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Large-scale behavior of energy spectra of the quantum random
antiferromagnetic Ising chain with mixed transverse and longitudinal fields
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In recent years, it became clear that the metallic regime of systems that exhibit a many-body localization
(MBL) behavior shows properties that are quite different than the vanilla metallic region of the single-particle
Anderson regime. Here we show that the large-scale energy spectrum of a canonical microscopical model
featuring MBL displays a nonuniversal behavior at intermediate scales, which is distinct from the deviation from
universality seen in the single-particle Anderson regime. The crucial step in revealing this behavior is a global
unfolding of the spectrum performed using the singular value decomposition (SVD) which takes into account the
sample to sample fluctuations of the spectra. The spectrum properties may be observed directly in the singular
value amplitudes via the scree plot, or by using the SVD to unfold the spectra and then perform a number of
states variance calculation. Both methods reveal an intermediate scale of energies that follow super-Poissonian
statistics.
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I. INTRODUCTION

Many-body localization (MBL) [1,2] has captured the
imagination of researchers since its inception more than a
decade and a half ago. Once interactions are introduced to a
many-particle system for which all single-particle states are
localized, a parameter region where the many-particle states
are extended should appear, as expected from the many-body
thermalization hypothesis [3,4]. Other regions of the parame-
ter space remain localized even in the presence of interactions.
Almost immediately, an effort to identify the transition point
by analyzing the spectra of microscopic models of disordered
interacting many-particle systems began. The spectra of 1D
spin chains and electronic models [5–9] were probed in order
to identify a signature of a transition (or crossover) between
the two regions. Nevertheless, despite much effort a definitive
answer remains elusive.

For microscopic models of MBL, one runs into an in-
surmountable obstacle in analyzing the energy spectra. The
Hilbert space grows exponentially and for conventional com-
puters it is hard to imagine that one will reach large enough
systems for which the analysis of the spectra will give an
indisputable finite size scaling. Nevertheless, there is still a
point in looking into the spectral properties of small micro-
scopic models, for two main reasons. The first, is that although
the systems studied are small, there are nevertheless some
behaviors that emerge in a robust form even for these sizes.
Although it might not be possible to prove that these behaviors
survive in the thermodynamical limit, it is still worthwhile
to understand them [10]. Second, many current experimental
studies searching for a signature of the MBL [11–15] are
performed on systems of similar small size.

Here we would like to examine a particular microscopical
model of a quantum random antiferromagnetic Ising chain

with mixed transverse and longitudinal fields, sometimes re-
ferred in the MBL literature as the Imbrie model. The ground
state of this model has been known to exhibit a rich phase
diagram [16–18], and recently the model has garnered consid-
erable interest in the context of MBL [19–24]. This interest
stems from the assertion that under some assumptions, it is
possible to rigorously show that it undergoes a MBL transition
from metallic to localized behavior as disorder increases [20].

What is the nature of the extended region of the Imbrie
model? Is this region analogues to the single-particle Ander-
son metallic phase? These are the questions we would like
to address in this paper. For single-particle Anderson metallic
regime, the energy spectrum follows the random matrix pre-
dictions [25–30] up to an energy scale known as the Thouless
energy [31], above which a different behavior is observed,
where the Thouless energy ETh = h̄D/L2 = gδ (D is the diffu-
sion constant, L, is the linear dimension, g is the dimensionless
conductance, and δ the average level spacing). The physical
origin of the Thouless energy is the time needed for a wave
packet to cover the whole sample known as the Thouless time
tTh = h̄/ETh = L2/D. At shorter times (larger energy scales),
the system is not ergodic, hence the different energy spectrum
behavior at this scale.

The generalized Rosenzweig-Porter random matrix model
(GRP) [32,33] is probably the simplest random matrix model
which shows three distinct phases: localized at strong dis-
order, nonergodic extended (NEE) phase for intermediate
disorder, and a fully ergodic extended phase at weak disorder.
The NEE phase exhibits unusual features such as fractality of
the wave functions [33–40] and super-Poissonian behavior of
the energy spectrum at intermediate energy scales [39,41]. Fo-
cusing on the energy spectrum, one discovers that the nearest
neighbor statistics (small energy scale, corresponding to long
times) is indistinguishable from the extended metallic phase,
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while for intermediate energy scales a super-Poissonian be-
havior of the nth level spacing distribution has been observed
[39]. Examining the singular value decomposition (SVD) of
the spectrum of an ensemble of realizations supports this
conclusion. Moreover, the SVD amplitude scree plot, which
in the NEE phase show three different regimes as a function
of the mode number (essentially inverse energy, where low
modes correspond to large energy scales). High modes (small
energy scales) show a Wigner behavior, then it crosses to
a super-Poissonian behavior for the intermediate range of
modes, finally switching at low modes (large energy scales)
to a Poisson form [41]. Thus two transition energies in the
spectrum emerge. The lower transition energy corresponds to
a transition from a universal Wigner behavior typical to the
metallic regime, to a nonuniversal NEE regime. Following
previous works [42], the energy at which this transition occurs
will be termed the Thouless energy. It is important though
to note that although the same terminology for the Thouless
energy as for the single-particle Anderson transition is used,
it does not necessarily mean that the same physics is behind
it. This will be discussed further on. The second transition
between the NEE regime and Poisson like behavior has no
direct analog in the single-particle metallic systems. One must
keep in mind that for any system the energy spectrum on large
scales is determined by the global band structure which is
captured in the first few modes in the scree plot. The NEE
behavior has an additional timescale which is the onset of
the extended behavior. Thus a region of small modes of the
SVD will be needed to capture the pre-extended region. The
energy for which the extended behavior is manifested is the
second transition energy and will be termed, EEx, the extended
energy. Much of the interest in the GRP model stems from
the proposal that it might capture properties relevant to MBL
systems. Indeed we will demonstrate that these two transition
energies emerge also for the Imbrie model, and the meaning
of this large energy scale will be discussed further on.

One of the most interesting questions investigated by the
MBL community [21,43–54] is the nature of the metallic
regime close to the localized regime. This region exhibits
at intermediate times (intermediate energy scales) different
behavior than expected from the canonical Anderson tran-
sition. For example, the time evolution of the system is
sub-diffusive and relaxation toward equilibrium is anoma-
lously slow [55–63], a behavior that might have been seen
also in experiments [11,64,65]. The same region also exhibits
fractal behavior of the eigenfunctions [24].

The fractal behavior of the eigenfunctions as well as the
subdiffusive time evolution have several complementary ex-
planations. One of the main routes to an explanation of the
NEE behavior is via the picture localization in the Fock space,
which has originally motivated the study of MBL [2,66].
Essentially the coupling of states in the Fock space creates
a quantum random graph which leads to nonergodic behavior
and fractal structure of the states in Fock space. This behavior
has also been associated to rare regions in the 1D systems
known as the Griffiths regions [56,61,67–72], which could ex-
plain the subdiffusive behavior. Evidence for Griffiths regions
in 2D exists [75–78] as well as observations of subdiffusive
behavior in numerical [73,74] and experimental many-body
systems [65]. It is interesting to see whether subdiffusive

behavior is seen for higher dimensions for which Griffiths re-
gions are more unlikely. A complementary view suggests that
the MBL transition is a Kosterlitz Thouless (KT) transition
[24,79–83]. In this picture, rare regions of extended states may
appear which will lead to an avalanche delocalizing the whole
sample if disorder is not too strong. This will lead naturally to
fractal structure of the Hilbert space and to a NEE behavior.

Here we would explore whether there are signatures of
super-Poissonian statistics at intermediate energies in the Im-
brie model, similar to the behavior seen in GRP. The usual
way of examining the behavior at large energy scales is the
variance of the number of levels as function of the size of an
energy window after a local unfolding of the energy spectrum,
i.e., 〈δ2n(E )〉 = 〈(n(E ) − 〈n(E )〉)2〉, where 〈. . .〉 denotes an
average over an ensemble of different realizations of disorder
and n(E ) is the number of levels within an energy window E .
In the Poisson regime 〈δ2n(E )〉 ∼ 〈n(E )〉, while in the Wigner
regime it grows logarithmic. Deviation from the logarithmic
behavior to a stronger than linear behavior at large energies
have been seen in metallic system beyond the Thouless energy
[84,85], the Sachdev-Ye-Kitaev (SYK) model [42,86], and
many-body localization systems [87–89]. Essentially, local
unfolding assumes that the density of states is smooth and
similar for different realizations of disorder in the ensemble
and therefore the average level spacing may be calculated by
an average over a narrow window of energy (usualy O(10)
levels) over the disorder ensemble. As we have shown in
Refs. [41,93] there are some problems in the application of
the local unfolding in systems where the local density shows
strong sample to sample fluctuations or a nonsmooth band
structure with long range correlations which may skew the
results. Therefore, a global unfolding method, which can filter
out these long range, realization specific, properties of the
spectra at shorter energy scales should be used.

In order to circumvent these problems we will use a dif-
ferent method to study the properties of the spectra, known as
singular value decomposition (SVD). This method has been
successfully applied to analyze the transition from Wigner
to Poisson statistics in the Anderson transition [90–92], to
characterizing the NEE in the GRP model [41], to study the
large energy scale spectrum behavior beyond the Thouless
energy in metallic systems [93], and very recently to the MBL
transition in the Heisenberg chain [94].

As will be discussed in detail in the Appendix, SVD essen-
tially returns a set of modes which can be used to construct the
energy spectra of the different realizations in the ensemble.
Arranging the modes according to the size of their amplitude
squared, λk (where k = 1 is the largest), the first few λk (O(1))
correspond to global features of the spectra [41,90–92]. Thus
one can globally unfold the spectra by filtering out these
modes when reconstructing the spectrum. Then the unfolded
spectrum can be used to obtain the number variance. A dif-
ferent way to obtain a comprehensive picture of the behavior
of the energy spectrum is to plot λk versus k, also known as a
scree plot. Usually, a power-law behavior λ ∼ k−α , is detected
for certain ranges of k. The power-law exponent corresponds
to the statistics of the energy spectrum with α = 2 for the
Poisson behavior, α = 1 for the Wigner regime [41,90–92].
For energies larger than ETh (small values of k) in the metal-
lic regime of a single-particle Anderson model α = 1 + d/2
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(where d is the dimensionality) [93]. In Ref. [41], we have
shown that for GRP model in the NEE phase shows for
intermediate values of k a power-law behavior with α > 2.
This behavior is consistent with super-Poissonian statistics. At
large values of k (short energy scales) α = 1 as expected in the
Wigner regime. At small values of k, the singular value curve
returns to the α = 2 exponent, i.e., Poisson statistics. Thus
the super-Poissonian behavior starts at the Thouless energy,
and terminates at EEx. Moreover, as has been discussed in
Ref. [93], the power law of the SVD amplitude scree plot is
connected to the power-law behavior of the number variance,
〈δ2n(E )〉 ∼ 〈n(E )〉β , with β = α − 1, where in the Poisson
regime α = 2 and β = 1, while in the Wigner regime α = 1
and β = 0 (actually logarithmic). In the NEE regime one
expects a super-Poissonian behavior of the number variance
β > 1 and therefore α > 2.

In this paper, we shall introduce the random antiferromag-
netic Ising chain (Imbrie model) in Sec. II. The dependence
of the density of states and ratio statistics (nearest neighbor
level statistics) on the strength of disorder is presented in
Sec. III. As expected, above a certain strength of disorder fi-
nite size scaling indicates a localized regime, while for weaker
disorder an extended regime emerges. Then (Sec. IV) the
locally unfolded spectra is used to study the level number
variance. The results deviate from RMT predictions (whether
Wigner in the extended regime or Poissonian the localized)
for higher energy scales, and in the extended regime seem
to follow a super-Poissonian behavior. Nevertheless, due to
the structure of density of states as well as to strong sample
to sample fluctuations, one must question the validity of the
local unfolding. Therefore we turn to the SVD scree plot,
in order to get a better picture of the larger energy scale
behavior of the spectrum in Sec. V. The scree plot suggests
that for small energies, the system follows the expectations
garnered from the ratio statistics. Then at a particular mode
(corresponding to the Thouless energy) the power law changes
to a super-Poisson value (α > 2). For large energies a sec-
ond transition is seen in the lower modes corresponding to
EEx, which switches the power lat back to α ∼ 1. Thus an
intermediate range of energies with super-Poissonian statistics
emerges for the extended side of the Imbrie model. For the
localized regime, no super-Poissonian regime exists and the
Poisson exponent transits into a smaller exponent α < 2 for
low modes. This transition mitigates as one moves deeper
into the localized regime. In Sec. VI, SVD is used to globally
unfold the spectra and investigate the globally unfolded level
number variance, resulting in values of β that correspond well
with the α deduced from the scree plot. These results as well
as further ramifications are discussed in Sec. VII.

II. IMBRIE MODEL

The Hamiltonian for the random antiferromagnetic Ising
chain of length L with mixed transverse and longitudinal fields
(Imbrie model) is given by [19–23]

Ĥ =
L∑

i=1

hiŜ
z
i +

L∑

i=1

γiŜ
x
i +

L−1∑

i

JiŜ
z
i Ŝz

i+1, (1)
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FIG. 1. The ratio statistics rs [Eq. (2)] as a function of the disor-
der W , for different system sizes L = 12, 13, 14, and 15. Averaging
was performed over 3000 realizations for L = 12, 13, and 14, while
for L = 15, the averaging was performed over 1000 realization.
Circles correspond to the numerical results, while the rs values for
Wigner GOE and Poisson are indicated by continuous and dashed
lines. On the left side the whole range of W is presented while on the
right side a zoom into small values of W (for L = 12, 13, and 14) is
shown.

where Sa
i is the spin on site i in direction â. hi is a ran-

dom magnetic field in the ẑ direction on site i drawn from
a box distribution between −W/2 and W/2, and γi = 1. Ji are
the nearest-neighbor spin-spin antiferromagnetic interactions
which following Abanin et al. [23] are drawn from a box
distribution in the range 0.8 and 1.2. L is the length of the
chain.

The corresponding to Hilbert space has size of 2L, and we
calculate the eigenvalues Ei using exact diagonalization for M
realizations for a given disorder.

III. SMALL-ENERGY SCALES

As a first step, we would like to calculate the nearest
neighbor level spacing statistics in order to establish for which
values of disorder W we see extended states. Since small
energy scales for the extended regime follow the Wigner
statistics while for the localized regime they follow Poisson
statistics, a finite size scaling of a measure probing the nearest
neighbor level statistics should reveal in what regime the
system is. As a measure we shall use the ratio statistics [5],
defined as

r = 〈
min

(
rn, r−1

n

)〉
,

rn = En − En−1

En+1 − En
, (2)

where En is the nth eigenvalue of the Hamiltonian and 〈. . .〉 is
an average over different realizations of disorder and a range
of eigenvalues around the middle of the energy spectrum. This
measure has the advantage of avoiding the unfolding pro-
cedure. For the Poisson statistics, rs = 2 ln 2 − 1 ∼= 0.3863,
while for the GOE Wigner distribution, rs

∼= 0.5307 [95].
In Fig. 1, rs, for sample sizes, L = 12, 13, 14, and 15

(corresponding to Hilbert space sizes of 2L), is presented.
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FIG. 2. The density of states 〈ν(ε)〉 as a function of the energy ε

for L = 14 and different values of disorder averaged over M = 3000
different realizations of disorder.

The matrices were exactly diagonalized and all eigenvalues
En were obtained. rs was averaged over M realizations, where
M = 3000 for L = 12, 13, and 14, while for L = 15, M =
1000 realizations, using P = 2L/2 eigenvalues around the
center of the band. For finite W a typical transition pattern is
seen: above W ∼ 5 the larger is L the lower the value of rs and
the closer to the Poisson value it becomes. Below the value of
W ∼ 5 (except for in the vicinity of W = 0) the order is the
opposite, the larger the L, the higher its rs value is and the
closer its value is to the GOE statistics. All the curves seem
to cross at the same value of W ∼ 5. Thus, roughly speaking,
the behavior of rs shows the finite size scaling features of a
second order localization transition. At W = 0, the system
again coalesces at the Poisson value. As can be seen from the
right panel the finite size behavior indicates that the crossover
occurs very close to W = 0.

Since our aim in this study was to investigate the extended
regime and not to determine the nature of the transition to the
localized regime, the values of W around the intersection of
the curves was not calculated with enough points around it and
the averaging was not performed on a sufficient large number
of realization to establish that the crossing corresponds to a
second order transition. At this point, we can not be sure
that the crossing does not drift with size or show Kosterlitz-
Thouless like behavior.

IV. NUMBER VARIANCE WITH LOCAL UNFOLDING

We start by plotting the average density of states ν(ε) for
different values of disorder. As can be seen in Fig. 2 the
level density widens as expected when the disorder increases.
Moreover, it is also apparent that the density becomes more
smooth as W increases. For W < 2 some additional (quasi)
regular structure of the density is seen.

Even for stronger disorder where the average density of
states seems smooth, significant realization dependent struc-
ture remain. This can bee seen in Fig. 3 where the averaged
level spacing over a range of eigenvalues l around the p-th
level δl (p) = (Ep+l/2 − Ep−l/2)/l is plotted. Two typical real-
izations are presented for W = 2, where p ranges over the the
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FIG. 3. The averaged level spacing δp(l ) as a function of p the
level at the center of the range l over which the average is calcu-
lated for a single realization with different values of l . Two typical
realizations of size L = 14 and W = 2 are presented.

middle half of the eigenvalues, while three different values
of l = 100, 200, and 400 are presented. In addition to the
expected smooth global increase of δ as p moves from the
center of the band, δp(l ) shows long range sample specific
fluctuations on scales of hundreds of levels.

Such a behavior hints towards the existence of a large-
scale structure of the energy spectrum and sample to sample
fluctuations. This poses a challenge since when one studies
the number variance one would like to filter out global or
sample dependence regular behavior. This can be problem-
atic since one has to separate global behavior from sample
to sample fluctuations. Let us start by a naive application
of the local unfolding. In order to calculate 〈δ2n(E )〉, we
unfold the spectrum by εi = εi−1 + 2m(Ei − Ei−1)/〈Ei+m −
Ei−m〉 where m = 6 (other values were used with no signifi-
cant change). We place the window at the center of the band
then the averages 〈n(E )〉 and 〈n2(E )〉 are calculated over all
M realizations. The results are shown in Fig. 4

The variance 〈δ2n(E )〉 as a function of 〈n(E )〉 is depicted
in Fig. 4 for L = 14 (matrix linear size 214 = 16384) and two
values of disorder W = 0 and 2. As we have seen from the
ratio statistics rs (Fig. 1), W = 0 follows Poisson statistics
for small energy scales while W = 2 follows Wigner at these
scales. Indeed, as can be seen in the inset of Fig. 4, for small
values of 〈n〉 the expected behavior of the number variance
is followed, i.e., 〈δ2n(E )〉 = 〈n〉 for Poisson and 〈δ2n(E )〉 =
(2/π2) ln(〈n(E )〉) + 0.44 for Wigner (GOE). Nevertheless,
as larger energies are examined, strong deviations from the
Poisson or Wigner behavior are observed.

The large-scale behavior is very different between these
two values of disorder. For W = 0, the linear behavior quickly
saturates, but a very nonmonotonous behavior is apparent.
One cannot escape the feeling that a large-scale structure with
strong sample to sample fluctuation that lurks in the spectra
is not correctly addressed by the local unfolding. For W = 2
the large-scale behavior is quite monotonous, shows a strong
super-Poissonian behavior where the the number variance
shows a power-law dependence on the average number of
states, 〈δ2n(E )〉 ∼ 〈n〉β with β = 2.02 � 1. Although the fit
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FIG. 4. The variance 〈δ2n(E )〉 as a function of 〈n(E )〉 for L = 14
with disorder W = 0 and W = 2. The Poisson behavior, 〈δ2n(E )〉 =
〈n(E )〉, and Wigner behavior, 〈δ2n(E )〉 = (2/π 2) ln(〈n(E )〉) + 0.44,
are indicated by dashed curves. The inset zooms into the small n
region, where the expected Poisson (for W = 0) and Wigner (W =
2) behavior is seen. For larger energy scales depicted in the main
figure, a completely different behavior is seen. For W = 0, a very
nonmonotonous behavior is observed, while for W = 2, 〈δ2n(E )〉 ∼
〈n(E )〉β with β = 2.02 fits reasonably well.

seems rather decent, one must wonder how reliable is it and
whether we are seeing an artifact of the local unfolding.

A possible cure to the sample to sample fluctuations is
averaging also over the center of the energy window. In Fig. 5,
the number variance is also averaged over 21 positions of the
center of the energy window, Ẽ , equally spaced around the
band center, where the furthest point is no more than 1/15 of
the bandwidth from the center. The number of states, n(E , Ẽ ),
in a window of width E centered at Ẽ , is calculated, then the
averages 〈n(E )〉 and 〈n2(E )〉 are taken over all positions of the
center Ẽ and all M realizations. As can be seen, the large scale
nonmonotonous behavior for W = 0 is somewhat dampened,
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FIG. 5. As for Fig. 4, with an additional average over different
positions of the center of the energy window. The averaging does not
change much. For the large energy scales in the localized case (W =
0), the nonmonotonous behavior is somewhat dampened, while for
W = 2, β = 1.98 is similar to the previous result.

while the behavior for W = 2 remains essentially the same.
Nevertheless, the question remains how much of these results
are an artifact of the unfolding and sample to sample fluctu-
ations. We shall address global methods of unfolding in the
next sections.

V. SINGULAR VALUE DECOMPOSITION SCREE PLOT

As result of these difficulties with the local unfolding, we
change tack and use a different method to study the spectrum,
i.e., the SVD method. In this method, no local unfolding is
performed, and is replaced by global unfolding. Essentially
the spectrum of M realizations of disorder each with P eigen-
values is arranged as a matrix X of size M × P where Xmp

is the p level of the mth realization. As detailed in the Ap-
pendix after carrying out SVD on X , we can write the matrix
as a sum of amplitudes, σk , multiplied by matrices, X (k),
i.e., X = ∑

k σkX (k). One may rank the amplitudes from the
largest to the smallest, and thus the lower values of k represent
modes with higher contributions to reconstructing the matrix.
Moreover, the lower modes tend to code the global behavior
of the matrix. Plotting the singular values squared λk = σ 2

k
according to their rank is knows as the singular value scree
plot [96–98] and much information can be gleaned from it.
This approach has been applied to the spectrum of disordered
systems in several studies [41,90–93], the first few λk (k �
O(1)) correspond to global features of the spectra. Higher SV
(λk) show a power-law behavior k−α . In the Poisson regime
α = 2 for high modes, while α = 1 in the Wigner regime.

For the GRP model [41], the same behavior was seen for
weakly disordered (extended) and strongly disordered (lo-
calized) regime. For the intermediate disorder NEE regime,
one expects small energy scales to show Wigner properties.
Indeed, large k′s follow α ∼ 1. Intermediate values of k,
corresponding to intermediate energy scales show unconven-
tional behavior. They follow a power law, but with α > 2. This
super-Poissonian behavior was interpreted as the signature of
the NEE phase. At small k corresponding to larger energy
scales (small times), a return to an exponent of α = 2 is
observed.

A somewhat similar picture emerges for the Imbrie model.
Increasing the disorder results in a change of the dependence
of the SV amplitudes on the mode number k. For W = 0,
the high k values follow a power law λk ∼ k−α with α = 2,
as expected from a localized system, matching with ratio
statistics results (Fig. 6). A sudden switch in the exponent
to α = 1 occurs at k ∼ 200. This exponent is equal to the
exponent exhibited by Wigner statistics.

As can be seen in Fig. 6, for weak disorder (W = 1, 2), the
behavior of the SV is quite different. For k > 200 and W =
1, 2 an exponent of α = 1 is evident, as expected from systems
in the Wigner (extended) regime. This changes to an exponent
larger than two (for W = 1, α = 2.3 for 95 < k < 150; for
W = 2, α = 2.3 for 40 < k < 105) for intermediate values
of k. Then, similarly to W = 0, the exponent switches back
to α = 1. Thus, in the regime of extended behavior, the SV
amplitudes have three distinct behaviors for different ranges
of k. Wigner for large values of k (small energy scales, long
times), super-Poissonian (α > 2) for an intermediate range
of k, and back to α = 1. This indicates that the extended
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FIG. 6. The scree plot of the singular value amplitudes squared
λk , where k is the rank of the amplitude from highest to lowest,
for L = 14 and different values of disorder W . P = L2/2 = 8192
eigenvalues were taken from the middle of the band for M = 3000
realizations. Fits to power laws λk ∼ k−α , are depicted by the lines,
where the magenta lines correspond to α = 1,the green lines to α =
2, cyan to α = 2.3, maroon to α = 2.1, and dark green to α = 1.5.

regime in the Imbrie model is far from trivial and signatures
of different physics show up at intermediate energy scales.
This behavior is somewhat similar to the behavior seen for
the SV in the GRP model [41]. Both the GRP and Imbrie
models in the extended regime exhibit Wigner behavior at
large times (small energy scales, large k), super-Poissonian
behavior associated with non ergodicity at intermediate times
and energy scales. For short times (large energy scales, small
k) the Imbrie and the GRP models show a different behavior
expressed by different exponents (α = 2 for GRP, α = 1 for
Imbrie). That is the result of the large-scale structure of the
density of states seen in Fig. 2, very clearly for W = 0, but
still hinted for somewhat stronger disorder. We shall elaborate
on it in the following section. Thus SVD provides support for
the existence of a NEE regime for the Imbrie model in the
weakly disordered extended regime.

For W = 3, a crossover behavior is seen. For 700 < k <

2000, α = 1.5 while for 50 < k < 700, α = 2.1, and then
for 10 < k < 30, α = 1. Clearly, even for large k we do not
see a clear GOE behavior expected on the basis of the ratio
statistics behavior (Fig. 1). The SV scree plot behavior seems
as a crossover between Poisson and Wigner. Thus, although
finite size behavior of nearest neighbor ratio statistics un-
equivocally puts the W = 3 disorder in the Wigner regime,
the larger energy scales do not show it. This indicates that
the larger energy scales which correspond to short times are
crossing over to a closer to Poisson behavior earlier than the
short energy scales. The Wigner regime transits to higher α

values, while the NEE regime moves towards smaller values
of α closer to two. Indeed, The W = 4 shows an almost pure
Poisson behavior although the disorder is smaller than the
critical disorder associated with the ratio statistics. A similar
difference between the ratio statistics corresponding to level
spacing scale and scree plot behavior was very recently noted
in Ref. [94] for the Heisenberg chain.

In the localized regime (W = 5 and 6) the expected Pois-
son exponent, α = 2, is seen for k > 100. For smaller values
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FIG. 7. The scree plot of λk , as a function of k for L =
14 and W = 2 with P = 2L/2 = 8192 eigenvalues around the
center of the band. Different number of realizations, M =
1000, 2000, 4000, 6000, are presented in the inset. In the main plot
we scale the different SV amplitudes by dividing λk by M. Fits to a
power laws, λk ∼ k−α , are depicted by the lines, where the magenta
line correspond to α = 1, and the cyan to α = 2.3.

of k, the exponent tappers, and it is hard to determine whether
λk even follows a power law at all. Nevertheless, it looks that
this region becomes smaller as W increases.

Returning to the weakly disordered metallic regime, we
would like to examine more carefully the intermediate energy
scale for which the super-Poissonian behavior is observed.
The first issue to address is the dependence of the scree
plot on the number of realizations M. In Fig. 7, λk as
a function of k for L = 14 and W = 2 with a range of
P = 2L/2 = 8192 eigenvalues around the center of the band
are shown. Four different numbers of realizations M =
1000, 2000, 4000, and 6000 have been calculated and are
presented in the inset of Fig. 7. As the number of SV modes
r = min(M, P) (see Appendix), and here P > M in all cases,
the number of modes is r = M. It is clear that for small k′s
the curves are very similar. Rescalling λk to λk/M results
in all the curves falling on top of each other for k < 100
(Fig. 7). In the intermediate regime 40 < k < 100 for which
the super-Poissonian regime with an exponent of α = 2.3
is observed the scaled curves coalesce almost perfectly. For
higher modes (k > 100) although the curves do not coalesce
(which is natural since they terminate at different values of
k = M), nevertheless, the exponents are all α = 1 for a signif-
icant range of k. Thus, for a reasonable number of realizations,
one gets a decent representation of large and intermediate
scale behavior of the energy spectrum.

When one increases the range of eigenvalues, P, while
keeping the number of realization M fixed it is possible track
the two energies determining the crossover from GOE to
super-Poissonian behavior, ETh, and the transition from the
super-Poissonian regime to a Poissonian regime, EEx. One
might expect that since SVD modes describe the energy spec-
trum of width Pδ, resulting in the kth mode corresponding
to a Pδ/k energy range. Thus the position of kTh, the mode
for which the exponent changes should depend linearly on P.
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FIG. 8. The scree plot of λk , as a function of k for
(a) L = 14 (M = 4096); (b) L = 15 (M = 2048), in the weak
disorder W = 2 regime. Different ranges of eigenvalues P =
4096, 6144, and 8192 around the center of the band for L = 14
and P = 2048, 4096, 8192, and 16 384 for L = 15 are drawn. Fits
to power laws are depicted by the lines, where the magenta lines
correspond to α = 1, and the cyan to α = 2.3 for L = 14, while
α = 2.65 For L = 15. (Inset) Zoom into the region intermediate
energy scale. Once the SV amplitudes λk are scaled by 1/P, all curves
coincide. The red circles indicate the position of the crossover from
GOE to super-Poissonian behavior (kTh) and the transition from the
super-Poissonian regime back to a Wigner regime (kEx).

Indeed, from Fig. 8, which presents a scree plot of the SV
of L = 14 (2L = 16 384) and L = 15 (2L = 32 768) deep in
the weak disorder regime (W = 2) for M = 4096 (L = 14)
or M = 2048 (L = 15) realizations, and different ranges of
eigenvalues P centered around the middle of the band, one
can see that the SV amplitudes, λk , scale as 1/P. As can be
seen in the insets, all curves coincide after rescaling. Esti-
mating the energy scales from the scree plots leads to: ETh ∼
Pδ/kTh ∼ 80δ (L = 14) and ETh ∼ 160δ (L = 15). Similarly,
EEx ∼ Mδ/kEx ∼ 200δ (L = 14) and EEx ∼ Pδ/kEx ∼ 400δ

(L = 15). Since, roughly speaking, δ ∼ B/2L, (where B is
the band width which depends only weakly on L), one may
postulate that ETh and EEx correspond to a fixed fraction of
the band width for the same disorder. The values of ETh and
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��	
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FIG. 9. The scree plot of λk , as a function of k for W = 2 and
four sizes of L = 12, 13, 14, and 15 with M = 2048 realizations. In
all cases, P = 2L/2. Fits to power laws λk ∼ k−α , are depicted by the
lines, where the blue line correspond to α = 2.2 (fit L = 12 and 13),
the cyan to α = 2.3 (L = 14), and the dark green to α = 2.65
(L = 15). The transition between the universal and super-Poissonian
behavior, kTh, and between the super-Poissonian and large-scale be-
havior, kEx, is similar for all sizes.

EEx are within the same ranges for which we observed the
large-scale structure in Fig. 3.

In Fig. 9, we probe the influence of size, L, on the inter-
mediate region. Here L = 12, 13, 14, and 15, W = 2 and
M = 2048 realizations are considered for all sizes. In all
cases, P = 2L/2 (half of the eigenvalues around the middle
of the band). The exponent in the intermediate energy range
increases as the size becomes larger. For L = 12 and 13, the
exponent α = 2.2, for L = 14 its α = 2.3, and for L = 15,
the largest size considered here, α = 2.65. One may conclude
that the intermediate super-Poissonian behavior is enhanced
by the increase of the system size. Moreover, the crossover
regions between the regions becomes sharper and kTh and kEx

easier to pinpoint as L increase. It can be also seen that for all
sizes the Thouless and large-scale energy scales do not vary
much, in line with our previous conclusion that they depend
on the band width.

Although ETh moves to lower energies as W increases (at
least when W approaches the transition value) similar to the
Thouless energy for the single-particle Anderson model there
are nevertheless important differences for the larger energy
scales. Indeed, for both Anderson localization and Imbrie
(or GRP), the behavior on larger scales is super-Poissonian
(α > 2), but there are two main differences. The first is that
while for the Anderson case α depends mainly on dimension
and only weakly on W and not at all on L, for the Imbrie
model the power law has a very strong dependence on disorder
and system size. The second difference is that for the Imbrie
model an additional energy scale (EEx) is evident, while for
the Anderson model it is absent.

Thus the super-Poissonian regime seems robust and not a
fluke of the range of eigenvalues considered or small size.
Nevertheless, from the available data it is not possible to
extrapolate what is the α value at infinite size.
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FIG. 10. The number variance 〈δ2n(E )〉 as a function of 〈n(E )〉
for weak disorder (L = 14; W = 0, 1, 2; P = 4096; and M =
4096). The Poisson and Wigner behaviors correspond to the orange
and blue curves correspondingly. The inset presents the whole range
of 〈n(E )〉 values, while the main figure zooms into smaller 〈n(E )〉.
The green curves correspond to 〈δ2n(E )〉 ∼ 〈n(E )〉β with β = 1.3
and the full and dashed line represent different prefactors.

VI. SINGULAR VALUE DECOMPOSITION
GLOBAL UNFOLDING

Another way that SVD can be used, is to apply its results
for unfolding the spectra and then perform a standard number
variance calculation. The unfolding is based on reconstructing
the matrix X where the first (or few) contributions of the
SV decomposition are dropped since they encode the global
behavior. Specifically, capturing the global behavior of the
energy spectrum by X̃l p = ∑r

k=m σkX (k)
l p (see Appendix) with

m determined by examining the scree plot and identifying
the point where the first few modes change the behavior. For
example, in the scree plot for the L = 14, W = 2 case seen in
the inset of Fig. 6, one chooses m = 4.

Defining the global unfolded lth eigenvalue of the pth
realization as

ε̃l = ε̃l−1 + Xl p − Xl (p−1)

X̃l p − X̃l (p−1)
+ 1, (3)

and calculating the number variance centered on the middle
of the unfolded spectra, results in the number variance pre-
sented in Fig. 10. Here we focus on the weak disorder regime.
First, lets examine the behavior of the number variance for
small average numbers, corresponding to small energy scales
shown in the main panel. For W = 0, we see a close to
linear behavior with 〈δ2n(E )〉 = 〈n〉. For W = 1 and 2, we
see see in the inset a Wigner (GOE) behavior, 〈δ2n(E )〉 =
(2/π2) ln(〈n(E )〉) + 0.44, which holds up to 〈n(E )〉 ∼ 10 for
W = 1 and 〈n(E )〉 ∼ 20 for W = 2.

For large energy scales, a different dependence emerges.
The variance saturates with quasiperiodic oscillations which
are very pronounced for small disorder and dampened at
higher W . This behavior conforms to the low modes (small
k) power law seen for λk (Fig. 6). In this region α = 1, and
assuming 〈δ2n(E )〉 ∼ 〈n(E )〉β=α−1 [93], leading to the expec-
tation that the power-law behavior of the number variance for

large energy scale will correspond to β = 0, i.e., saturation.
Nevertheless, on top of the saturation a quasiperiodic oscilla-
tions is observed. This is the result of the finite range of k for
which the exponent is equal to 1.

For the weakly disordered regime (W = 1, 2) the long time
(small energy scales) Wigner behavior is followed by an inter-
mediate time and energy scale for which 〈δ2n(E )〉 ∼ 〈n(E )〉β ,
and β = 1.3 (for W = 1 fit to the range 10 < 〈n(E )〉 < 50,
and for W = 2 to 30 < 〈n(E )〉 < 100). This corresponds to
powers larger than 2 we have seen in the scree plot for
the SV amplitudes. Thus this regime corresponds to ETh <

〈n(E )〉δ < EEx. The estimation in the previous section (as-
suming a factor two) for L = 14 and W = 1 of ETh ∼ 20δ and
EEx ∼ 40δ, while for W = 2, ETh ∼ 40δ, and EEx ∼ 100δ.
These estimations fits reasonably well the range of the super-
Poissonian behavior seen for the globally unfolded number
variation. Moreover, β = α − 1 = 1.3 in line with the be-
havior of the exponent observed for the SV in the region of
kTh < k < kEx.

VII. DISCUSSION

In the previous sections, it has been shown that the en-
ergy spectra of the quantum random antiferromagnetic Ising
chain with mixed transverse and longitudinal fields displays
a clear signature of a super-Poissonian behavior for a range
of energies ETh < E < EEx. The super-Poissonian behavior
appears deep in the metallic regime and its range grows as
the system approaches the MBL transition. On the other hand,
the scree plot power law of the energy range ETh < E < EEx

approaches two as expected for Poisson as one gets closer
to the localized regime. The super-Poissonian behavior be-
comes more pronounced as the system size increases, and
exhibits scaling behavior as a function of the number of
realizations and range of eigenvalues considered. Thus the
super-Poissonian regime is robust and does not seem to be
an artifact of small systems, although it is hard to extrapolate
to much larger systems. This behavior is brought to light once
global unfolding and sample to sample fluctuations are taken
into account using the SVD method, both by scrutinizing the
scree plot of the SV amplitudes as well as studying the number
variance of the spectra after unfolding the spectra by SVD.

Thus, for a model which is one of the canonical micro-
scopical models for studying the MBL transition, the metallic
phase is far from trivial. The small energy scales show all
the universal features expected in the metallic regime, while
higher energy scales clearly are nonuniversal. A non univer-
sal behavior at large energies has also been very recently
seen for an other canonical microscopic model for MBL,
the Heisenberg chain [94]. Nevertheless, EEx is not observed
there since only a small range of eigenvalues were considered,
similar to the P = 2048 case depicted in Fig. 8(b). As in
itself the deviation from universal behavior of the spectrum
at larger energy scales is not surprising, since a somewhat
similar deviation from the universal behavior of the energy
spectra is seen in the single-particle energy spectrum and
associated with the Thouless energy. There the reason for
the termination of the universal behavior is very clear. At
short times (corresponding to large energy scales) diffusive
behavior has not had time to evolved and experience the whole
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sample and therefore the behavior is not yet universal. For
the Imbrie model the crossover from the short time behavior
does not occur directly to the diffusive (universal) behavior,
but there is an intermediate times for which the motion of a
wave packet is extended, but nevertheless it does not cover the
whole phase space and only on longer times it crosses over to
the diffusive regime. Both crossovers leave a distinct signature
in the energy spectrum and establishes energy scales (EEx and
ETh) which can be extracted using SVD. This regime exists
only in the metallic regime, while in the localized regime there
is only a transition from nonuniversal short times behavior to
a localized behavior.

It would be very interesting to independently study the
NEE phase of the Imbrie model by investigating the wave-
function behavior in this regime. Following the methods used
in the study of the fractal features of the wave functions of the
NEE phase in the GRP model [33–40], one could extended
the understanding of the NEE phase in the Imbrie model.

The origin of this intermediate energy (or time) regime is
not clarified by this study. Whether is stems from the structure
of the coupling of states in the Fock space resulting in a
quantum random graph, or other explanations which hinge on
static or dynamical rare regions in the system such as Griffiths
regions which may drive KT transitions, needs more study.
Of course clarifying the finite size scaling of the intermediate
regime is highly desirable, but unfortunately seems beyond
current and reasonable future numerical capabilities. A possi-
ble continuation to this study would be the study of the energy
spectrum of other models with a different geometry than the

1D chains, such as the a random network or a modified SYK
model. Although one will continue to suffer from the con-
strains of small systems, one will have freedom of tweaking
geometry which may help understanding the physics behind
this intermediate region.

APPENDIX: SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) [96–98] is a
method to decompose a matrix X of size M × P (X is not
necessarily Hermitian nor square) into a sum of matrices.
The matrix X represents data arranged by rows and columns,
where the arrangement depends on the application. For the
SVD analysis of the spectrum, one writes the M realizations
of disorder and the P eigenvalues each, as a matrix X of
size M × P, where Xmp is the p level of the mth realization.
The matrix X is decomposed to X = U�V T , where U and
V are M × M and P × P matrices correspondingly, and � is a
diagonal matrix of size M × P and rank r = min(M, P). The r
diagonal elements of �, denoted as σk are the singular values
(SV) of the matrix which are positive and could be ordered
by their size such that σ1 � σ2 � . . . σr . The Hilbert-Schmidt
norm of the matrix ||X ||HS =

√
TrX †X = ∑

k λk (where λk =
σ 2

k ). Therefore using the SVD the matrix X could be written
as a series composed of matrices X (k), where X (k)

i j = UikV T
jk

and Xi j = ∑
k σkX (k)

i j . Thus this series in an approximation of
matrix X , where the sum of the first m modes gives a matrix
X̃ = ∑m

k=1 σkX (k), for which ||X ||HS − ||X̃ ||HS is minimal.
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