are polarized in the +x direction |φ0〉 = |→〉
⊗

N

with σ̂x |→〉 = +1 |→〉, i.e., 〈Ŝx(0)〉 = 1. Emch [35] and

Radin [36] have obtained an analytical expression for 〈Ŝx(t )〉
with the initial state |φ0〉, which reads as

〈Ŝx(t )〉 =
N∑

i=1

1/N
∏
j 
=i

cos(Ji jt ). (3)

All following analytical and numerical results are based on the
above equation.

B. Homogeneous samples: The thermodynamic limit

We consider a system of N spins uniformly distributed in a
spherical volume V in the d dimensions. Following the same
derivation procedure in Ref. [8], by replacing the ensemble
average with an average over all possible configurations of
placing N − 1 spins around a reference one at r1 = 0, Eq. (3)
can be transformed to

〈Ŝx(t )〉 =
∫

V
dr2 · · · drN P(r2, . . . , rN )

N∏
j=2

cos(J1 jt )

=
{

1

V

∫
V

dr cos[J (r)t]

}N−1

=
{

d

rd
0

∫ r0

0
rd−1dr cos

[
J0t

1 + (r/Rc)α

]}N−1

. (4)

Here P(r2, . . . , rN ) = 1/V N−1 is the probability of placing
the N − 1 spins at positions r2, . . . , rN , respectively, and J (r)
takes the form in Eq. (2).

For the power-law interaction (∝ 1/rα) a short-distance
cutoff has to be introduced to avoid the divergence of interac-
tion strength for further simplifying Eq. (4) [8], which is not
necessary for the soft-core potential considered here. By intro-
ducing a new variable y = J0t/[1 + (r/Rc)α] and integrating
by parts, Eq. (4) can be written as

〈Ŝx(t )〉 =
[

1 − πd/2ρRd
c


(d/2 + 1)N

∫ J0t

y0

(J0t/y − 1)β0 sin ydy

]N−1

,

(5)

where V = πd/2rd
0 /
(d/2 + 1) is the volume in d dimen-

sions with the radius r0, N = ρV = ρπd/2rd
0 /
(d/2 + 1),

β0 = d/α, and y0 = J0t/[1 + (r0/Rc)α]. Here ρ is the particle
density and 
(x) is the Gamma function. In the thermody-
namic limit (N, r0 → ∞ and ρ is a constant), the integral
I (J0t ; β0) = ∫ J0t

y0
(J0t/y − 1)β0 sin ydy is finite only if β0 � 1

and the above equation gives

〈Ŝx(t )〉 = exp[− f I (J0t ; β0)] , (6)

where f = πd/2ρRd
c /
(d/2 + 1).

Let us first consider β0 = 1,

I (J0t ; 1) = J0tSi(J0t ) + cos(J0t ) − 1, (7a)

where Si(x) = ∫ x
0 sin(t )/tdt is the sine integral function. At

short times

(J0t � 1), I (J0t ; 1) ∼ 1/2(J0t )2, (7b)

while

I (J0t ; 1) ∼ π/2J0t − 1 (7c)
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FIG. 2. Plots of analytic results for magnetization relaxation in
uniformly distributed Ising spins under a pairwise soft-core interac-
tion. (a) The case of β0 = d/α = 1. The black solid, blue dashed, and
orange dashed curves represent the complete [Eq. (7a)], short-time
asymptotic [Eq. (7b)], and long-time asymptotic [Eq. (7c)] expres-
sions, respectively. (b) As in (a) for the case of β0 = d/α = 0.5.
We also show the stretched-exponential function as a green curve
for comparison.

for long times (J0t � 1). In Fig. 2(a), all three formulas are
plotted as a function of evolution time, and Eqs. (7b) and (7c)
agree very well with the full solution Eq. (7a) concerning the
asymptotic dynamics at short and long times, respectively.
Specifically, a stretched-exponential decay, exp[−(γ t )β] with
β = β0 = 1, γ = J0 f π/2, is seen for the long-time dynamics.

Next we look at β0 < 1. The integral I (J0t ; β0) is

I (J0t ; β0) = J0tB(1 − β0, 1 + β0)[1F1(1 − β0, 2, iJ0t )],
(8a)

where B(x, y) is the Euler β function, 1F1(a, b, z) is the
Kummer confluent hypergeometric function, and [z] gives
the imaginary part of z. More details can be found in Ap-
pendix A 1. The asymptotic behaviors of Eq. (8a) are

I (J0t ; β0) ∼ 1/2(J0t )2(1 − β0)B(1 − β0, 1 + β0) (8b)

for short times (Jot � 1) and

I (J0t ; β0) ∼ (J0t )β0 [cos(β0π/2)
(1 − β0)

− (J0t )−2β0 cos(J0t − β0π/2)
(1 + β0)] (8c)

for long times (J0t � 1).
The asymptotic form of Eq. (8b) for β0 → 1 actually

coincides with Eq. (7b). Thus, for β0 � 1 the initial dynam-
ics of 〈Ŝx(t )〉 follows exp[−kt2] with k = J2

0 f (1 − β0)B(1 −
β0, 1 + β0)/2. In the long-time limit, the second term in-
side the square bracket in Eq. (8c) can be neglected and the
first term has an asymptotic value of π/2 for β0 → 1. So
the long-time behavior of 〈Ŝx(t )〉 is a stretched exponential
exp[−(γ t )β] with β = β0 and γ = J0[ f cos(β0π/2)
(1 −
β0)]1/β0 . As a specific example, we show plots of Eq. (6)
with I (J0t ; β0) from Eqs. (8a), (8b), and (8c) in Fig. 2(b)
for β0 = 0.5. Other than the two limits discussed before, a
damped oscillating decay is observed in between, which to

a large extent can be captured by the neglected second term
inside the square bracket in Eq. (8c). This oscillating decay
signatures the breakdown of scale invariance with the soft-
core potential.

C. Gaussian samples: A numerical study

To extend the above analytic result for the homogeneous
case, we numerically investigate the magnetization relaxation
for an inhomogeneously distributed spin sample (Gaussian
distributed) in this section, where the degree of disorder can
be tuned. We focus on dynamics of the magnetization 〈Ŝx(t )〉
under the setting specified in Sec. II A, however, with spin po-
sitions r = (x, y, z) randomly distributed in a three-dimension
Gaussian distribution (d = 3),

G(r) = 1

(2π )3/2wxwywz
exp

(
− x2

2w2
x

− y2

2w2
y

− z2

2w2
z

)
, (9)

where wη is the standard deviation in η direction (η ∈
{x, y, z}). This distribution of spins could be realized with
ultracold atoms trapped in harmonic traps [37]. The mean par-
ticle density is ρ = N/(8π3/2wxwywz ) with the total particle
number N , and for simplicity we assume wx = wy = wz ≡
w, giving rise to a mean interspin distance of lρ ≡ ρ−1/3 =
2
√

πw/N1/3 and its corresponding interaction strength Jρ =
J (lρ ) = J0/[1 + (πd/2/F
(d/2 + 1))1/β0 ] in Eq. (2), with
F, β0 defined in Sec. II B. For the following numeric cal-
culation, we fix the total spin number N = 100 and α = 6
(β0 = 0.5).

For the soft-core potential in Eq. (2), Rc separates the
interaction-strength randomness into two different regimes
according to the ratio lρ/Rc for the above Gaussian sample.
We show in Fig. 3 the distribution of pair interaction strengths
with 100 spins randomly distributed according to Eq. (9) for
three different values of lρ/Rc: 0.1, 1, and 5. When lρ is much
smaller than Rc [lρ/Rc = 0.1 in Fig. 3(a)], J (r) is almost the
constant J0 for all pairs, and hence randomness is minimized.
Otherwise, when lρ/Rc � 1 the distribution of J (r) spans over
several orders of magnitude, as seen in Figs. 3(b) and 3(c).
Thus effects arising from disorder are expected to be impor-
tant in this regime.

To explore the magnetization dynamics, we first randomly
sample the positions of N spins according to the Gaussian
distribution in Eq. (9) and evolve the system under Eq. (3)
with the corresponding distribution of interaction strengths
(see Fig. 3). We then repeat this random sampling for many
times and obtain the spin magnetization at various times by
averaging over the many realizations under the same parame-
ters.

1. High-density regime

In Fig. 4 we present the numerical results from Eq. (3) for
lρ/Rc ∈ (0.1, 0.2) (ρ ∼ 1014 − 1015 cm−3 for Rc = 1 μm),
coined the high-density regime. In this regime the system be-
haves like an all-to-all interacting one with a single interaction
strength J0 [38], recovering a coherent many-body dynamics,
as seen in Fig. 4(a) for the magnetization dynamics with
lρ/Rc = 0.1. A fast initial decay of magnetization due to the
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FIG. 3. Distribution of the pair interaction strength J (r) for 100
spins randomly distributed in a three-dimensional Gaussian profile.
(a), (b), (c) The distribution of lg[J (r)/J0] for a mean interparticle
distance of lρ/Rc = 0.1, 1, 5, respectively.

buildup of correlations [27,39] and periodic quantum revivals
with decaying amplitudes are observed.

In Eq. (3), if all the interaction strengths take a com-
mon value of J0, the resulting dynamics of 〈Ŝx(t )〉 has an
analytic form, 〈Ŝx(t )〉 = cosN−1(J0t ), giving rise to a coher-
ent many-body quantum-revival dynamics [38]. To account
for the observed decaying revival dynamics in Fig. 4(a),
we phenomenologically fit the numerical data to a form of
cosN−1(J0t ) exp[−(γht )βh ], which is a stretched-exponential
decay shown as the red curve in the figure. Note that we
have tried fits with a pure exponential decay, which cannot
fully capture the observed dynamics. From the fit we obtain
the stretched exponents βh and decay rates γh for various
values of lρ/Rc, which are plotted in Fig. 4(b). We observe a
monotonic approach to the normal exponential decay (βh = 1)
from βh > 1 with an increasing disorder in the system (see
Fig. 3), while the decay rate γh increases from 0 to the order
of J0.

2. Low-density regime

In the other regime with lρ/Rc > 1 (ρ < 1012 cm−3 for
Rc = 1 μm), the pair interaction strengths distribute over a
range covering 5 or 6 orders of magnitude (see Fig. 3). The
results for dynamics of 〈Ŝx〉 at six different values of lρ/Rc are
shown in Fig. 5. As the cloud size w (lρ) increases, the initial
collapse phase [see Fig. 4(a)] shrinks and a slow decay with

0 1 2 3 4 5 6

-0.5

0.0

0.5

0.08 0.10 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.0

1.2

1.4

1.6

〈S
x〉

tJ0/π

l /Rc
γ h

(J
0
)

β h

(a)

(b)

FIG. 4. Magnetization dynamics in a high-density Gaussian sam-
ple. (a) The time evolution of mean magnetization 〈Ŝx〉 (solid points)
for lρ/Rc = 0.1. After a initial fast decay, quantum revivals are ob-
served with a damped amplitude. The red curve is a fit to the function
of cosN−1(J0t ) exp[−(γht )βh ] (see text for details), with which the
stretched exponent βh and decay rate γh are extracted. (c) The fitted
βh and γh as a function of lρ/Rc. The lines are guides to eyes. See
text for more discussion.

an oscillating feature merges at long time, which is similar as
that in Fig. 2(b).

We rescale the time t for each curve in Fig. 5 by the charac-
teristic interaction strength Jρ (as introduced in the beginning

FIG. 5. Magnetization dynamics in a low-density Gaussian sam-
ple. Evolution curves of 〈Ŝx〉 for six different values of lρ/Rc ranging
from 1.5 to 10 are plotted. As lρ increases (ρ decreases), the initial
fast decay seen in Fig. 4(a) shrinks along the time axis and a slow
dynamics similar to that in Fig. 2 emerges. In the inset, the rescaled
evolution curves (tJ0 → tJρ) are shown, all of which fall onto a
common one at the long-time part. We fit this common part to a
stretched-exponential function (dashed dark yellow curve) and obtain
an exponent of β = 0.1817(9) and a decay rate of γ = 343(15)Jρ .
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of this section), which is presented in the inset. Curves for
different lρ/Rc fall onto a common one at the long-time part,
including the oscillation, which occupies a larger region in
the dynamics for larger lρ/Rc and demonstrates a universal
behavior. We fit this common long-time part of the 〈Ŝx〉 dy-
namics to the stretched-exponential function A exp[−(γ t )β]
with the fitting parameter A, γ , β (dashed curves in the in-
set of Fig. 5). The fitted exponent β is 0.1817(9), and the
decay rate γ is 343(15)Jρ ≈ 19.5(9)J0F 1/β0 (F � 1). Both
the stretched exponent and decay rate are different from the
values obtained analytically for a homogeneous sample with
β0 = 0.5 in Sec. II B, where β = β0 = 0.5, γ ≈ 1.57J0F 1/β0 .

III. CONCLUSION

In conclusion, we have considered magnetization relax-
ation of homogeneous and inhomogeneous samples of Ising
spins with a soft-core pairwise potential. We have derived
an analytic formula describing the whole dynamics in the
homogeneous case, with three distinct relaxation regions in
the time axis. The short-time dynamics follows exp(−kt2) and
stretched-exponential laws are found at long-time dynamics.
As conjectured by Klafter and Shlesinger, this law arises from
a scale-invariant distribution of relaxation times, which is only
approximately fulfilled in the long-time limit, since the soft-
core potential in general is not scale invariant. The breakdown
of scale invariance is indicated by an oscillating feature in the
relaxation between the short- and long-time limit.

For an inhomogeneously distributed (like Gaussian) sam-
ple, the ratio between the sample spatial size and the soft-core
radius determines the degree of disorder of the system. In
large Gaussian samples, strong disorder dominates and the
dynamics shows similar behavior as the homogeneous case,
while for small Gaussian samples a coherent many-body dy-
namics is found, since all spins interact pairwise with an

almost constant interaction strength. A smooth change from
the coherent regime to the strongly disordered one can be
realized via tuning the Gaussian size of the sample. The
ability to realize both fully ordered and strongly disordered
spin systems in a single setting should be of high interest to
experiments.

Our results in both homogeneous and inhomogeneous
situations may stimulate experimental investigations in the
cold-atom community and may also be generalized to other
types of interaction potentials; a uniform gas can be prepared
via the so-called box traps [40,41], and a Gaussian distribution
of atoms is obtained with a harmonic trap [37].
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APPENDIX

1. Analytic derivation in a homogeneous sample

To derive Eq. (8a) from I (J0t ; β0) = ∫ J0t
y0

(J0t/y −
1)β0 sin ydy for β0 < 1, we first introduce a new variable
x = 1/y in the later integral, resulting in

I (J0t ; β0) =
∫ 1/y0

1/(J0t )
(J0tx − 1)β0 x−2 sin(x−1)dx

y0→0��⇒ (J0t )β0

2i

∫ ∞

1/(J0t )

(
x − 1

J0t

)β0

x−2(eix−1 − e−ix−1
)dx

= (J0t )β0

2i
B(1 − β0, 1 + β0)(J0t )1−β0 [1F1(1 − β0, 2, iJ0t ) − 1F1(1 − β0, 2,−iJ0t )]

= J0tB(1 − β0, 1 + β0)[1F1(1 − β0, 2, iJ0t )]. (A1)

Here we have used an integral formula listed in Ref. [42], which reads∫ ∞

m
xv−1(x − m)μ−1eb/xdx = B(1 − μ − v, μ)mμ+v−1

1 F1(1 − μ − v, 1 − v, b/m) (A2)

and is valid for m > 0, 0 < �(μ) < �(1 − v). �(z) represents the real part of z. The asymptotic behavior of the Kummer
confluent hypergeometric function 1F1(a, b, z) at large |z| is 1F1(a, b, z) ∼ 
(b)[ezza−b/
(a) + (−z)−a/
(b − a)], which gives
rise to Eq. (8c).

[1] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
[2] C. A. Müller and D. Delande, Les Houches Summer School

Session XCI, edited by C. Miniatura et al. (Oxford University
Press, Oxford, UK, 2010).

[3] N. Upadhyaya and A. Amir, Phys. Rev. Materials 2, 075201
(2018).

[4] E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P.
Massignan, T. L. Hughes, and B. Gadway, Science 362, 929
(2018).

[5] S. Yu, C.-W. Qiu, Y. Chong, S. Torquato, and N. Park, Nat. Rev.
Mater. 6, 226 (2021).

[6] J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

104204-5

https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1103/PhysRevMaterials.2.075201
https://doi.org/10.1126/science.aat3406
https://doi.org/10.1038/s41578-020-00263-y
https://doi.org/10.1088/0034-4885/59/9/003


CANZHU TAN et al. PHYSICAL REVIEW B 105, 104204 (2022)

[7] J. Klafter and M. F. Shlesinger, Proc. Natl. Acad. Sci. 83, 848
(1986).

[8] P. Schultzen, T. Franz, S. Geier, A. Salzinger, A. Tebben, C.
Hainaut, G. Zürn, M. Weidemüller, and M. Gärttner, Phys. Rev.
B 105, L020201 (2022).

[9] W. Zhong, D. Panja, and G. T. Barkema, Phys. Rev. E 100,
012132 (2019).

[10] A. Signoles, T. Franz, R. Ferracini Alves, M. Gärttner, S.
Whitlock, G. Zürn, and M. Weidemüller, Phys. Rev. X 11,
011011 (2021).

[11] P. Schultzen, T. Franz, C. Hainaut, S. Geier, A. Salzinger,
A. Tebben, G. Zürn, M. Gärttner, and M. Weidemüller,
arXiv:2107.13314.

[12] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev.
E 63, 031206 (2001).

[13] B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N.
Likos, Phys. Rev. Lett. 96, 045701 (2006).

[14] D. Coslovich, L. Strauss, and G. Kahl, Soft Matter 7, 2127
(2011).

[15] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G.
Pupillo, Phys. Rev. Lett. 105, 135301 (2010).

[16] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302
(2010).

[17] M. Kunimi and Y. Kato, Phys. Rev. B 86, 060510(R) (2012).
[18] P. Mason, C. Josserand, and S. Rica, Phys. Rev. Lett. 109,

045301 (2012).
[19] F. Cinti, T. Macrì, W. Lechner, G. Pupillo, and T. Pohl, Nat.

Commun. 5, 3235 (2014).
[20] T. Macrì, S. Saccani, and F. Cinti, J. Low Temp. Phys. 177, 59

(2014).
[21] S. Rossotti, M. Teruzzi, D. Pini, D. E. Galli, and G. Bertaina,

Phys. Rev. Lett. 119, 215301 (2017).
[22] S. Prestipino, A. Sergi, and E. Bruno, Phys. Rev. B 98, 104104

(2018).
[23] S. Prestipino, A. Sergi, E. Bruno, and P. V. Giaquinta, EPJ Web

Conf. 230, 00008 (2020).
[24] F. Mambretti, S. Molinelli, D. Pini, G. Bertaina, and D. E. Galli,

Phys. Rev. E 102, 042134 (2020).

[25] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W.
Biedermann, Nat. Phys. 12, 71 (2016).

[26] J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J.-y. Choi, T. Pohl,
I. Bloch, and C. Gross, Nat. Phys. 12, 1095 (2016).

[27] J. Zeiher, J.-y. Choi, A. Rubio-Abadal, T. Pohl, R. van Bijnen,
I. Bloch, and C. Gross, Phys. Rev. X 7, 041063 (2017).
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[42] I. S. Gradshteį n and D. Zwillinger, Table of Integrals, Series,
and Products, 8th ed. (Elsevier, Academic Press, 2015).

104204-6

https://doi.org/10.1073/pnas.83.4.848
https://doi.org/10.1103/PhysRevB.105.L020201
https://doi.org/10.1103/PhysRevE.100.012132
https://doi.org/10.1103/PhysRevX.11.011011
http://arxiv.org/abs/arXiv:2107.13314
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1039/c0sm00545b
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevB.86.060510
https://doi.org/10.1103/PhysRevLett.109.045301
https://doi.org/10.1038/ncomms4235
https://doi.org/10.1007/s10909-014-1192-7
https://doi.org/10.1103/PhysRevLett.119.215301
https://doi.org/10.1103/PhysRevB.98.104104
https://doi.org/10.1051/epjconf/202023000008
https://doi.org/10.1103/PhysRevE.102.042134
https://doi.org/10.1038/nphys3487
https://doi.org/10.1038/nphys3835
https://doi.org/10.1103/PhysRevX.7.041063
https://doi.org/10.1103/PhysRevLett.124.063601
https://doi.org/10.1103/PhysRevLett.128.113602
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevX.4.041037
https://doi.org/10.1103/PhysRevLett.114.173002
https://doi.org/10.1103/PhysRevLett.114.243002
https://doi.org/10.1103/PhysRevA.103.043301
https://doi.org/10.1063/1.1705023
https://doi.org/10.1063/1.1665079
http://arxiv.org/abs/arXiv:cond-mat/9904034
https://doi.org/10.1103/PhysRevX.5.011022
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.118.123401

